N2644/P2309R0 § , working draft — January 20, 2021 CORE 202101 (E)

JTC 1/SC 22/WG 14 & WG 21 © ISO/IEC 1990-2018 (C standard)
© Jens Gustedt 2020-2021" (rationale, modifications)
document: WG14 N2644, WG21 P2309R0
version: CORE 202101
date: 2021-01-20
audience: joint C & C++ study group, WG14 plenary

Programming languages — a common C/C++ core specification

Jens Gustedt — INRIA, France

Change history

v1l: WG14 document N2494
v2: WG14 document N2522, diffmarks from “cmin”
e clarifications: lambdas and longjmp, inline and scope, type char8_t, generic selection,
core::unsequenced attribute
e three-way comparison (spaceship operator)
e “initializer” construct for captures of lambdas
e a tool for textual representation of all basic types and arrays, totext
e more attributes for allocated storage, core:: free, core:: realloc, core::noleak
e an attribute for tracking (or not) of initializations core::writethrough
e core: concurrent attribute

e constexpr based on core:: concurrent and annotation of some library calls with that
specifier

e for-loop and if with variable definitions
e harmonization of tag names between C and C++
e hammonization of the requirements for Unicode as an internal encoding
v3: WG14 document N2644, this version, diffmarks from “cmin”
e clarifications: anonymous structures and unions, sequencing of function calls and initial-
izers, types of character constants and string literals.
e Improve some of the specifications for function attributes in conjunction with the C library.

o Integration of the proposed changes to C for auto and lambdas as of WG14 N2632, N2633,
N2634, and N2635. An overview can be found in N2638.

e Change from decltype to typeof. This has been proposed to WG14 in N2619.

DThe part of this work that extends the C standard is licensed under the Creative Commons Attribution-ShareAlike 4.0
International (CC BY-SA 4.0) License.

Change history modifications to ISO/IEC 9899:2018, § page i

CORE 202101 (E) § , working draft — January 20, 2021 N2644/P2309R0

(no diff marks, here)

Abstract

The C and C++ programming languages have evolved from a common ancestor many years ago
and have always been developed in keeping a close eye on each other. Both responsible committees,
WG14 and WG21, have always sought both languages to be compatible as far as seemed possible;
on a binary level for mutual linkage of software components, and on a source-header level for
mutual access to the so linked components. Nevertheless, gratuitous incompatibilities have crept
into them, and cross-language programming is nowadays quite difficult to achieve and almost
impossible to teach.

On the positive side, in recent years the efforts to bridge the gap between the two language have
been renewed and several fruitful initiatives have been undertaken to unify the approaches in
several domains. These concern in particular atomic types and operations, sign representations of
integers, the memory model(s), and the attribute feature.

This specification is an attempt to strengthen these dynamics and to formulate a common language
core that ideally would be integrated in both languages and would provide a solid base for the
future development of both, and, that would be much simpler to use, to comprehend and to
implement. It is oriented to maintain and extend some principal characteristics that are already
present in the intersection:

— Strong static typing
— Type-genericity

— Efficiency
— Portability

This common core adds features to both languages, and thus it has not yet a complete implemen-
tation. Nevertheless, first experiments show that it should not be very complicated to provide
reference implementations within compiler frameworks that already have front-ends for both
languages, and that thus already have most of the features in one way or another.

Acknowledgments

Discussions with the following people (and probably many others that I forgot to mention) con-
tributed to this proposal: Aaron Ballmann, Hubert Tong, JF Bastien, JeanHeyd Meneide, Kayvan
Memarian, Lars Gullik Bjennes, Martin Uecker, Niall Douglas, Peter Sewell, Richard Smith, Etienne
Alepins.

modifications to ISO/IEC 9899:2018, § page ii Abstract

N2644/P2309R0 § , working draft — January 20, 2021 CORE 202101 (E)

(no diff marks, here)

Contents modifications to ISO/IEC 9899:2018, § page iii

CORE 202101 (E) § CONTENTS, working draft — January 20, 2021 N2644/P2309R0

Contents
Rationale xiii
I CHtfeatures oL xiii
Li Keywords xiii
Lii Types and other fundamental language features xiv
Lii Compile time constants and well defined behavior XV
Liv. Empty defaultinitializers XV
Lv Specificnamed constants L L L L Lo XV
Lvi Type-generic programming XV
Lvii Other xvi
I Cfeatures e Xvi
ILi Genericselection Xvi
ILii ~ Variable length arrays (VLA) xvii
ILiii Complex arithmetic xvii
I Modernization e xvii
IIIi Mathematical functions xvii
i Complextypes i Xviii
IIiii Functionattributes o xviii
IILiv Arraysize propagation. xix
OLv Qualifier fidelity XX
IIL.vi Three-way comparison. XX
II.vii Textual representationsand output. xxi
IV Disambiguation xxii
IVi Inline functionsand objects xxii
IVii Lexingof punctuators xxii
IViii Opaquetypes xxiii
IViv Atomics e xxiii
IV.v Bit-fields and fixed-width types xxiii
IVvi Identifiers xxiv
V. Memorymodel XXV
Vi Storageinstance XXVi
Vii Provenance-based aliasing analysis xXxvi
Viii Explicit aliasing deduction and storage allocation XXVi
Viv ~ Type-based aliasing analysis xxvii
Vv Data-flowanalysis xxviii
V.vi Const objects of static storage duration Xxix
VI Removal XXix

modifications to ISO/IEC 9899:2018, § CONTENTS page iv Contents

N2644/P2309R0 § CONTENTS, working draft — January 20, 2021 CORE 202101 (E)

VLi Lvalue expressions and referencetypes Xxix

VLii Conversions from complextypes XXX

VILiii Imaginary typesand AnnexG oL XXX

VILiv Bounds-checking interfaces (AnnexK). XXX

VII Furtherdirections XXX
Introduction xxxii
1 Scope 3
2 Normative references 4
3 Terms, definitions, and symbols 5
4 Conformance 1
5 Environment 12
51 Conceptualmodels 12
51.1 Translationenvironment. 12

5.1.2 Executionenvironments L. L Lo 13

52 Environmental considerations L L Lo L Lo 20
521 Charactersets 20

522 Character display semantics 0L 22

523 Signalsandinterrupts oL 22

524 Environmental limits o o L Lo o 23

6 Language 31
6.1 Notation 31

6.2 Concepts 31
6.2.1 Scopesofidentifiers oL 31

6.2.2 Linkagesofidentifiers 32

6.2.3 Namespacesofidentifiers. 33

6.24 Storage durations and object lifetimes o oL L 33

625 Types 34

6.2.6 Representationsoftypes L L. 39

6.2.7 Compatible type and compositetype 42

6.2.8 Alignmentofobjects L L oo 43

6.2.9 Mutual representability of types and objects 44

6.3 Conversions 47
6.3.1 Arithmeticoperands 47

632 Otheroperands 50

6.4 Lexicalelements e 55
641 Keywords 56

Contents modifications to ISO/IEC 9899:2018, § CONTENTS page v

CORE 202101 (E) § CONTENTS, working draft — January 20, 2021 N2644/P2309R0

6.5

6.6
6.7

6.42 Identifiers 57
6.4.3 Universal characternames., 58
6.44 Constants 59
6.45 Stringliterals 67
6.4.6 Punctuators 68
647 Headernames. 69
6.4.8 Preprocessingnumbers L o 70
649 Comments e 71
Expressions e 72
6.5.1 Primaryexpressions e 73
6.5.2 Postfixoperators 75
6.5.3 Unaryoperators 87
654 Castoperators. e 90
6.5.5 Multiplicative operatorso L 91
6.5.6 Additiveoperators 91
6.5.7 Bitwiseshiftoperators L L Lo oL 93
6.5.8 Three-way comparison operator 93
6.5.9 Relationaloperators, 93
6.5.10 Equality operators 94
6.5.11 Bitwise ANDoperator 95
6.5.12 Bitwise exclusive ORoperator 95
6.5.13 Bitwise inclusive ORoperator 96
6.5.14 Logical ANDoperator 96
6.5.15 Logical ORoperator 96
6.5.16 Conditionaloperator L o 97
6.5.17 Assignmentoperators 98
6.5.18 Commaoperator 101
Constantexpressions 102
Declarations 104
6.7.1 Storage-classspecifiers L L 106
6.72 Typespecifiers 107
6.73 Typequalifiers 117
6.74 The constexprspecifier L oL L L 119
6.75 Theinlinespecifier 122
6.7.6 Alignmentspecifier. L L 125
6.7.7 The_Noreturnspecifier 126
6.7.8 Declarators 126
6.79 Typenames 133
6.7.10 Typedefinitions 134
6.7.11 typeof specifier. 136

modifications to ISO/IEC 9899:2018, § CONTENTS page vi Contents

N2644/P2309R0 § CONTENTS, working draft — January 20, 2021 CORE 202101 (E)

6.7.12 Initialization e 137
6.713 Typeinference. 142
6.7.14 Staticassertions e e e e 144
6.7.15 Attributes e e 144

6.8 Statementsandblocks 175
6.8.1 Labeled statements 175

6.82 Compoundstatement 176

6.8.3 Expressionandnullstatements 176

6.8.4 Selectionstatements 177

6.8.5 Iterationstatements oL 179

6.8.6 Jumpstatements o 180

6.9 External definitions 184
6.9.1 Function definitions 185

6.9.2 External object definitions L oL L oL 187

6.10 Preprocessing directives o 189
6.10.1 Conditionalinclusion o 190
6.10.2 Source fileinclusion 192
6.10.3 Macroreplacement 193
6.104 Linecontrol e 199
6.10.5 Errordirective e 200
6.10.6 Pragmadirective 200
6.10.7 Nulldirective e 200
6.10.8 Predefined macronames 201
6.10.9 Pragmaoperator e 204

6.11 Future language directions L L L L 206
6.11.1 Floatingtypes 206
6.11.2 Linkages ofidentifiers o o oL 206
6.11.3 Externalnames 206
6.11.4 Character escape SeqUeNCES vt v it 206
6.11.5 Storage-classspecifiers L oL Lo 206
6.11.6 Function declarators 206
6.11.7 Pragmadirectives. 206
6.11.8 Predefined macronameso 206

7 Library 207
7.1 Introduction e 207
71.1 Definitionsofterms 207

712 Standard headers 207

7.1.3 Reservedidentifiers 208

714 Useoflibrary functions 209

Contents modifications to ISO/IEC 9899:2018, § CONTENTS page vii

CORE 202101 (E) § CONTENTS, working draft — January 20, 2021 N2644/P2309R0

7.2 Diagnostics<assert.h> L o o 211
721 Programdiagnostics o 211
7.3 Complex arithmetic <complex.h> 212
731 Introduction 212
732 Conventions e e e 212
733 Branchcuts 212
734 The CX_LIMITED_RANGE pragma 213
7.3.5 Trigonometric functions 0 L L 213
73.6 Hyperbolicfunctions oo 215
7.3.7 Exponential and logarithmic functions 216
7.3.8 Power and absolute-value functions L. 217
74 Character handling <ctype.h> L . 220
741 Character classification functions 220
74.2 Character case mapping functions L. 222
75 Errors<errno.h> 224
7.6 Floating-point environment <fenv.h> 000 225
7.6.1 The FENV_ACCESSpragmaot v ittt 226
7.6.2 Floating-pointexceptions, 227
763 Rounding 229
7.6.4 Environment 230
7.7 Characteristics of floating types <float.h> 232
7.8 Format conversion of integer types <inttypes.h> 233
7.8.1 Macros for format specifiers Lo oL L L oL 233
7.8.2 Functions for greatest-width integer types 234
7.9 Alternative spellings <iso646.h>. L. 235
7.10 Characteristics of integer types <limits.h>. 236
7.11 Localization <locale.h>. 237
711.1 Localecontrol e 238
7.11.2 Numeric formatting convention inquiry 239
7.12 Mathematics <math.h> 244
7.12.1 Treatment of error conditions 246
7122 The FP_CONTRACT pragma o v vt v ittt 247
7123 Classificaion macros o v vttt 248
7.12.4 Trigonometric functions L L L 250
7.12.5 Hyperbolicfunctions 252
7.12.6 Exponential and logarithmic functions 254
7.12.7 Power and absolute-value functions 259
7.12.8 Errorand gamma functions L. 262
7129 Nearestinteger functions L oL 263
712,10 Remainder functions 266

modifications to ISO/IEC 9899:2018, § CONTENTS page viii Contents

N2644/P2309R0 § CONTENTS, working draft — January 20, 2021 CORE 202101 (E)

7.13

7.14

7.15

7.16

7.17

7.18
7.19
7.20

7.21

7.12.11 Manipulation functions oL 267
7.12.12 Maximum, minimum, and positive difference functions 270
7.12.13 Floating multiply-add L L oo 273
71214 CompariSON MAaCIOS v vt it e e e 273
7.12.15 Type propertiesand values 275
Nonlocal jumps <setjmp.h>. L L L oL 278
7.13.1 Savecallingenvironment 278
7.13.2 Restore calling environment L., 278
Signal handling <signal.h>. 280
7.14.1 Specify signalhandling 280
7142 Sendsignal 282
Alignment <stdalign.h> L L 283
Variable arguments <stdarg.h> L L L L. 284
7.16.1 Variable argument listaccessmacros 284
Atomics <stdatomic.h> L o 287
7171 Introduction L 287
7.17.2 Initialization L 288
7173 Orderandconsistency 289
7174 Fences 291
7.17.5 Lock-free property 292
717.6 Atomicintegertypes o 293
7.17.7 Operations on atomictypes, 294
7.17.8 Atomic flag type and operations L L L L 297
Boolean type and values <stdbool.h> 299
Common definitions <stddef.h> 300
Integer types <stdint.h> o 301
720.1 Integertypes 301
7.20.2 Widths of specified-width integertypes, 304
7.20.3 Widthof otherintegertypes. 304
7.20.4 Macros for integer constants L oL 305
7.20.5 Maximal and minimal values of integer types 305
Input/output<stdio.h>. L 306
7211 Introduction L 306
7212 Streams 307
7213 Files e 308
7214 Operationsonfiles 310
7215 Fileaccessfunctions o 312
7.21.6 Formatted input/output functions 0L 315
7.21.7 Character input/output functions 330
7.21.8 Direct input/output functions Lo oL 334

Contents modifications to ISO/IEC 9899:2018, § CONTENTS page ix

CORE 202101 (E) § CONTENTS, working draft — January 20, 2021 N2644/P2309R0

7.21.9 File positioning functions o Lo 335
7.21.10 Error-handling functions oo L oL 338

7.22 General utilities <stdlib.h> L 340
7.22.1 Numeric conversion functions 340
7.22.2 Textconversion functions 344
7.22.3 Pseudo-random sequence generation functions 350
7.22.4 Storage management functions Lo 351
7.22.5 Communication with the environment 353
7.22.6 Searching and sorting utilities oL oL 357
7.22.7 Integer arithmetic functions L L L Lo 358
7.22.8 Multibyte/wide character conversion functions 360
7.22.9 Multibyte/wide string conversion functions 361

723 _Noreturn <stdnoreturn.h>o oL 363
7.24 String and storage handling <string.h> 364
7241 Conventions L e e e e e 364
7242 Copyingfunctions 365
7.24.3 Concatenation functions 367
7244 Comparisonfunctions 368
7245 Search functions 370
7.24.6 Miscellaneous functions L 373

7.25 Type-generic math <tgmath.h> 378
726 Threads <threads.h> 380
7.26.1 Introduction 380
7.26.2 Initialization functions 381
7.26.3 Condition variable functions 381
7264 Mutex functions 383
726.5 Thread functions 385
7.26.6 Thread-specific storage functions 388

727 Date and time <time.h> 390
7271 Componentsoftime 390
7.27.2 Time manipulation functions 391
7.27.3 Time conversion functions e 393

7.28 Unicode utilities <uchar.h> 399
7.28.1 Restartable multibyte/wide character conversion functions 399

7.29 Extended multibyte and wide character utilities <wchar.h>. 403
729.1 Introduction e e 403
7.29.2 Formatted wide character input/output functions 404
7.29.3 Wide character input/output functions 416
7.29.4 General utilities for wide characterarrays 419
7.29.4.1 Wide string copying functions 422

modifications to ISO/IEC 9899:2018, § CONTENTS page x Contents

N2644/P2309R0 § CONTENTS, working draft — January 20, 2021 CORE 202101 (E)

7.29.4.2 Wide string comparison functions 423
7.29.4.3 Wide string search functions 424
72944 Miscellaneous functions 425

7.29.5 Wide character time conversion functions, 426
7.29.6 Extended multibyte/wide character conversion utilities 426
7.29.6.1 Single-byte/wide character conversion functions 427
7.29.6.2 Conversion state functions 427
7.29.6.3 Restartable multibyte/wide character conversion functions 428
7.29.6.4 Restartable multibyte/wide string conversion functions 430

7.30 Wide character classification and mapping utilities <wctype.h> 432
7.30.1 Introduction 432
7.30.2 Wide character classification utilities 432
7.30.2.1 Wide character classification functions 432
7.30.2.2 Extensible wide character classification functions 435

7.30.3 Wide character case mapping utilities 436
7.30.3.1 Wide character case mapping functions. 436
7.30.3.2 Extensible wide character case mapping functions 436

7.31 Three-way comparison <stdcompare.h> 438
731.1 Comparisontypes 438
7.31.2 Primary three-way comparison 441
7.31.3 Synthetic three-way comparison 442
7.31.4 Classification of comparison types and values 444
73141 Thedisstrongmacro 444
73142 Theissymmetricmacro 444
73143 The toswitchmacro 444
73144 Thetostrongmacro 445

7.31.5 Searching and sorting utilities o L. 446
7.31.5.1 The tocomparemacro oo v v i i 446
7.31.5.2 The search type-genericmacro 447
7.31.5.3 The sort type-genericmacro. 447

7.32 Futurelibrary directions L L 449
7.32.1 Character handling <ctype.h> 449
7322 Errors<errno.h>. 449
7.32.3 Floating-point environment <fenv.h>. 449
7.32.4 Format conversion of integer types <inttypes.h>. 449
7.32.5 Localization <locale.h> 449
7.32.6 Mathematics<math.h> 0 .. 449
7.32.7 Signal handling <signal.h> 449
7.32.8 Atomics <stdatomic.h>. o o L. 449
7.32.9 Integer types<stdint.h> oo L 450

Contents modifications to ISO/IEC 9899:2018, § CONTENTS page xi

CORE 202101 (E) § CONTENTS, working draft — January 20, 2021

7.32.10Input/output <stdio.h>
7.32.11 General utilities <stdlib.h>
7.32.12 String and storage handling <string.h>
7.32.13 Date and time <time.h>
7.32.14 Threads <threads.h>
7.32.15 Extended multibyte and wide character utilities <wchar.h>

7.32.16 Wide character classification and mapping utilities <wctype.h>

Annex A (informative) Language syntax summary

Annex B (informative) Library summary

Annex C (informative) Sequence points

Annex D (normative) Universal character names for identifiers
Annex E (informative) Implementation limits

Annex F (normative) IEC 60559 floating-point arithmetic
Annex G (removed) IEC 60559-compatible complex arithmetic
Annex H (informative) Language independent arithmetic
Annex I (informative) Common warnings

Annex J (informative) Portability issues

Annex K (removed) Bounds-checking interfaces

Annex L (normative) Analyzability

Annex M (informative) Change History

Bibliography

Index

modifications to ISO/IEC 9899:2018, § CONTENTS page xii

N2644/P2309R0

451

467

481

482

483

485

503

504

509

510

539

540

542

546

547

Contents

N2644/P2309R0 cmin..core3 §I, working draft — January 20, 2021 CORE 202101 (E)

Rationale

This document specifies the form and establishes the interpretation of programs expressed in a
future core language specification common to the programming languages C and C++. Its purpose
is to promote portability, reliability, maintainability, and efficient execution of programs written
within that core on a variety of computing systems.

Clauses are included that detail the core itself and the contents of the C language execution library
that is common to that core. Annexes summarize aspects of both of them, and enumerate factors
that influence the portability of programs.

This document marks changes from version cmin to version core3. They are indicated by striking
out text that has been deleted and underlining text that has been added. Pages that contain changes
are marked with cmin..core3 and are listed under core3 CHANGES in the index.

The starting point of this document was ISO/IEC 9989:2018. We apply a series of changes to the C
programming language that are intended to ease the programming styles that are in synchronization
with modern advances in information technology and software engineering, and that augment
the common intersection with the programming language C++. As such, this core specification is
currently neither conforming to the C nor the C++ standard, but the intent is that the C and C++
standards as well as this document are subsequently modified until they converge to a common
core.

Changes that are integrated in this document come in several flavors:

— Changes that already have been integrated by WG14 into C for the upcoming specification of
C2x. Beware that not all changes that WG14 has integrated are reproduced here. In particular,
a lot of the changes to floating point types and libraries are currently too complex to be
integrated in a core language specification.

— Features that have been present in C++, that are well established and that ease the portability
of code between the two languages.

— Similarly, features that have been present in C for some time, that are commonly used and that
ease portability with C++.

— Features that modernize the language specification appropriately to the improved environ-
ments that are nowadays commonly available.

— Disambiguations of problematic parts of both languages, in particular a consistent and com-
prehensive memory and aliasing model.

— Convergence of features that have gratuitously distinct syntax in C and C++, such as atomics
and complex numbers.

— “Removal” of rarely used or underspecified parts of the languages that break compatibility
between C and C++. Here, removal means “removal from this specification” and not removal
from the corresponding language(s).

I C++ features
Ii Keywords

C has historically integrated some features that were invented for C++ but with a different syntax
and sometimes even slightly different semantic. It did this by using a spelling for keywords starting
with an underscore and a capital letter to avoid clashes with user space identifiers, and by only
introducing the “normal” form (that would be a keyword in C++) via additional headers. This
overcautious approach is in opposition to additions to the C library, where function names have
been added without the same precaution.

Rationale modifications to ISO/IEC 9899:2018, § Li page xiii

CORE 202101 (E) § Lii, working draft — January 20, 2021 N2644/P2309R0

Since these C++ keywords are present even in the C standard, user code targeting the C/C++ core
may reasonably expect to be able to use these keywords without precaution. Therefore this core
proposal moves forward to integrate them also as keywords to C and to deprecate the then useless
header files that provide them.

The transition to that new setting should be as smooth as possible, so for the moment we keep the
possibility that these keywords may be implemented as macros.

Another set of keywords that is introduced in this specification are eleven keywords that replace
punctuators that in some historic settings had been difficult to represent. These have been keywords
for C++ since the beginning and to accommodate C++ legacy code that might use them, we introduce
them, here. This addition also makes the header <is0646. h> obsolete.

We also add new features implemented through keywords that had not yet been present in C. Here
also, to ease the transition it seems to be best to allow for them to be implemented as macros.

In total, the keywords introduced by this change (6.4.1) are

alignas bitor generic_selection_eq typeof
alignof bool or xor_eq
and_eq compl not_eq static_assert xor
and false not thread_local

bitand nullptr true

Here the only semantic change that is necessary here is to impose that the type of the Boolean
constants false and true is bool and not int as it had been in C. The new feature from C++ is
nullptr.

Overall, the C library headers that become obsolete are

<150646.h> <stdalign.h> <stdbool. h> <stddef.h>

Other C keywords follow a similar pattern, but the resolution of conflicting semantics is more
complicated and will be handled below.

_Atomic _Generic _Noreturn
—Complex _Imaginary

Lii Types and other fundamental language features

C and C++ differ in the presentation of certain semantic types that occur independently as language
features, and this proposal attempts to provide a unified approach for them. Therefore the definition
of these types is withdrawn from C library headers and definitions for these types are predefined.
This allows to reconcile the fact that C has these types as typedef to basic types whereas for C++
some of them constitute proper types of their own.

We also add the type of the new nullptr constant to that list, 6.4.2.2. The types that become
universally available (6.2.5.1) are:

Type language feature

nullptr_t | the type of the nullptr constant

ptrdiff_t | the result of pointer difference

size_t the result of sizeof, alignof and offsetof operations
wchar_t the element type of L wide-string literals

char8_t the element type of u8 string literals

charlé_t | the element type of u wide-string literals

char32_t | the element type of U wide-string literals

The encodings for the latter three are fixed for C++ to be UTF-8, UTF-16 and UTF-32, and so we
remove the parts of the C standard that made such encodings implementation-defined. Also we
unify the approach for internal representation of extended character sets such that implementations

modifications to ISO/IEC 9899:2018, § Lii page xiv Rationale

N2644/P2309R0 § Liii, working draft — January 20, 2021 CORE 202101 (E)

have to behave “as-if” the internal representation were Unicode. This ensures that the semantic of
all characters in these extended character sets is unique and that mapping extended characters to
Unicode and back is the identity.

In addition to these types, some other principal language features that in C were provided as macros
have been elevated to be predefined macros. As a consequence the <stddef . h>header also becomes
empty and is declared obsolete.

Liii Compile time constants and well defined behavior

In contrast to C++, C is missing an important feature, namely the possibility to declare named
constants of arbitrary type. The only possibilities that are currently offered are enumeration constants
Or Macros.

Unfortunately, some of the paths that C++ has chosen to define such constants are not compatible
with C. In particular, for C++ const-qualified objects (that are not volatile-qualified) and that
have a known compile-time initializer are implicitly static and can stand in wherever a constant
can. Using that construct in C by defining such a const-object in a header would introduce binary
incompatibilities with existing code, and would thus not a path that C could easily chose to adapt.
Also, that would instantiate such an object in every translation unit that includes the header, and it
would results in multiple definitions if several such translation units are link into one executable.

The path chosen for this proposal is thus to use two features that are not yet present as such in C,
namely inline constants and constexpr, see 6.6. The first are special cases of qualified inline objects,
see below in IVi, 6.7.5. They provide a possibility to define constants that have a unique address in
the whole program, if such an address is needed.

constexpr is much more general feature, because this specifier can be applied to objects (similar to
inline constants) and also to functions and lambdas. Thereby it allows to advance almost arbitrary
computations to compile time and to ensure that such a computation only has defined behavior.
The properties for that specifier are relatively involved when spelled out in full, although the most
common cases are quite intuitive and can be verified automatically. We base the “implementation”
of that feature heavily on the core:: concurrent attribute, see below.

Liv Empty default initializers

In contrast to C, C++ allows empty braces{} as default initializers for all value types. C only has
{ 0 } toinitialize the very first (maybe recursive) member to 0 and then all other members to their
default. The later feature is commonly misunderstood and some compilers warn about this construct
when it is used to initialize a nested aggregate or union type. Therefore we think that such empty
initializers should be added to the C/C++ core. C implementations are invited to implement this as
an extension to C for the time being (and some do that already).

Such a feature also comes handy for types that have no value but that should nevertheless be
initialized. See opaque types (IV.iii) below.

L.v Specific named constants

This proposal adds the following specific named constants as language features: false, nullptr
and true.

— In contrast to traditional C the Boolean constants have type bool.

— nullptr is meant to replace all uses of NULL and 0 for the purpose of specifying a universal
null pointer constant. It is considered an error to use it in arithmetic and also to pass it as an
argument of a function where there is no prototype.

I.vi Type-generic programming

A whole series of papers has now been presented to integrate some type-generic features as they
are already present in C++ into C, see WG14 document N2638. This includes in particular the auto
feature (as far as applicable to C) and lambdas.

Rationale modifications to ISO/IEC 9899:2018, § I.vi page xv

CORE 202101 (E) § L.vii, working draft — January 20, 2021 N2644/P2309R0

In contrast to previous versions of this document we don’t think that it is realistic to move towards
an integration of decltype into C. A similar but better adapted feature, typeof, has recently been
proposed for integration to C, which in turn could perhaps easily finds its way into C++, see WG14
N2619. We base this common C/C++ core on the assumption that the typeof feature has been
integrated.

I.vii Other

— the<=> operator
— new syntax for number tokens, such as thousands separators?
— enumeration types with specified base type

— constexpr

II C features

II.i Generic selection

C’s dedicated feature to program type-generic interfaces has been generic selection with a relatively
special syntax introduced by the _Generic keyword and case-like choices according to the generic
type of the controlling expression. The important feature here is that such a generic selection
is determined at compile time and the resulting type of the expression is the type of the chosen
expression.

This choice of types is much more powerful than the one that can be done by generic lambdas:

— For lambdas, the result type basically depends on established type derivation mechanism. It
is not easy to add such a mechanism that would not have been foreseen by predefined type
conversion rules.

— The controlling expression of a generic selection is not evaluated, and neither are those that
only occur in result expressions that are themselves not evaluated. Any mechanism that works
with lambdas or function overloading will normally evaluate such arguments for their side
effects.

A good example of the features that can be implemented with generic selection are type traits:

#define is_real _floating_type(X) \
generic_selection((X), \
float: true, \
double: true, \
long double: true, \

default: false)

or value and type macros

#define unsigned_zero(X)
generic_selection((X),
long: OUL,
unsigned long: OUL,
long long: OULL,
unsigned long long: OULL,
default: 0U)
#define unsigned_type(X) typeof(unsigned_zero(X))

\
\
\
\
\
\

Currently C++ seems not to have a tool that can easily emulate this, implementing features that
emulate multi-parameter generic selection is quite tedious. Usually the default case gives rise to
a function or class template, and the individual cases then are specializations, but then additional
boilerplate is needed to inhibit the evaluation of the controlling expression and more generally of
those arguments that should not be evaluated, either.

modifications to ISO/IEC 9899:2018, § IL.i page xvi Rationale

N2644/P2309R0 § ILii, working draft — January 20, 2021 CORE 202101 (E)

So such a feature should be added to the C/C++ core. To increase the acceptability of the feature, we
propose to rename the feature to generic_selection such that its purpose is more evident to the
untrained reader. Also, having it as a newly named feature would enable us to enforce some more
properties for the evaluation of the chosen result expression, if the discussion around this proposal
reveals that this could be usefull.

ILii Variable length arrays (VLA)

Traditionally, C and C++ differ in some of the aspects of array declarations, namely for arrays for
which the bounds are not integer constant expressions (ICE). Generally (but see below) C allows
them in block scope, whereas C++ has no such concept. C calls them variable length arrays, VLA, and
pointers to such types are variably modified types, VM. These features and the difference between C
and C++ has lead to endless debade, but it is commonly much misunderstood for its potential.

On one hand, VLA definitions in block scope can be dangerous, because they can lead to safety and
security issues: they can smash the execution stack of functions, maybe inadvertently, or maybe
even maliciously.

On the other hand, declarations of VLA (not necessarily definitions) are a convenient tool to enforce
propagation of array sizes. In particular such an enforcement is possible from the caller of a function
with array parameters into the function body, without changing function ABIs, without forcing
transfer of dynamically allocated type descriptions, and without jeopardizing performance or safety.

C has VM types since C99, but made them optional with a feature macro —STDC_NO_VLA__ in C11.
This possibility not withstanding, there is no known implementation that would conform to C17 that
defines that feature macro. C++ has no VM types. VM types, with the leeway for implementations
to forbid definitions of VLA in block scope, are nevertheless proposed for this core specification,
because they are fundamental for modern programming in C and because of the possibilities of
array bound propagation, see Section IILiv.

Implementations may still opt-out from defining VLA by defining the feature macro
—_CORE_NO_VLA__, see 6.10.8.2.

ILiii Complex arithmetic

C++ is quite restrictive for the arithmetic operations that it defines for complex types, namely the
other operand cannot not be a real type. Allowing such arithmetic is harmless because usually
no information loss can originate from such an operation. Therefore this specification explicitly
defines all four basic arithmetic operations that have both operands as arithmetic types. C++
implementations that want to target the common C/C++ core must either change their rules for
arithmetic conversion or provide a series or overloaded operator functions that implement all
possible operations for the for standard arithmetic operators.

IIT Modernization

IILi Mathematical functions

The <math.h> header has accumulated a lot of baggage over the years and introduces a lot of
identifiers that are not protected by any naming convention. In the beginnings of C such an
approach was adequate, because it was useful to have linker symbols for different variants of
functions around.

Times have changed and the generic tools we propose here (inference, lambdas) go far beyond what
had been possible, formerly. They make the need for such heavy intrusion in the users name space
disappear.

In particular here we propose to replace most mathematical functions by type-generic macros, much
as they are overloaded functions for C++. Basically this covers all functions that previously had
been interfaced by the <tgmath.h> header. Compared to that header we introduce a big advantage:
type-generic macros that are implemented with lambdas (or as-if implemented with lambdas) can
be assigned to function pointers, such that applications can move function pointers around when
they need them (e.g to compute derivatives). By this change

Rationale modifications to ISO/IEC 9899:2018, § II1.i page xvii

CORE 202101 (E) § IILii, working draft — January 20, 2021 N2644/P2309R0

— most of the individual functions in <math. h> become obsolete,

— together with the changes on <complex. h> the whole <tgmath.h>header becomes obsolete,
too.

There are some particular functions, where we go even a bit further, namely fabs, fmax, fmin,
fdim, abs and div. These are all functions that present more generic language features than they are
library features, and for which some historic choices have gone wrong.

For fabs and abs, there is first of all no real reason to distinguish floating point and integer interfaces.
Mathematically it is clear what all these functions should do, and users can expect to have a single
easy to use interface to address that feature. Second, abs had gone quite wrong for integer types: in
some cases where are undefined, simply because the historic choice for the return type was wrong.
They probably date back in times where there were no unsigned types in C or where unsigned
types could just mask out the sign bit. So the choice then was a return type that could not hold the
absolute value for the minimum integer values in all cases.

The tide has turned, and today with the restrictions on sign representations that are in place now,
there is a set of return types that can hold the mathematical values, so we should just chose this: we
can simply force unsigned return values for all integer types.

Similar observations hold for maximum, minimum, and cut-off difference (fdim). With a proper
choice of return types, all these functions can be specified without error conditions.

The div functions are even more peculiar. Currently each of them needs a unique return type and
pollutes the name space with these mostly useless identifiers. We propose to change these into one
single type-generic macro for which the return types then can be inferred. Most likely nobody ever
is interested in the return of these functions for longer than some lines of code, so auto definitions
of objects that capture the results should be fine.

IILii Complex types

Although they are ABI compatible (have the same representation), complex types are handled quite
differently in C and C++. In C there is the _Complex keyword that is used to specify complex types,
in C++ there are templates complex< F > for all real types. Syntactically it would be difficult to
reconcile these, so we don’t even try.

Instead, we go the way of most modern programming languages by requiring them as mandatory
builtin types. We introduce complex literals (with an additional i or I in the suffix) and as a
consequence the complex types could simply be deduced by typeof specifications.

Predefined macros are added to deal with these constructs more comfortably: there are
type macros (real_type(T) and complex_type(T)) and value macros (real_value(x) and
imaginary_value(x)). We assume that such macro names (with _type or _value) will not produce
many conflicts in user space.

Some of the basic type-generic macros in <math.h> use complex arguments, without the need
to include the <complex.h> header, namely abs, conj, carg, and cproj. (The later might still
be subject to some name changes.) The functions creal and cimag are dropped bcause they are
superseded by the macros above.

As a consequence of these changes for the complex types, the <math . h>and the <complex.h>header
can now be much simpler. It does not have to provide basic features for the types, and the interfaces
are only amendments to the corresponding interfaces in <math . h>. There is a new feature test macro
—CORE_NO_COMPLEX_ that should be set if the functional interfaces are not provided.

IIl.iii Function attributes

The recent addition of the attribute feature to C makes it possible to add specific common attributes
to both languages that may overcome the lack of precision for function and lambda interfaces that
the languages traditionally provide. In particular the information about a function that the translator
traditionally receives is limited to the parameters and to the return type, but completely ignores the
rest of the program state. Modern optimizers are able to process much more information if functions

modifications to ISO/IEC 9899:2018, § IIlL.iii page xviii Rationale

N2644/P2309R0 § IIL.iv, working draft — January 20, 2021 CORE 202101 (E)

and lambdas are annotated appropriately and produce executables that may perform orders of
magnitude better.

The new attributes defined by this specification provide, 6.7.15.4, such optimization opportunities
for functions and lambdas. Their main goal is to provide the translator with information about
the access of functions and objects coming from surrounding scopes and such that it may deduce
certified properties. This certification is ensured by forcing the attributes to be consistently present
at all declarations, and to force the same type of attributes on other functions or lambdas that are
called in the function body:.

A first pair of attributes, core::noleak and core::address_independent, makes assertions about
the behavior of functions with respect to the address space. The first guarantees that the function will
not leak any allocation, that is, that every newly allocated storage instance will either be deallocated
within the same function call, or a pointer to it will be returned as a core:: noalias pointer. The
second, forbids any exposure of storage instances or synthesis of pointers, and thus guarantees
that the execution of the function is independent of any properties of the address space or of any
particular address choices of any specific execution.

One set of attributes, core:: evaluates and core::modifies, works with visible identifiers and
establishes a strict framework of data flow from static or thread-local objects in and out of the
function body. In addition, the core:: stateless attribute guarantees that a function or lambda
can not hold hidden state in form of a local static or thread-local variable. The second set,
core:state_invariant, core::state_conserving and core:: state_transparent go beyond
this by controlling not only which identifiers are accessed directly, but also which objects are
accessed through pointer indirections. Then, there are core::idempotent, core:: independent
and core::unsequenced, that are the most interesting attributes for optimization, but which can
themselves not easily asserted through syntax and strong typing.

We also propose a more narrowly targeted attribute, reentrant, for signal handlers and functions
that are used by them. Though this property can not be deduced automatically in all cases, it should
be capable to check many candidate functions for signal handlers without user intervention.

The core:: concurrent attribute describes a quite restricted set of functions or lambdas, too. Such
functions and lambdas that may be robustly executed within different threads of execution with-
out race conditions. Often they can even be performed once and for all at compile time if the
arguments are constant expressions, and therefore this attribute also forms a main ingreedient for
the formulation of the properties of the constexpr specifier for function definitions and lambda
expressions.

The specification of the core::evaluates and core::modifies attributes use the names of the
global objects that are accessed by the annotated function. Unfortunately, not all global state in the
C library is identifiable by such a name. Therefore we extend the identifiers that are admissible to a
set of placeholder names (such as errno or stdout) that we call the C library channels. Therefore
the C library has been systematically combed for functions that make assumptions about a global
state, and hopefully all have been annotated with the corresponding attributes.

Additionally, there are also aliasing attributes core::noalias and core::alias, that are also func-
tion attributes, but deal with much more, see Section Viii for explicit aliasing handling, and
the core::reinterpret attribute to handle type interpretation on function boundaries, see Sec-
tions IIL.iv and V.iv, below.

It is tedious to update large header files with these attributes. For cases where they are all the same
for a whole set of functions we provide a #pragma CORE FUNCTION_ATTRIBUTE that can apply a
pragma with arguments or switch it off if necessary.

IIL.iv Array size propagation

One of the worst traps that C and C++ have to offer, originate in the ambiguity between pointers
and arrays, namely that pointers are supposed to point to an array of the base type, but where the
size of that array is not known. This is particularly striking on the function call boundary, where
arrays are rewritten to pointers on both sides:

Rationale modifications to ISO/IEC 9899:2018, § IIL.iv page xix

CORE 202101 (E) § IIL.v, working draft — January 20, 2021 N2644/P2309R0

— On the definition side array and pointer parameters are “considered the same” in a very weird
way, namely most information that may even be present in the array specification is pretended
to be lost the moment we enter the function.

— On the calling side, arrays “decay” to pointers, and any information that might even present
in the interface, such as array sizes are not not enforced.

All of this is not only dangerous, it is also completely useless. Nowadays in many situations there is
not even a performance gain produced by these “features”. So we think that it is time to tighten the
rules such than array sizes can be propagated and checked without otherwise harming performance
or even productivity.

The idea for this is simple: enforce that function declarations are consistent, in particular that
specified array size expressions are the “same”. Here the same is modeled by something coined
token equivalence, that is where declarations are equivalent as token sequences, with the possibility to
(re-)name function parameters and to adjust white-space and digraphs. But for example, array-to-
pointer rewrite would not be allowed in the declaration of a function where the definition would be
written with array notation.

Token equivalence warrants that both, the caller and the definition, see the same expressions for
array bounds. Thus the caller can check such conditions at compile time (or maybe at run-time) and
the definition may safely assume that the condition has been verified before any call.

Several mechanisms are put in place to ease array size propagation. First there is a function at-
tribute core:: reinterpret that (among other things) enforces that all declarations (including
definitions) are token equivalent. Then, there are function return type annotations, such as
core::noalias(size) for malloc or realloc that provide information about the size of the array
their returned pointer refers. Third, the consequent use of VM types (see above) for array parameters,
enforces that the translator must have a notion of a dynamic size that is associated to a pointer, and
VM types can be used to propagate the information from assignment to assignment.

All of this is certainly not yet complete, and other tools will have to be added later that, on one
hand, will ease such an analysis, and on the other will equip the programmer with tools to annotate
declarations with size (or more general, pointer and aliasing) information.

III.v Qualifier fidelity

The C library has a lot of interfaces that can be used for write-privilege escalation: they accept
pointers to const-qualified objects and return a derived pointer that drops the qualifier. At the time
these were introduced, this was probably a good compromise for the usability of these interfaces;
a pointer to a non-qualified object can be passed into such a function without explicit conversion,
and then the return value still has the same qualification as the original. But, this technique has the
disadvantage that pointers to objects that are genuinely const-qualified, are then exposed with a
pointer that has the qualification dropped.

With type-generic interfaces all of this can be easily avoided, if the return type of such functions is
inferred from the argument.

Qualifier fidelity also has the advantage that generally arguments to such functions don’t have to
be converted at all. That is, for the (rare) case that objects are genuinely volatile-qualified, the
semantics for such objects are respected. This can be particularly important for security sensible
data, where applications must be guaranteed that copy or erasure operations on byte arrays are
effectively performed through the whole memory hierarchy. In particular, the memset type-generic
macro is guaranteed to overwrite a byte array that is passed in which has a velatile qualification.

III.vi Three-way comparison

Many other languages already have three-way comparison by means of an operator that is usually
denoted as<=>. It provides an interesting abstraction for search and sorting interfaces, because here
usually one wants to know three possible outcomes, if a value is less, equal (or equivalent) or greater
than another value.

C++ has introduced such an operator recently, and it provides interesting features also for other

modifications to ISO/IEC 9899:2018, § IIL.vi page xx Rationale

N2644/P2309R0 § IIL.vii, working draft — January 20, 2021 CORE 202101 (E)

aspects:

— It can be made well-defined. That is, the only errors that can happen are constraint violations
that can be detected at compile time. No undefined behavior may result.

— They are composable, such that they can be extended to any aggregate type. Basically, for
aggregate types they define lexicographic ordering.

For C this means that we can add comparisons that have the following properties.

— It sorts all valid pointers and null pointers, regardless if they point to the same array or not.
Null pointers are here sorted as being smaller than any valid pointer, which relates with the
fact that most platforms have null pointers as all bit zero representations nowadays. This
allows, e.g., to write checks for the intersection of arrays (provided by pointers), that would
otherwise encounter UB in some cases.

— It provides structured equality tests for all types, not only basic types and pointers.

— It allows to provide simple interfaces for searching and sorting utilities that are type-safe.

IIl.vii Textual representations and output

C and C++ have quite diverging tools for textual output and for textual representation of data in
general; C’s work horse for human targeted 10O is printf (and similar), whereas C++ mainly works
with the shift operator <<. None is really suited to replace the other.

C++’s operator approach is not easily transposed to C, because C does not have operator overloading.
Also, the possibilities to modify the textual representation that are provided via “manipulators”
usually switch modes for a whole output operation, where the C tool allows a more fine grained
handling of individual output items.

printf is clumsy and unsafe: it needs that the programmer manually maintains format strings.
Type mismatch between format strings are a common programming mistake, and the possibility to
have such format strings passed into printf dynamically opens a big security hole for stack attacks
and similar.

Generally speaking, a basic interface for string handling and user IO should only have defined
behavior and all programming errors should result in a constraint violation. This specification tries
thus to propose one new tool, the totext type-generic macro, see 7.22.2.1, that has these properties.
For its functionality, it is mainly based on the snprintf function, but without a requirement to
maintain a consistent format information, and by avoiding to have to specify a compile time property
as a string. It has several modes of operation:

— A simple mode for all basic types allows to generically store textual representations for
numbers, bool, pointers and strings. It deduces the “format” for the operation from the type
information.

— A string mode can be chosen to convert all three types of wide-strings to a textual multi-byte
representation.

— A set of (integer) flags allow to adapt the desired output, for example to adjust the precision or
to chose between different number bases or output formats. For example bool values may
be represented as “0” and “1” or as false and true; a character pointer can be interpreted as
pointing to a string or the address that it represents can be printed.

— An array mode allows to print entire arrays with a consistent set of flags and to separate the
individual elements by a user provident glue.

The features are chosen carefully such that most of the operations can be used within constexpr
function or lambdas. Exception from this rule are wide-string conversions because they need locale
information and textual representations of pointer values because they expose storage instances.

Rationale modifications to ISO/IEC 9899:2018, § II1.vii page xxi

CORE 202101 (E) § IV, working draft — January 20, 2021 N2644/P2309R0

Then, the existing interfaces strlen, strdup, strndup, fputs and puts are extended similarly. For
example, puts prints the textual representation of its first argument followed by a newline to stdout.
If that first argument is a character pointer, the behavior is the same as it has always been, but if it is
a double the representation of the value is printed, if it is wide-string of some sort, the multi-byte
encoding of that wide-string is printed etc.

In all, these new interfaces provide simple means for textual representation and output that have
(mostly) defined behavior.

IV Disambiguation

In many places, C and C++ gratuitously differ in an annoying way, and unfortunately we will not be
able to resolve these differences easily; too many code builds on such properties in one or the other
language. For the features treated in the next sections we identified a need for action(s), because
they are sufficiently central and important, such that there should be provided a way forward, now
and today.

Many other features, are not yet handled, either because we did not find them important enough, or
simply because there was no idea popping up on how to solve the problems. For these we added a
lot of Notes and footnotes that attempt to expose the problem and provide recommendations how
programmers that target the common C/C++ core should attempt to circumvent problems, and
how implementations could make life for people easier. This treatment of the standards text is yet
incomplete, and others will hopefully be added to this document over time.

IV.i Inline functions and objects

C and C++ differ slightly in their handling of inline functions. Whereas C enforces the use of an
external definition in certain situations, in particular if the address of an inline function is used other
than in a function call, C++ always guarantees that an external definition (called an instantiation) is
emitted if there is need for it. This choice for C is deliberate, because traditionally C is often used in
contexts that have severe constraints on the memory size for the program image. So a systematic
generation of unused function definitions in all translation units is avoided.

This specification, 6.7.5, follows C++ (and extends C) by requiring that the effective semantics of
inline and external definitions have to agree. It follows C (and extends C++) by requiring that no
non-const qualified objects with internal linkage may be accessed by inline functions.

C currently has no inline objects, so this specification imposes an extension of the C language. The
definitions presented here not only serve the purpose of programming invariantly in C and C++,
but also to provide a tool to specify compile time constants of any object type.

For both, functions and objects, the choice has been made to follow mostly the C model for instan-
tiation, that is, to require that an external definition must be presented explicitly for functions or
objects that use the address or that form a modifiable lvalue. So this part of the specification extends
the C++ language by imposing more constraints on well-formed programs. The specification of

const-qualified objects allows to avoid the need for instantiations, if the address of the object is
never used.

IVii Lexing of punctuators

C and C++ have different lexing rules that are not always compatible. Whereas C indifferently applies
the “maximal crunch” rule, C++ partially implements semantical disambiguation, in particular
for >> tokens. The problems behind the possible lexical ambiguities had been introduced at times
where only a limited number of punctuation characters had been commonly available on computing
devices. (And even then there were nasty problems with the heterogenity of platforms.)

In a world of Unicode such problems just disappear in thin air, and it would be preposterous to
impose lexical acrobatics to future generations of C or C++ programmers, just because the standards
had not been clear at the beginning. Therefore we propose to change the definitions of all punctuators
that have reasonable definitions as Unicode points to such code points. This disambiguates the
following constructs

modifications to ISO/IEC 9899:2018, § IV.ii page xxii Rationale

N2644/P2309R0 § IViii, working draft — January 20, 2021 CORE 202101 (E)

prefix x binary x
prefix & binary A
nested array termination]] attribute closing |

nested template termination >> | shift &>
and generally leads to code that is easier to read and to comprehend.

For backwards compatibility we propose to keep the old definitions such as<< or<= as digraphs.

IViii Opaque types

A certain set of types has quite different treatment between C and C++, namely types that have no
copyable value but only represent internal state. For C, these are fenv_t, fexcept_t, FILE, jmp_buf,
va_list and types in the thread and atomic extensions that have specific macros or functions for
initialization and that a priori cannot be copied. C has refused to provide sound semantics and is
silent about how to treat them for example if they are copied byte-by-byte.

In C++, such types typically have default initializers that are called automatically without explicit
mention in the code. Therefore we opted for the possibility of implicit and explicit initialization of
these types. The concept invented for this is “opaque types”, 6.2.5, that allows to capture types that
have no value but an internal state that cannot be copied.

We also extend this concept of opaque types to void (with a size of 1) such that we can allow the
definition of untyped byte arrays. On one hand, this permits to have statically allocated memory
arenas that can be used with changing effective type, much as allocated memory, and on the other
hand to annotate pointer arguments with no type (classicaly expressed as void+ parameters) with a
size (by using a fixed or variable-length array parameter void[size]).

Using that, it is also easy to extend the return statement, such that it may have an expression even
if the return type of the function is void. This makes programming of type-generic macros and
lambdas much easier, since it avoids a case analysis concerning return types.

IV.iv Atomics

C and C++ have no reconcilable syntax for specifying an atomic derivation: C has a keyword
—Atomic that is applied as a specifier (similar to here) and as a qualifier, C++ has a class template
atomic<type-name>. Since it even has ambiguities, sticking to the C syntax was not an option. The
specification as given here has straightforward implementations in the old syntax for both languages:
the type specifier atomic_type(T) can easily be set to _Atomic(T) for C and to atomic< T > for
Ct+.

The specification of the atomics extension in the C standard has been surprisingly loose, ambiguous
and incomplete. In order to become suitable for coding in the C/C++ core, a lot of cleanup work
had to be integrated to the specification. The main properties of this extension are

— Clarification which operations are synchronization operations.

— Type-generic macros are added that cover all operations that previously only had been pro-
vided by operators such as multiplication or bitshift.

— Type-generic macros (operation and then fetch) have been added that provide exactly the
same operations as the operators, and generalizes them to other memory_orders than
memory_order_seq_cst.

— The specification of the type-generic macros has been extended such that they now behave
like lambdas and may be converted to function pointers.

IV.v Bit-fields and fixed-width types

Both, C and C++, have the constructs of bit-fields that are conceptual objects on a scale below a
storage unit. Unfortunately both disagree on their interpretation in terms of types and possible
bounds to the number of bits. We provide a framework that is meant to cover the intersection of
these features for the two languages. Therefore we use the concept of integers of a given width

Rationale modifications to ISO/IEC 9899:2018, § IV.v page xxiii

CORE 202101 (E) § IV.vi, working draft — January 20, 2021 N2644/P2309R0

M, intwidth(A/) and uintwidth(A/). For these types we define simple rules how they are
represented (basically with a size that corresponds to the best fitting types intN_t), and how they
convert when used in expressions.

Second, we use the packing rules that are provided by the core::noalias and core::alias, see be-
low, to describe how a bit-field “name: M ” translates into a fixed-width integer of type intwidth (A1)
or uintwidth (M) with the proper attributes.

Otherwise, we restrict the admissible types for bit-fields to bool, signed or unsigned, because in
particular the specification of int can be different between the two languages, and also because
the only important information for integer types (that are not bool) are their signedness and their
width. The only implementation-defined parameter for bit-fields is then the maximal admissible
width for which we introduce the new feature test INT_BITFIELD_MAX.

IV.vi Identifiers

For several points, C and C++ have subtle differences in the way they handle identifiers, namely the
scope for-loop variables or function parameters, tag names and :: -chained identifiers.

IV.vii Variables in for-loops

Here the difference is just an annoyance and only a historic artifact without much reason of existence.
The problem is that for C, the block of a for-loop constitutes a new scope of its own, such that there
are effectively two scopes, the one of the whole for-statement and the one of the loop body. For a
large majority of code this makes not much of a difference; such a difference only manifests if the
scope of the loop body declares a variable with the same name as the loop iterator declaration.

WG14 relatively recently had a proposal to fix this incompatibility to C++ but decided not to modify
the C rules for backwards compatibility. But in the context of a common C/C++ core it makes no
sense to stick to such a rule, because code that has a shadowing variable can never be ported as such
to C++.

The choice for this specification was then to recommend a diagnostic for such situations or to
implement the stronger C++ rules. We went for the latter because the diagnostic of such a situation is
always possible, because for C a constraint violation has no enforced impact other than to require a
diagnostic, anyhow, and because it seemed desirable that an implementation may refuse to produce
an executable in such cases.

IV.viii Visibility of parameters

C and C++ have different rules for the visibilty of function parameters: for C a parameter is visible
starting at the end of its declaration, whereas for C++ it is only visible starting in the function
body, if the declaration also happens to be a definition. This specification opted for the C variant,
because this rule implies that one parameter can be used for the declaration of the type of another.
That possibility is important wherever there is a need to ensure consistency between types or array
lengths.

In C a typical usage of that feature is array bound propagation, as in

‘double dotprot(size_t n, double A[n], double B[n]);

but with this specification of the common C/C++ core the use goes further, for example by using a
parameter that is already known within a typeof declaration of another parameter, or for using a
parameter name in an core::alias or core:: noalias attribute:

double dotprot(size_t n, double A[n], typeof(A) B);
void+ malloc(size_t size) |[[core:noalias(size)]];
C+ memcpy(C * [[core::noalias|] s1, D x*[[corexnoalias]] s2, size_t n) [[core:alias(sl)]];

IV.viiii Use of tag names

C and C++ differ in the use of tag names (the identifiers in struct, union and enum declarators).
C++ allows the tag name to stand in for the type where that is possible without ambiguity, whereas

modifications to ISO/IEC 9899:2018, § IV.vi.iii page xxiv Rationale

N2644/P2309R0 § IV.viiv, working draft — January 20, 2021 CORE 202101 (E)

C clearly distinguishes “name spaces” (not to be mixed up with “namespaces” in C++) and does not
allow such a use. It is not easy to adopt that policies for C, because there are examples in the wild
where this feature is used, notably for the stat type and function in POSIX.

On the other hand, C and C++ have different policies concerning the reuse of tag names as identifiers.
Whereas C allows an unrestricted use, C++ does not allow it for typedef (or using), unless the so
specified type is effectively the type that has the tag.

As a compromise between those two sets of requirements we have adopted two measures:

1. Disallow the use of a visible tag for a typedef other than the tagged type.

2. Recommend the usage of trivial typedef that impose the introduction of a tag name as an
alias to the same type.

IV.vi.iv Chained identifiers

C++ has a notation to access a member of a structure (class) or union, but without refering to an
object, that is completely absent from C. It works with identifiers that are chained with a :: token.
Translated into C an access as in the following

typedef struct A A;
typedef struct B B;
struct A { double a; };
struct B { A ba; };

sizeof (B::ba::a)

would be equivalent to

. sizeof(((B){ }).ba.a)

that is, to create a compound literal of the requested type (the first element in the identifier chain, B)
and then iteratively accessing the members of that compound literal (ba and a) with the . operator. C
has no structure or union members that would be allowed in evaluations without having a concrete
instance of such a type, and the use of such a construct would be restricted to contexts that are
not evaluated, that is sizeof, alignof, and the controlling expression in a generic selection (plus

typeof with this specification). Therefore, this feature seemed to be of minor importance for the
common C/C++ core and was not added.

The usage of that feature is not conforming to the syntax of C and is therefore a constraint violation.
All implementations that target the common C/C++ core should diagnose this use of the :: token.

V Memory model

Both, C and C++, historically have had difficulties in describing consistent and comprehensive
memory models. Recently some effort has been made to accommodate these different models and
to bring them in alignment among each other (C and C++), and amoung expectations of users and
implementers. Therefore we apply modifications that try to simplify the existing C model and to
disambiguate it. It has already found acceptance by part of the C and C++ committees, so there is
hope that both languages converge to something that is similar as described by this document.

In particular, WG14 has recently launched the procedures to create a technical specification (TS 6010)
for that model, see WG14 N2577. This specification here aims to be synchronized with that TS. To
say whether or not C or C++ already implement this model is moot, as the texts are ambiguous and
there will be as many opinions about this as there are C and C++ experts.

One of the strengths of C is its efficient handling of aliasing, respectively of its capacity to deduce
non-aliasing between given pointed-to objects, and to optimize code as a consequence. This property
of the language is due to the combination of the following;

— Type based aliasing: besides some exceptions, pointers with different target types cannot alias.

Rationale modifications to ISO/IEC 9899:2018, § V page xxv

CORE 202101 (E) § Vi, working draft — January 20, 2021 N2644/P2309R0

— Provenance based aliasing: two pointers that come from different object definitions or calls to
allocation functions cannot alias.

— Lack of references: most address-of operations are done explicitly.

— The restrict qualification of pointers allows to explicitly state the absence of aliasing between
given pointers.

— The register storage class can be used to inhibit the taking of addresses. (This feature not
used very often, though.)

These features have a lot of drawbacks, though. First of all, type-based aliasing (the effective type
rule) is poorly specified and has many ambiguities at its margins. Second, provenance based aliasing
analysis is not even properly spelled out at all, but buried in some obscure and inconsistent “answer
to a defect report”, that still as of today can trigger passionate but fruitless discussions about the
turning of words and the world in general. Then there is the restrict qualification, that is only a
specification for a function definition and not contractually binding for the interface. A user of a
function can only successfully use the aliasing properties if it inspects the function body, the interface
isn’t enough.

V.i Storage instance

There is a lack of terminology to describe the entity that is reserved and released by either an
allocation (malloc/free) or by the definition of a variable or compound literal. We introduce the
new term sforage instance to distinguish it clearly from the term object. We also use the opportunity
introduce and clarify terminology as for the start address, end address of storage instances and similar
concepts.

V.ii Provenance-based aliasing analysis

There has been reached wide consensus in the parts of the C and C++ committees that deal with
these questions that an important component of the memory model should be provenance-based
aliasing analysis. The idea is that two pointers that have different “origins” can never point to the
same entity, and thus they always can be assumed not to alias.

The variant implemented here sticks to the granularity of storage instances, called provenance. It
suggests that pointer arithmetic should never cross the boundaries of storage instances, and thus
pointers that originate in different storage instances should normally not run into each other. As
long as the application code does not play dirty tricks, see below, usual pointer arithmetic should
always warrant this, and so under most circumstances a compiler should be able to assume the
provenance of pointers to objects “as it sees them”.

All of this should even hold for pointers that are “off by 1”7, that is, where the address is just after a
storage instance. These appear relatively often in stop criteria for array traversals, but as long as
they are used consistently and only compared with pointers with the same provenance, there should
not be much of a problem.

There are several constructs that are identified as “dirty tricks” called out by this proposal as exposing
a storage instance. These are all constructs that interpret pointers differently or leak information
of their internal representation: pointer to integer casts, accesses to individual bytes of pointer
representations, IO of pointer representations. Once the information about the address of a storage
instance has been exposed, we cannot be sure that these addresses do not creep in incidentally or
accidentally. So objects that live in such exposed storage instances need special care and only a much
more restricted aliasing analysis can be performed with them.

Viii Explicit aliasing deduction and storage allocation

The keywords register and restrict are absent from modern C++ and it seemed necessary to be
able to propose new mechanisms, that can be introduced to both languages and that maintain or
even extend the capacities for aliasing analysis. Additionally, a mechanism is needed to describe
allocations. C has malloc and similar tools, C++ has new and delete, and these different tools are
difficult to reconcile.

modifications to ISO/IEC 9899:2018, § V.iii page xxvi Rationale

N2644/P2309R0 § V.iv, working draft — January 20, 2021 CORE 202101 (E)

The tool chosen for these extensions are attributes. These were not much explored in the C++
standard itself, and have only recently be added to C. Attributes allow to add properties to interfaces,
without necessarily extending the language. One set of attributes that help for the aliasing analysis
have already been introduced above. They make the changes of the execution state made by a
given function predictable and thus allow to draw certain conclusions about mutual aliasing (or
not) of pointers. This set is extended by four additional attributes, core::noalias core::alias,
core: free and core:: realloc 6.7.15.3.

Depending to which construct it is applied, the core:: noalias combines properties of C’s restrict
and register, and gcc’s malloc attribute, and extends them. When applied to an identifier it is
similar to restrict and forbid to take the address of that identifier, so this is similar to register. The
application of that feature is more general, though, because it applies not only to block or function
scope, but can also be applied for globals. There it is interesting to ensure that an object or function
pointer can never escape from a translation unit and can thus be completely integrated in place. The
second usage of core:: noalias is drawn from restrict and its simplest usage is equivalent to that.
More sophisticated usages allow to add a size argument to the attribute, such that the translator can
infer overlap properties of arrays. Then, core:: noalias also allows to to annotate a pointer-return
from functions (such as malloc) as providing a freshly allocated storage instance. The latter notifies
the translator that the result pointer will not alias with anything known so far.

A complementary attribute core::alias has the inverse role, it can provide with aliasing infor-
mation, namely that the so annotated pointer aliases another one, in situations where such an
information is not deducible by the translator. This concerns in particular return values from
functions, that can be annotated for example with the names of the function parameters that they
return.

The other two attributes, core:: free and core:: realloc, complement the allocation management
aspects. Applied to a pointer parameter they indicate that the function behaves equivalent to free or
realloc, respectively. Thereby, these attributes allow to completely specify interfaces that allocate,
deallocate or reallocate storage instances, and enable the translator to actively track allocations, and
use that information for example to ensure the core:: noleak attribute as introduced above.

Both attributes core:: noalias and core::alias are also used to specify packing rules for union or
structure members. A member that has a core:: noalias attribute cannot have its address taken,
and therefore alignment constraints can be relaxed. By that, padding between members can be
reduced and the effect is similar to the packed pragma that many implementations provide. The
core::alias can then be used to describe members that potentially share the same storage unit,
and that, if an address could be obtained, would alias each other.

V.iv Type-based aliasing analysis

Type-based aliasing analysis in C is a mess. It is guided by the “effective type rule” that, on the
surface, promotes a simple idea: if types are effectively enforced, two pointers to different types can
never alias each other. Unfortunately, the premise here is wrong, types are not enforced effectively,
and the language has several loop holes to “legally” mess with the type system.

The implementations of this in the C standard and also in the field has failed dramatically. There are
no two implementations out there that seem to interpret the rules consistently, and probably there
isn’t even one, that interprets them consistently within itself. Endless debates have not been able
to solve the underlying issues, and also C’s Memory Model Study Group has not yet been able to
complete even a full analysis of the problems.

The main issues are

1. Types of allocated regions (via malloc et al.) are not fixed, and there is not even a concrete
point in time when such an object acquires a types, or when such a type changes.

2. On the other hand, at least temporary reinterpretation of objects with some sort of typed-view
is common practice and much needed. Currently used features are type punning through
union, pointer type casts, passing a two-dimensional array as a one-dimensional one to a
function, direct manipulations of bytes of representations and probably many more.

Rationale modifications to ISO/IEC 9899:2018, § V.iv page xxvii

CORE 202101 (E) § V.v, working draft — January 20, 2021 N2644/P2309R0

3. Types can be nested, so a particular region of memory can be part of a nested hierarchy of
objects. There is no consensus so far how this type and object hierarchy can be visited, and
which implication the implicit knowledge about one object being part of a bigger one can have
on aliasing analysis.

Evidently, we cannot yet have a complete answer to all of these problems, but the

core: reinterpret attribute gives a partial answer to 1 and 2. It forceably places the boundary of
type interpretation at the level of a function or lambda call. The idea is that the translator of the
definition always has the description of a parameters in the prototype, so it may just assume that
these are the types of the underlying objects. The consistency of the core:: reinterpret attribute is
enforced in the interface (via token equivalence) such that there can be no denial: the caller knows
what types the function expects and the definition clearly indicates what types it expects to find.

Because all of this happens at the call interface, there is no need, even conceptually, to trace a possible
previous “effective type” of an object. The only properties that have to be ensured is that the data
that the function finds has valid values for their parameters (viewed in the type they expect) and
that any manipulation of the pointed to objects guarantees that the caller still sees valid values for
the objects they happen to know.

The information about an object pointed-to by an argument/parameter pair that caller and function
share is not only the type, but also the concrete representation of that type on a particular platform,
and because of the enforced token-equivalence, the pointed-to size. So effectively the rules of
matching argument/parameter types can be relaxed to a notion that we call “equally represented”
types. This notion allows for example to pass a complex vector into a function that handles floating
points, or temporarily see a table of uint32_t as uint16_t or vice-versa.

The introduction of lambdas to the common core makes this attribute much more powerful than
it might look at a first glance. By reformulating a block of code as a lambda, the programmer can
clearly indicate the input/output into such a block and the core:: reinterpret attribute may then
force a certain type interpretation that is well contained within the body of the lambda.

V.v Data-flow analysis

Hardware capacity and data-flow analysis of modern compilers has very much improved over the
beginnings of C and C++. At that time, not providing default initialization for automatic variables of
basic types was probably unavoidable: the lack of hardware registers and techniques for dead-store
elimination called for performance improvements, and these were only possible by putting the
burden of the identification of the first effective store operation on the programmer. This strategy
of avoiding initialization has caused a lot of serious bugs over the years, and recent studies have
shown that a lot of attact vectors may simply vanish, when initialization of all defined objects is
enforced.

Things have much changed since these beginnings and other experiments show that situations were
a translator may not efficiently identify the first effective store are rare, and quite particular. Basically
there are three situations:

1. Initialization of an object is delegated to an external function, either by passing the address of
the object (mostly C) or a reference to it (only C++) as an argument.

2. Initialization is hidden in control flow for which the translator is not able to prove validity,
either because the control flow itself depends on execution state, or because only implicit
conditions (but known to the programmer) guarantee a valid initialization in all cases.

3. A function returns a pointer or reference to an object that had been allocated by one of the
storage allocation functions (malloc and friends) and the contents of that object has not been
initialized.

All three situations have in common, that the translator has to deal with an Ivalue which it can’t
convert, but on which, before any other use, it must first perform a writethrough operation, that
is a store operation that stores without reading. For this specification we propose to capture this
by the core::writethrough attribute, which is a annotation of objects, pointer parameters and

modifications to ISO/IEC 9899:2018, § V.v page xxviii Rationale

N2644/P2309R0 § V.vi, working draft — January 20, 2021 CORE 202101 (E)

return values, that allows programmers to emphasize that the lvalue in question is to be considered
uninitialized. With that knowledge, translators may then suppress initial values (if any) or may
ensure that objects that are passed into functions are effectively initialized in all cases.

Our hope is that such an attribute may help to switch from a model of “no default initialization for
automatic variables” to “default initialization unless explicitly excluded”, in a near future for both
languages.

V.vi Const objects of static storage duration

Differences for the representation of const-qualified objects with static storage duration between
C an C++ are subtle. In particular, the differences for such objects (such as __func__) that are
defined in inline functions are not apparent at a first look. The differences are mainly historical
and seem not have a value as such. The present specification tries to alleviate the coding with these
differences and points out some of them as notes and by recommending certain diagnostics for
implementations.

VI Removal

Some features are so diverging between the two languages, that a huge effort or even sacrifice
would have to be made by one of them to able to compromise. We don’t think that expecting such a
convergence would be realistic, and we try thus to “remove” them from this specification. Here,
removal really means “removal from this specification” and not removal from the corresponding
language(s). Each of the languages should be able to handle their set of suplemental features all by
themselves.

VLi Lvalue expressions and reference types

C and C++ have very different strategies concerning the value category of expressions and C++ has
even a construct that allows to create aliases of lvalues, namely references. C’s tradition is to be
much more restrictive with aliases (and aliasing) and therefore to drop the object information in
expressions and types as soon as possible. This has allowed the C object model to remain relatively
simple and to focus on computations in the abstract machine, instead of dragging representation
and aliasing information through optimization phases. Modern C compilers are coping with some
of the minor problems of this approach (such as copy elision) quite efficiently, and the hope is that
the tools that are presented here (such as constexpr and lambdas) will help them even to improve
on these possibilities.

Generally, for C++ expressions are lvalues whenever that is possible. In contrast to that, in C most
operators undergo lvalue conversion (see 6.3.2.1) before they enter an expression and the information
about the object(s) that entered into an expression is discarded. By that, a lot of expressions that
are valid for C++ are not valid for C. E.g in C++ the prefix increment operator++ can be applied
multiple times in the same expression (++ ++a) or the ternary operator can be used on the left side
of an assignment (isit ? a : b)= 76;. Both are invalid for C.

For C, lvalues only enter into expressions that are supposed to modify an object (such as assignment
operators, increment and decrement), that compute its address (address-of operator), that access
members (.member operator), or that query type properties such as size or alignment. The result of
an expression is only an Ivalue for the dereference operator * and for member access ([1, . and —).

Programming for the C/C++ core implies not to use such constructs and we volutarily keep the
possibility of returning lvalues out of this core specification. So this specification “removes” the
lvalue feature from the following operators, but note that this only concerns these operators when
they are applied to basic types.

— prefix increment and decrement
— conditional operator
— assigment operators

— comma operator

Rationale modifications to ISO/IEC 9899:2018, § VLi page xxix

CORE 202101 (E) § VLii, working draft — January 20, 2021 N2644/P2309R0

Generally, the use of such constructs as modifiable Ivalues should be rare and is widely considered
to be poor programming style. All such uses have always been constraint violations in C, so they
should be easy to diagnose, and this is what is expected from implementations that want to target
the common C/C++ core.

VLii Conversions from complex types

C allows conversions from complex types to real types by simply dropping the imaginary part.
This feature is not compatible with the more restrictive approach of C++ that basically requires all
conversions that may result in information loss to be explicit. Therefore for the common C / C++
core the only defined coversion from a complex type to a real type is if the real type is bool, For
arithmetic conversions that involve complex numbers see ILiii.

VLiii Imaginary types and Annex G

C has reserved the _Imaginary keyword for optinal imaginary types and provides Annex G for a
description of these. This has not found widespread support in the C community and has never
been adapted to C++. Therefore these interfaces are not part of the C/C++ core.

VILiv Bounds-checking interfaces (Annex K)

For C, there is a large and complicated annex (Annex K) that describes a set of extensions that are
only scarcely implemented on real platforms and have a lot of issues. It has not found consensus in
the C community and has never been adapted to C++. Therefore these interfaces are not part of the
C/C++ core.

VII Further directions

Some work is still missing such that this proposal would be consistent in itself, and to integrate and
to mutually adapt it and the two standards to which it relates. Additionally, we foresee to address
the following features and questions:

— Introduce enumeration types with specified base type? A proposal in this direction as been
made in WG14 N2575, and has found a positive feedback.

— How to handle _Noreturn?

— Do we want new syntax for number tokens, such as thousands separators or base 2? A proposal
in this direction as been made in WG14 N2626, and has found a positive feedback.

— Do we keep qualifiers inside the [] array bounds for array parameters?
— Do we keep static in array declarations?

— Shall we treat padding as void arrays?

modifications to ISO/IEC 9899:2018, § VII page xxx Contents

N2644/P2309R0 § VII, working draft — January 20, 2021 CORE 202101 (E)

(no diff marks, here) Foreword to be provided by the committee responsible for publishing.

Contents modifications to ISO/IEC 9899:2018, § VII page xxxi

CORE 202101 (E) § VII, working draft — January 20, 2021 N2644/P2309R0

Introduction

With the introduction of new devices and extended character sets, new features could be added to
this document. Subclauses in the language and library clauses warn implementors and programmers
of usages which, though valid in themselves, could conflict with future additions.

Certain features are obsolescent, which means that they could be considered for withdrawal in future
revisions of this document. They are retained because of their widespread use, but their use in
new implementations (for implementation features) or new programs (for language [6.11] or library
features [7.32]) is discouraged.

This document is divided into four major subdivisions:

— preliminary elements (Clauses 1-4);
— the characteristics of environments that translate and execute programs (Clause 5);
— the language syntax, constraints, and semantics (Clause 6);

— the library facilities (Clause 7).

Examples are provided to illustrate possible forms of the constructions described. Footnotes are
provided to emphasize consequences of the rules described in that subclause or elsewhere in this
document. References are used to refer to other related subclauses. Recommendations are provided
to give advice or guidance to implementors. Annexes define optional features, provide additional
information and summarize the information contained in this document. A bibliography lists
documents that were referred to during the preparation of this document.

The language clause (Clause 6) is derived from “The C Reference Manual”.

The library clause (Clause 7) is based on the 1984 /usr/group Standard.

modifications to ISO/IEC 9899:2018, § VII page xxxii Introduction

N2644/P2309R0 § VII, working draft — January 20, 2021 CORE 202101 (E)

(no diff marks, here)

Introduction modifications to ISO/IEC 9899:2018, § VII page 1

CORE 202101 (E) § VII, working draft — January 20, 2021 N2644/P2309R0

modifications to ISO/IEC 9899:2018, § VII page 2 Introduction

N2644/P2309R0 cmin..core3 § 1, working draft — January 20, 2021 CORE 202101 (E)

JTC 1/SC 22/WG 14 & WG 21 © ISO/IEC 1990-2018 (C standard)
© Jens Gustedt 2020-2021? (rationale, modifications)
document: WG14 N2644, WG21 P2309R0
version: CORE 202101
date: 2021-01-20
audience: joint C & C++ study group, WG14 plenary
1. Scope

1 This document specifies the form and establishes the interpretation of programs written in the €
programminglanguagecore of the C or C++ programming languages.?) It specifies

— the representation of €&-programs;

— the syntax and constraints of the Clanguagecore of the two languages;

— the semantic rules for interpreting €such programs;

— the representation of input data to be processed by C and C++ programs;

— the representation of output data produced by C and C++ programs;

— the restrictions and limits imposed by a conforming implementation of-€to be successfull
translated in C or C++ environments.

2 This document does not specify

— the mechanism by which €-programs are transformed for use by a data-processing system;

— the mechanism by which €-programs are invoked for use by a data-processing system;

— the mechanism by which input data are transformed for use by a €-program;

— the mechanism by which output data are transformed after being produced by a &-program;

— the size or complexity of a program and its data that will exceed the capacity of any specific
data-processing system or the capacity of a particular processor;

— all minimal requirements of a data-processing system that is capable of supporting a conform-

ing implementation.

2The part of this work that extends the C standard is licensed under the Creative Commons Attribution-ShareAlike 4.0

International (CC BY-SA 4.0) License.

3)This document is designed to promote the portability of C and C++ programs among a variety of data-processing systems.
It is intended for use by implementors and programmers. Annex J gives an overview of portability issues that a program

might encounter.

General

modifications to ISO/IEC 9899:2018, § 1 page 3

CORE 202101 (E) § 2, working draft — January 20, 2021 cmin..core3 N2644/P2309R0

2. Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any amendments)
applies.

ISO/IEC 2382:2015, Information technology — Vocabulary. Available from the ISO online browsing
platform at http://www.iso.org/obp.

ISO 4217, Codes for the representation of currencies and funds.

ISO 8601, Data elements and interchange formats — Information interchange — Representation of dates and
times.

ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS). Available from the
ISO/IEC Information Technology Task Force (ITTF) web site at http://isotc.iso.org/livelink/
livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm.

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously designated
IEC 559:1989).

ISO 800002, Quantities and units — Part 2: Mathematical signs and symbols to be used in the natural
sciences and technology.

Also add ISO 80000-3, space and time
Also add ISO 80000-13, Information science and technolo

modifications to ISO/IEC 9899:2018, § 2 page 4 General

http://www.iso.org/obp
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm

N2644/P2309R0 § 3, working draft — January 20, 2021 CORE 202101 (E)

3. Terms, definitions, and symbols

For the purposes of this document, the terms and definitions given in ISO/IEC 2382, ISO 80000-2,
and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at http://www.electropedia.org/

Additional terms are defined where they appear in italic type or on the left side of a syntax rule.
Terms explicitly defined in this document are not to be presumed to refer implicitly to similar terms
defined elsewhere.

3.1

access (verb)

(execution-time action) to read or modify the value of an object
Note 1 to entry: Where only one of these two actions is meant, “read” or “modify” is used.
Note 2 to entry: “Modify” includes the case where the new value being stored is the same as the previous value.

Note 3 to entry: Expressions that are not evaluated do not access objects.

3.2

alignment

requirement that objects of a particular type be located on storage boundaries with addresses that
are particular multiples of a byte address

3.3

argument
actual argument
DEPRECATED: actual parameter

expression in the comma-separated list bounded by the parentheses in a function call expression, or
a sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a
function-like macro invocation

3.4

behavior

external appearance or action

34.1

implementation-defined behavior

unspecified behavior where each implementation documents how the choice is made
Note 1 to entry:].3 gives an overview over properties of C programs that lead to implementation-defined behavior.

EXAMPLE An example of implementation-defined behavior is the propagation of the high-order bit when a signed integer
is shifted right.

3.4.2

locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implemen-
tation documents

General modifications to ISO/IEC 9899:2018, § 3.4.2 page 5

https://www.iso.org/obp
http://www.electropedia.org/

CORE 202101 (E) § 3.4.3, working draft — January 20, 2021 N2644/P2309R0

Note 1 to entry:].4 gives an overview over properties of C programs that lead to locale-specific behavior.

EXAMPLE An example of locale-specific behavior is whether the islower function returns true for characters other than
the 26 lowercase Latin letters.

3.4.3

undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data, for which
this document imposes no requirements

Note 1 to entry: Possible undefined behavior ranges from ignoring the situation completely with unpredictable results,
to behaving during translation or program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic
message).

Note 2 to entry:].2 gives an overview over properties of C programs that lead to undefined behavior.

EXAMPLE An example of undefined behavior is the behavior on integer overflow.

3.4.4

unspecified behavior

behavior, that results from the use of an unspecified value, or other behavior upon which this
document provides two or more possibilities and imposes no further requirements on which is
chosen in any instance

Note 1 to entry:].1 gives an overview over properties of C programs that lead to unspecified behavior.

EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are evaluated.

3.5

bit

unit of data storage in the execution environment large enough to hold an object that can have one
of two values

Note 1 to entry: It need not be possible to express the address of each individual bit of an object.

3.6
byte

addressable unit of data storage large enough to hold any member of the basic character set of the
execution environment

Note 1 to entry: It is possible to express the address of each individual byte of an object uniquely.

Note 2 to entry: A byte is composed of a contiguous sequence of bits, the number of which is implementation-defined. The
least significant bit is called the low-order bit; the most significant bit is called the high-order bit.

3.7

character

(abstract) member of a set of elements used for the organization, control, or representation of data

3.71

character
single-byte character

(C) bit representation that fits in a byte

3.7.2

multibyte character

sequence of one or more bytes representing a member of the extended character set of either the
source or the execution environment

Note 1 to entry: The extended character set is a superset of the basic character set.

modifications to ISO/IEC 9899:2018, § 3.7.2 page 6 General

N2644/P2309R0 cmin..core 3.7.3, working draft — January 20, 2021 CORE 202101 (E)

3.7.3

wide character

value representable by an object of type wchar_t, capable of representing any character in the
current locale

3.8

constraint

restriction, either syntactic or semantic, by which the exposition of language elements is to be
interpreted

3.9

correctly rounded result

representation in the result format that is nearest in value, subject to the current rounding mode, to
what the result would be given unlimited range and precision

Note 1 to entry: In this document, when the words “correctly rounded” are not immediately followed by “result”, this is the
intended usage.

3.10

diagnostic message

message belonging to an implementation-defined subset of the implementation’s message output

3.11

forward reference

reference to a later subclause of this document that contains additional information relevant to this
subclause

3.12

implementation

particular set of software, running in a particular translation environment under particular con-
trol options, that performs translation of programs for, and supports execution of functions in, a
particular execution environment

3.13

implementation limit

restriction imposed upon programs by the implementation

3.14

memory location

either an object of scalar type, or a m
pack

Note 1 to entry: Two threads of execution can update and access separate memory locations without interfering with each
other.

Note 2 to entry: A bit-fiekdbmember with core:: alias attribute and an adjacent ren-bit-field-membermember without are
in separate memory locations. The same applies to two bit-fieldssuch members with the attribute, if one is declared inside a
nested structure declaration and the other is not, or if the two are separated by a zero-length bit-field declaration, or if they
are separated by a nen-bit-fietd-member-deelaration-member declaration without the attribute. It is not safe to concurrently
update two such non-atomic bﬁ-ﬁe}dir/r}/e\p\l/‘t\)/e\;\s/\l/f\%a/@Vm the same strueture-ifallmembers-declared-between-them-are

a{s&(-ﬂeﬁzefe—}eﬁg%h}—bﬁ—ﬁe}dsgg\glé no matter what the sizes of those intervening bit-fields happen to be.
EXAMPLE A structure declared as

| struct { |
\ char a: \
| kb 5—er |

General modifications to ISO/IEC 9899:2018, § 3.14 page 7

CORE 202101 (E) § 3.15, working draft — January 20, 202kcmin..core3 N2644/P2309R0

| ———————struct{inteet8;ter

' .__.___signed b:5, c:11,:0, d:8;
struct core::alias signed char ee; } e;

‘rv\,rvvx,rv\,

\ }

contains four separate memory locations: The member-a-andbit-fields-members a, d and e. ee are each separate memory
locations, and can be modified concurrently without interfering with each other. The bit-fields b and ¢ together constitute the
fourth memory location. The bit-fields b and c cannot be concurrently modified, but b and a, for example, can be.

3.15
object

region of data storage in the execution environment, the contents of which can represent values

Note 1 to entry: When referenced, an object can be interpreted as having a particular type; see 6.3.2.1.

3.16
pack

a maximal sequence of adjacent members that have the core:: alias attribute
3.17

parameter
formal parameter
DEPRECATED: formal argument

object declared as part of a function declaration or definition that acquires a value on entry to the
function, or an identifier from the comma-separated list bounded by the parentheses immediately
following the macro name in a function-like macro definition

3.18

pointer provenance

provenance

an entity that is associated to a pointer value in the abstract machine, which is either empty, or the
identity of a storage instance_

3.19

recommended practice

specification that is strongly recommended as being in keeping with the intent of the standard, but
that might be impractical for some implementations

3.20
runtime-constraint
requirement on a program when calling a library function

Note 1 to entry: Despite the similar terms, a runtime-constraint is not a kind of constraint as defined by 3.8, and need not be
diagnosed at translation time.

N ote 2 to entry Implementatlons that support fhe@&eﬂﬁeﬂﬁ%fﬁeqﬁ&ed%ﬁeﬂ%y%hﬂﬁheﬁmtme—eﬁﬁs&am&éﬁﬁ

Annex L are permitted to invoke a

runtlme Constramt handler when they perform a trap

3.21
storage instance

the inclusion-maximal region of data storage in the execution environment that is created when
either an object definition or an allocation is encountered

Note 1 to entry: Storage instances are created and destroyed when specific language constructs (6.2.4) are met durin
rogram execution, including program startup, or when specific library functions (7.22.4) are called.

modifications to ISO/IEC 9899:2018, § 3.21 page 8 General

N2644/P2309R0 cmin..coreX 3.22, working draft — January 20, 2021 CORE 202101 (E)

Note 2 to entry: A given storage instance may or may not have a memory address, and may or may not be accessible from

all threads of execution.

Note 3 to entry: Storage instances have identities which are unique across the program execution.

Note 4 to entry: A storage instance with a memory address occupies a region of zero or more bytes of contiguous data
storage in the execution environment.

Note 5 to entry: One or more objects may be represented within the same storage instance, such as two subobjects within
an object of structure type, two const-qualified compound literals with identical object representation, or two string literals
where one is the terminal character sequence of the other.

3.22
value

precise meaning of the contents of an object when interpreted as having a specific type

3.22.1

implementation-defined value

unspecified value where each implementation documents how the choice is made

3.22.2

indeterminate value

either an unspecified value or a trap representation

3.22.3

unspecified value

valid value of the relevant type where this document imposes no requirements on which value is
chosen in any instance

Note 1 to entry: An unspecified value cannot be a trap representation.

3.22.4

trap representation

an object representation that need not represent a value of the object type

3.22.5

perform a trap

interrupt execution of the program such that no further operations are performed

Note 1 to entry: In this document, when the word “trap” is not immediately followed by “representation”, this is the
intended usage.?)

Note 2 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler when they
perform a trap.

3.23

[]

ceiling of x

the least integer greater than or equal to =
EXAMPLE [2.4]is 3, [-2.4] is —2.

3.24
Ed
floor of =

the greatest integer less than or equal to

YFor example, “Trapping or stopping (if supported) is disabled ...” (F.8.2). Note that fetching a trap representation might
perform a trap but is not required to (see 6.2.6.1).

General modifications to ISO/IEC 9899:2018, § 3.24 page 9

CORE 202101 (E) § 3.24, working draft — January 20, 2021 N2644/P2309R0

2 EXAMPLE [2.4]is2, [—2.4]is —3.

modifications to ISO/IEC 9899:2018, § 3.24 page 10 General

N2644/P2309R0 cmin..core3 § 4, working draft — January 20, 2021 CORE 202101 (E)

4. Conformance

In this document, “shall” is to be interpreted as a requirement on an implementation or on a program;
conversely, “shall not” is to be interpreted as a prohibition.

If a “shall” or “shall not” requirement that appears outside of a constraint or runtime-constraint is
violated, the behavior is undefined. Undefined behavior is otherwise indicated in this document by
the words “undefined behavior” or by the omission of any explicit definition of behavior. There is
no difference in emphasis among these three; they all describe “behavior that is undefined”.

A program that is correct in all other aspects, operating on correct data, containing unspecified
behavior shall be a correct program and act in accordance with 5.1.2.3.

The implementation shall not successfully translate a preprocessing translation unit containing a
#error preprocessing directive unless it is part of a group skipped by conditional inclusion.

A strictly conforming program shall use only those features of the language and library specified
in this document.” It shall not produce output dependent on any unspecified, undefined, or
implementation-defined behavior, and shall not exceed any minimum implementation limit.

The two forms of conforming implementation are hosted and freestanding. A conforming hosted
implementation shall accept any strictly conforming program. A conforming freestanding implementation
shall accept any strictly conforming program in which the use of the features specified in the library
clause (Clause 7) is confined to the contents of the standard headers <float.h>, ~<limits.h>, -
<stdarg.h>, 5<stdint.h>, and <stdnoreturn. h>9 A conforming implementation may have
extensions (including additional library functions), provided they do not alter the behavior of any
strictly conforming program.”

A conforming program is one that is acceptable to a conforming implementation.®)

An implementation shall be accompanied by a document that defines all implementation-defined
and locale-specific characteristics and all extensions.

Forward references: conditional inclusion (6.10.1), error directive (6.10.5), characteristics of floating
types <float.h> (7.7), alternative spellings <is0646.h> (7.9), sizes of integer types <limits.h>
(7.10), alignment <stdalign.h> (7.15), variable arguments <stdarg.h> (7.16), boolean type and
values <stdbool.h> (7.18), common definitions <stddef.h> (7.19), integer types <stdint.h> (7.20),
<stdnoreturn.h> (7.23).

5 A strictly conforming program can use conditional features (see 6.10.8.2) provided the use is guarded by an appropriate
conditional inclusion preprocessing directive using the related macro. For example:

#ifdef __STDC_IEC_559__ /x FE_UPWARD defined */
/* ... %/
fesetround (FE_UPWARD) ;
/*x ... %/

#endif

®The features that historically had been presented by the headers <is0646.h> , <stdalign.h> <stdbool.h> and
<stddef.h>are properly integrated into the C/C++ core and do not need to be present as separate headers.

/This implies that a conforming implementation reserves no identifiers other than those explicitly reserved in this
document.

8)Strictly conforming programs are intended to be maximally portable among conforming implementations. Conforming
programs can depend upon nonportable features of a conforming implementation.

General modifications to ISO/IEC 9899:2018, § 4 page 11

CORE 202101 (E) § 5, working draft — January 20, 2021 cmin..core3 N2644/P2309R0

5. Environment

An implementation translates C source files and executes C programs in two data-processing-system
environments, which will be called the translation environment and the execution environment in this
document. Their characteristics define and constrain the results of executing conforming C programs
constructed according to the syntactic and semantic rules for conforming implementations.

Forward references: In this clause, only a few of many possible forward references have been
noted.

51 Conceptual models
5.1.1 Translation environment

5.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the program is kept in units
called source files, (or preprocessing files) in this document. A source file together with all the headers
and source files included via the preprocessing directive #include is known as a preprocessing
translation unit. After preprocessing, a preprocessing translation unit is called a translation unit.
Previously translated translation units may be preserved individually or in libraries. The separate
translation units of a program communicate by (for example) calls to functions whose identifiers have
external linkage, manipulation of objects whose identifiers have external linkage, or manipulation
of data files. Translation units may be separately translated and then later linked to produce an
executable program.

Forward references: linkages of identifiers (6.2.2), external definitions (6.9), preprocessing direc-
tives (6.10).
5.1.1.2 Translation phases

The precedence among the syntax rules of translation is specified by the following phases.”

1. Physical source file multibyte characters are mapped, in an implementation-defined man-
ner, to the source Character set (mtroducmg new-line Characters for end-of- hne indica-

tors) if necessary:
10)

WM
by the universal character name that designates that character. An implementation may use
any internal encoding, so long as an actual extended character encountered in the source file,
and the same extended character expressed in the source file as a universal character name
(e.£:, using the \UXXXX notation), are handled equivalently.

2. Each instance of a backslash character (\) immediately followed by a new-line character is
deleted, splicing physical source lines to form logical source lines. Only the last backslash
on any physical source line shall be eligible for being part of such a splice. If a splice results
in a character sequence that matches the syntax of a universal character name, the behavior
is undefined. A source file that is not empty shall end in a new-line character, which shall not
be immediately preceded by a backslash character before any such splicing takes place.

3. The source file is decomposed into preprocessing tokens!) and sequences of white-space
characters (including comments). A source file shall not end in a partial preprocessing token or
in a partial comment. Each comment is replaced by one space character. New-line characters

)This requires implementations to behave as if these separate phases occur, even though many are typically folded
together in practice. Source files, translation units, and translated translation units need not necessarily be stored as files,
nor need there be any one-to-one correspondence between these entities and any external representation. The description is
conceptual only, and does not specify any particular implementation.

¥ Historically, in this phase also trigraph sequences would have been replaced by corresponding single-character internal
1D As described in 6.4, the process of dividing a source file’s characters into preprocessing tokens is context-dependent. For
example, see the handling of < within a #include preprocessing directive.

modifications to ISO/IEC 9899:2018, § 5.1.1.2 page 12 Environment

N2644/P2309R0 cmin..coréy5.1.1.3, working draft — January 20, 2021 CORE 202101 (E)

are retained. Whether each nonempty sequence of white-space characters other than new-line
is retained or replaced by one space character is implementation-defined.

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary
operator expressions are executed. If a character sequence that matches the syntax of a univer-
sal character name is produced by token concatenation (6.10.3.3), the behavior is undefined. A
#include preprocessing directive causes the named header or source file to be processed from
phase 1 through phase 4, recursively. All preprocessing directives are then deleted.

5. Each source character set memberand-eseape-sequence—, escape sequence and universal
character name in character constants and string literals is converted to the corresponding

member of the execution character set; if there is no corresponding member, it is converted to
an implementation-defined member other than the null (wide) character.'?

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each preprocessing token
is converted into a token. The resulting tokens are syntactically and semantically analyzed
and translated as a translation unit.

8. All external object and function references are resolved. Library components are linked to
satisfy external references to functions and objects not defined in the current translation. All
such translator output is collected into a program image which contains information needed
for execution in its execution environment.

Forward references: universal character names (6.4.3), lexical elements (6.4), preprocessing direc-

tives (6.10), trigraphsequences{(??);-external definitions (6.9).

5.1.1.3 Diagnostics

A conforming implementation shall produce at least one diagnostic message (identified in an imple-
mentation-defined manner) if a preprocessing translation unit or translation unit contains a violation
of any syntax rule or constraint, even if the behavior is also explicitly specified as undefined or
implementation-defined. Diagnostic messages need not be produced in other circumstances.'®

EXAMPLE An implementation is required to issue a diagnostic for the translation unit:

char i;
int i;

because in those cases where wording in this document describes the behavior for a construct as being both a constraint error
and resulting in undefined behavior, the constraint error is still required to be diagnosed.

5.1.2 Execution environments

Two execution environments are defined: freestanding and hosted. In both cases, program startup
occurs when a designated C function is called by the execution environment. All objects with static
storage duration shall be initialized (set to their initial values) before program startup. The manner
and timing of such initialization are otherwise unspecified. Program termination returns control to
the execution environment.

Forward references: storage durations of objects (6.2.4), initialization (6.7.12).

5.1.2.1 Freestanding environment

In a freestanding environment (in which C program execution may take place without any benefit
of an operating system), the name and type of the function called at program startup are implemen-
tation-defined. Any library facilities available to a freestanding program, other than the minimal set
required by Clause 4, are implementation-defined.

12) An implementation need not convert all non-corresponding source characters to the same execution character.

1B An implementation is encouraged to identify the nature of, and where possible localize, each violation. Of course, an
implementation is free to produce any number of diagnostic messages, often referred to as warnings, as long as a valid
program is still correctly translated. It can also successfully translate an invalid program. Annex I lists a few of the more
common warnings.

Environment modifications to ISO/IEC 9899:2018, § 5.1.2.1 page 13

CORE 202101 (E) §5.1.2.2, working draft — January 20, 2021 N2644/P2309R0

The effect of program termination in a freestanding environment is implementation-defined.

5.1.2.2 Hosted environment

A hosted environment need not be provided, but shall conform to the following specifications if
present.

5.1.2.2.1 Program startup

The function called at program startup is named main. The implementation declares no prototype
for this function. It shall be defined with a return type of int and with no parameters:

\ int main(void) { /x ... %/ }

or with two parameters (referred to here as argc and argv, though any names may be used, as they
are local to the function in which they are declared):

\ int main(int argc, char xargv[]) { /x ... %/ }

or equivalent;'¥ or in some other implementation-defined manner.

If they are declared, the parameters to the main function shall obey the following constraints:

— The value of argc shall be nonnegative.
— argv[argc] shall be a null pointer.

— If the value of argc is greater than zero, the array members argv[0] through argv[argc-1]
inclusive shall contain pointers to strings, which are given implementation-defined values
by the host environment prior to program startup. The intent is to supply to the program
information determined prior to program startup from elsewhere in the hosted environment.
If the host environment is not capable of supplying strings with letters in both uppercase and
lowercase, the implementation shall ensure that the strings are received in lowercase.

— If the value of argc is greater than zero, the string pointed to by argv[0] represents the
program name; argv[0][0] shall be the null character if the program name is not available
from the host environment. If the value of argc is greater than one, the strings pointed to by
argv[1] through argv[argc-1] represent the program parameters.

— The parameters argc and argv and the strings pointed to by the argv array shall be modifiable
by the program, and retain their last-stored values between program startup and program
termination.

5.1.2.2.2 Program execution

In a hosted environment, a program may use all the functions, macros, type definitions, and objects
described in the library clause (Clause 7).

5.1.2.2.3 Program termination

If the return type of the main function is a type compatible with int, a return from the initial call
to the main function is equivalent to calling the exit function with the value returned by the main
function as its argument;'> reaching the } that terminates the main function returns a value of 0. If
the return type is not compatible with int, the termination status returned to the host environment
is unspecified.

Forward references: definition of terms (7.1.1), the exit function (7.22.5.4).

W Thus, int can be replaced by a typedef name defined as int, or the type of argv can be written as char ** argv, and so
on.

19n accordance with 6.2.4, the lifetimes of objects with automatic storage duration declared in main will have ended in the
former case, even where they would not have in the latter.

modifications to ISO/IEC 9899:2018, § 5.1.2.2.3 page 14 Environment

10

N2644/P2309R0 § 5.1.2.3, working draft — January 20, 2021 CORE 202101 (E)

5.1.2.3 Program execution

The semantic descriptions in this document describe the behavior of an abstract machine in which
issues of optimization are irrelevant.

An access to an object through the use of an lvalue of volatile-qualified type is a volatile access. A
volatile access to an object, modifying a file, or calling a function that does any of those operations
are all side effects,'® which are changes in the state of the execution environment. Evaluation of
an expression in general includes both value computations and initiation of side effects. Value
computation for an Ivalue expression includes determining the identity of the designated object.

Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a
single thread, which induces a partial order among those evaluations. Given any two evaluations
A and B, if A is sequenced before B, then the execution of A shall precede the execution of B.
(Conversely, if A is sequenced before B, then B is sequenced after A.) If A is not sequenced before or
after B, then A and B are unsequenced. Evaluations A and B are indeterminately sequenced when A is
sequenced either before or after B, but it is unspecified which.!” The presence of a sequence point
between the evaluation of expressions A and B implies that every value computation and side effect
associated with A is sequenced before every value computation and side effect associated with B. (A
summary of the sequence points is given in Annex C.)

In the abstract machine, all expressions are evaluated as specified by the semantics. An actual
implementation need not evaluate part of an expression if it can deduce that its value is not used
and that no needed side effects are produced (including any caused by calling a function or through
volatile access to an object).

When the processing of the abstract machine is interrupted by receipt of a signal, the values of
objects that are neither lock-free atomic objects nor of type volatile sig_atomic_t are unspecified,
as is the state of the floating-point environment. The value of any object modified by the handler
that is neither a lock-free atomic object nor of type volatile sig_atomic_t becomes indeterminate
when the handler exits, as does the state of the floating-point environment if it is modified by the
handler and not restored to its original state.

The least requirements on a conforming implementation are:

— Volatile accesses to objects are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to the result that execution
of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in 7.21.3.
The intent of these requirements is that unbuffered or line-buffered output appear as soon as
possible, to ensure that prompting messages actually appear prior to a program waiting for
input.

This is the observable behavior of the program.

What constitutes an interactive device is implementation-defined.

More stringent correspondences between abstract and actual semantics may be defined by each
implementation.

EXAMPLE 1 An implementation might define a one-to-one correspondence between abstract and actual semantics: at every
sequence point, the values of the actual objects would agree with those specified by the abstract semantics. The keyword
volatile would then be redundant.

Alternatively, an implementation might perform various optimizations within each translation unit, such that the actual
semantics would agree with the abstract semantics only when making function calls across translation unit boundaries. In

16)The IEC 60559 standard for binary floating-point arithmetic requires certain user-accessible status flags and control
modes. Floating-point operations implicitly set the status flags; modes affect result values of floating-point operations.
Implementations that support such floating-point state are required to regard changes to it as side effects — see Annex F for
details. The floating-point environment library <fenv.h> provides a programming facility for indicating when these side
effects matter, freeing the implementations in other cases.

17)The executions of unsequenced evaluations can interleave. Indeterminately sequenced evaluations cannot interleave, but
can be executed in any order.

Environment modifications to ISO/IEC 9899:2018, § 5.1.2.3 page 15

11

12

13

14

15

CORE 202101 (E) §5.1.2.3, working draft — January 20, 202imin..core3 N2644/P2309R0

such an implementation, at the time of each function entry and function return where the calling function and the called
function are in different translation units, the values of all externally linked objects and of all objects accessible via pointers
therein would agree with the abstract semantics. Furthermore, at the time of each such function entry the values of the
parameters of the called function and of all objects accessible via pointers therein would agree with the abstract semantics. In
this type of implementation, objects referred to by interrupt service routines activated by the signal function would require
explicit specification of volatile storage, as well as other implementation-defined restrictions.

EXAMPLE 2 In executing the fragment

char cl, c2;
/* ... %/
cl =cl + c2;

the “integer promotions” require that the abstract machine promote the value of each variable to int size and then add
the two ints and truncate the sum. Provided the addition of two chars can be done without overflow, or with overflow
wrapping silently to produce the correct result, the actual execution need only produce the same result, possibly omitting the
promotions.

EXAMPLE 3 Similarly, in the fragment

float fl, f2;

double d;

/* ... %/
—F =2
fl = f2xd;

~~

the multiplication can be executed using single-precision arithmetic if the implementation can ascertain that the result would
be the same as if it were executed using double-precision arithmetic (for example, if d were replaced by the constant 2.0,
which has type doub'le).

EXAMPLE 4 Implementations employing wide hardware registers have to take care to honor appropriate semantics. Values
are independent of whether they are represented in a hardware register or in memory. For example, an implicit spilling of a
hardware register is not permitted to alter the value. Also, an explicit store and load is required to round to the precision of the
storage type. In particular, casts and assignments are required to perform their specified conversion. For the fragment

double d1, d2;

float f;

dl f = expression;

d2 (float) expression;

the values assigned to d1 and d2 are required to have been converted to float.

EXAMPLE 5 Rearrangement for floating-point expressions is often restricted because of limitations in precision as well as
range. The implementation cannot generally apply the mathematical associative rules for addition or multiplication, nor
the distributive rule, because of roundoff error, even in the absence of overflow and underflow. Likewise, implementations
cannot generally replace decimal constants in order to rearrange expressions. In the following fragment, rearrangements
suggested by mathematical rules for real numbers are often not valid (see F.9).

double x, y, z;
/* .. %/
————Xx—=—Ax——y——2—F/not equivalent to x—x=—y—+2z+

e X E (XX Y) X Z; [/ not equivalent to X X=y X Z;
z=(x-vy)+y; // not equivalent to z = x;

———z=x—+x*y;——F/not equivalent to = ; -

y—= /—5-0; /#—not equivalent to y—= 2
e Z =X+ X XY; /[not equivalent to z = x X (1.0 + y);

=x/5.0; ____// not equivalent toy = x X 0.2;

EXAMPLE 6 To illustrate the grouping behavior of expressions, in the following fragment

int a, b;
/* ... x/
a=a+ 32760 + b + 5;

the expression statement behaves exactly the same as

\ a= (((a+ 32760) + b) + 5);

modifications to ISO/IEC 9899:2018, § 5.1.2.3 page 16 Environment

16

N2644/P2309R0 cmin..corép5.1.2.4, working draft — January 20, 2021 CORE 202101 (E)

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next added to b, and
that result is then added to 5 which results in the value assigned to a. On a machine in which overflows produce an explicit
trap and in which the range of values representable by an int is [-32768, +-32767], the implementation cannot rewrite this
expression as

a = ((a+ b) + 32765);

since if the values for a and b were, respectively, —32754 and —15, the sum a + b would produce a trap while the original
expression would not; nor can the expression be rewritten either as

a = ((a + 32765) + b);

or

[
\ a

(a + (b + 32765));

since the values for a and b might have been, respectively, 4 and —8 or —17 and 12. However, on a machine in which
overflow silently generates some value and where positive and negative overflows cancel, the above expression statement
can be rewritten by the implementation in any of the above ways because the same result will occur.

EXAMPLE 7 The grouping of an expression does not completely determine its evaluation. In the following fragment

#include <stdio.h>

int sum;
char xp;
/*x ... %/

o’

’

_.___sum = sum x 10 - '@’ + (*p++ = getchar());

the expression statement is grouped as if it were written as

rnt
’

sum = sum X 10) - '0") + ((x(p++)) = (getchar())));

~~

but the actual increment of p can occur at any time between the previous sequence point and the next sequence point (the ;),
and the call to getchar can occur at any point prior to the need of its returned value.

Forward references: expressions (6.5), type qualifiers (6.7.3), statements (6.8), floating-point envi-
ronment <fenv.h> (7.6), the signal function (7.14), files (7.21.3).

5.1.2.4 Multi-threaded executions and data races

Under a hosted implementation, a program can have more than one thread of execution (or thread)
running concurrently. The execution of each thread proceeds as defined by the remainder of this
document. The execution of the entire program consists of an execution of all of its threads.'®)
Under a freestanding implementation, it is implementation-defined whether a program can have
more than one thread of execution.

The value of an object visible to a thread 7" at a particular point is the initial value of the object, a
value stored in the object by T', or a value stored in the object by another thread, according to the
rules below.

NOTE 1 In some cases, there could instead be undefined behavior. Much of this section is motivated by the desire to support

atomic operations with explicit and detailed visibility constraints. However, it also implicitly supports a simpler view for
more restricted programs.

Two expression evaluations conflict if one of them modifies a memory location and the other one
reads or modifies the same memory location.

The library-defines There are a number of (7:17)-and-operations that are specially identified as
synchronization operations: _these are operators and generic functions (if the implementation
supports the atomics extension) that act on atomic objects (6.5 and 7.17); if the implementation
supports the thread extension these are calls to initialization functions (7.26.2), operations on mu-
texes (7-26-4)that-are specially-identitied-assynchronization-operations-7.26.3 and 7.26.4), and calls

18)The execution can usually be viewed as an interleaving of all of the threads. However, some kinds of atomic operations,
for example, allow executions inconsistent with a simple interleaving as described below.

Environment modifications to ISO/IEC 9899:2018, § 5.1.2.4 page 17

10

11

12

13

14

15

CORE 202101 (E) §5.1.2.4, working draft — January 20, 202imin..core3 N2644/P2309R0

to thread functions (7.26.5). These operations play a special role in making assignments-side effects

in one thread visible to another. A synchronization operation on one or more memory locations is either
an acquire operation, a release operation, both an acquire and release operation, or a consume operation.
A synchronization operation without an associated memory location is a ferice and can be either an
acquire fence, a release fence, or both an acquire and release fence. In addition, there are relaxed
atomic operations, which are not synchronization operations but still are indivisible, and atomic

read-modify-write operations, which have-special-characteristies—are those operations defined in 6.5
and 7.17 that act on an atomic object by reading its value, by performing an optional operation with
that value and by storing back a value into that object.

NOTE 2 For example, a call that acquires a mutex will perform an acquire operation on the locations composing the mutex.
Correspondingly, a call that releases the same mutex will perform a release operation on those same locations. Informally,
performing a release operation on A forces prior side effects on other memory locations to become visible to other threads
that later perform an acquire or consume operation on A. Relaxed atomic operations are not included as synchronization
operations although, like synchronization operations, they cannot contribute to data races.

All modifications to a particular atomic object M occur in some particular total order, called the
modification order of M. If A and B are modifications of an atomic object M, and A happens before B,
then A shall precede B in the modification order of M, which is defined below.

NOTE 3 This states that the modification orders are expected to respect the “happens before” relation.

NOTE 4 There is a separate order for each atomic object. There is no requirement that these can be combined into a single
total order for all objects. In general this will be impossible since different threads can observe modifications to different
variables in inconsistent orders.

A release sequence headed by a release operation A on an atomic object M is a maximal contiguous
sub-sequence of side effects in the modification order of M, where the first operation is A and every
subsequent operation either is performed by the same thread that performed the release or is an
atomic read-modify-write operation.

Certain library-ealls-operations synchronize with other library-calls-operations performed by another

thread. In particular, an atomic operation A that performs a release operation on an object M
synchronizes with an atomic operation B that performs an acquire operation on M and reads a
value written by any side effect in the release sequence headed by A.

NOTE 5 Except in the specified cases, reading a later value does not necessarily ensure visibility as described below. Such a
requirement would sometimes interfere with efficient implementation.

NOTE 6 The specifications of the synchronization operations define when one reads the value written by another. For atomic
variables, the definition is clear. All operations on a given mutex occur in a single total order. Each mutex acquisition “reads
the value written” by the last mutex release.

An evaluation A carries a dependency' to an evaluation B if:

— the value of A is used as an operand of B, unless:

e Bisan invocation of the kill_dependency macro,

o A is the left operand of a &&/_or {{-operator;-V operator,
o A is the left operand of a ?: operator, or

o Ais the left operand of a , operator;
or

— A writes a scalar object or bit-field-core:: alias member M, B reads from M the value written
by A, and A is sequenced before B, or

— for some evaluation X, A carries a dependency to X and X carries a dependency to B.

An evaluation A is dependency-ordered before?® an evaluation B if:

9)The “carries a dependency” relation is a subset of the “sequenced before” relation, and is similarly strictly intra-thread.
20)The “dependency-ordered before” relation is analogous to the “synchronizes with” relation, but uses release/consume in
place of release/acquire.

modifications to ISO/IEC 9899:2018, § 5.1.2.4 page 18 Environment

16

17

18

19
20

21

22

23

24

25

26
27

28
29

30

N2644/P2309R0 § 5.1.2.4, working draft — January 20, 2021 CORE 202101 (E)

— A performs a release operation on an atomic object M, and, in another thread, B performs a
consume operation on M and reads a value written by any side effect in the release sequence
headed by A, or

— for some evaluation X, A is dependency-ordered before X and X carries a dependency to B.

An evaluation A inter-thread happens before an evaluation B if A synchronizes with B, A is
dependency-ordered before B, or, for some evaluation X:

— A synchronizes with X and X is sequenced before B,
— Ais sequenced before X and X inter-thread happens before B, or

— A inter-thread happens before X and X inter-thread happens before B.

i

NOTE 7 The “inter-thread happens before” relation describes arbitrary concatenations of “sequenced before”, “synchronizes
with”, and “dependency-ordered before” relationships, with two exceptions. The first exception is that a concatenation is
not permitted to end with “dependency-ordered before” followed by “sequenced before”. The reason for this limitation is
that a consume operation participating in a “dependency-ordered before” relationship provides ordering only with respect
to operations to which this consume operation actually carries a dependency. The reason that this limitation applies only
to the end of such a concatenation is that any subsequent release operation will provide the required ordering for a prior
consume operation. The second exception is that a concatenation is not permitted to consist entirely of “sequenced before”.
The reasons for this limitation are (1) to permit “inter-thread happens before” to be transitively closed and (2) the “happens
before” relation, defined below, provides for relationships consisting entirely of “sequenced before”.

An evaluation A happens before an evaluation B if A is sequenced before B or A inter-thread happens
before B. The implementation shall ensure that no program execution demonstrates a cycle in the
“happens before” relation.

NOTE 8 This cycle would otherwise be possible only through the use of consume operations.

A wvisible side effect A on an object M with respect to a value computation B of M satisfies the
conditions:

— A happens before B, and
— there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object M, as determined by evaluation B, shall be the value stored
by the visible side effect A.

NOTE 9 If there is ambiguity about which side effect to a non-atomic object is visible, then there is a data race and the
behavior is undefined.

NOTE 10 This states that operations on ordinary variables are not visibly reordered. This is not actually detectable without
data races, but it is necessary to ensure that data races, as defined here, and with suitable restrictions on the use of atomics,
correspond to data races in a simple interleaved (sequentially consistent) execution.

The value of an atomic object M, as determined by evaluation B, shall be the value stored by some
side effect A that modifies M, where B does not happen before A.

NOTE 11 The set of side effects from which a given evaluation might take its value is also restricted by the rest of the rules
described here, and in particular, by the coherence requirements below.

If an operation A that modifies an atomic object M happens before an operation B that modifies M,
then A shall be earlier than B in the modification order of M.

NOTE 12 The requirement above is known as “write-write coherence”.

If a value computation A of an atomic object M happens before a value computation B of M, and A
takes its value from a side effect X on M, then the value computed by B shall either be the value

stored by X or the value stored by a side effect Y on M, where Y follows X in the modification
order of M.

NOTE 13 The requirement above is known as “read-read coherence”.

If a value computation A of an atomic object M happens before an operation B on M, then A shall
take its value from a side effect X on M, where X precedes B in the modification order of M.

NOTE 14 The requirement above is known as “read-write coherence”.

Environment modifications to ISO/IEC 9899:2018, § 5.1.2.4 page 19

31

32
33

34

35

36

37

38

CORE 202101 (E) § 5.2, working draft — January 20, 2021cmin..core3 N2644/P2309R0

If a side effect X on an atomic object M happens before a value computation B of M, then the
evaluation B shall take its value from X or from a side effect Y that follows X in the modification
order of M.

NOTE 15 The requirement above is known as “write-read coherence”.

NOTE 16 This effectively disallows compiler reordering of atomic operations to a single object, even if both operations are

“relaxed” loads. By doing so, it effectively makes the “cache coherence” guarantee provided by most hardware available to C

atomic operations.

NOTE 17 The value observed by a load of an atomic object depends on the “happens before” relation, which in turn depends
on the values observed by loads of atomic objects. The intended reading is that there exists an association of atomic loads
with modifications they observe that, together with suitably chosen modification orders and the “happens before” relation
derived as described above, satisfy the resulting constraints as imposed here.

Two evaluations are concurrent if neither happens before the other. The execution of a program
contains a data race if it contains two concurrent conflicting actions in different threads, at least one

of which is not atomic ﬁﬁdﬂﬁtet’fheﬁhappeﬂ&bef—efethee’fheﬁor if they access an atomic object that
has not been initialized. Any such data race results in undefined behavior.

NOTE 18 It can be shown that programs that correctly use simple mutexes and memory_order_seq_cst operations to
prevent all data races, and use no other synchronization operations, behave as though the operations executed by their
constituent threads were simply interleaved, with each value computation of an object being the last value stored in that
interleaving. This is normally referred to as “sequential consistency”. However, this applies only to data-race-free programs,
and data-race-free programs cannot observe most program transformations that do not change single-threaded program
semantics. In fact, most single-threaded program transformations continue to be allowed, since any program that behaves
differently as a result necessarily has undefined behavior even before such a transformation is applied.

NOTE 19 Compiler transformations that introduce assignments to a potentially shared memory location that would not
be modified by the abstract machine are generally precluded by this document, since such an assignment might overwrite
another assignment by a different thread in cases in which an abstract machine execution would not have encountered a
data race. This includes implementations of data member assignment that overwrite adjacent members in separate memory
locations. Reordering of atomic loads in cases in which the atomics in question might alias is also generally precluded, since
this could violate the coherence requirements.

NOTE 20 Transformations that introduce a speculative read of a potentially shared memory location might not preserve
the semantics of the program as defined in this document, since they potentially introduce a data race. However, they are
typically valid in the context of an optimizing compiler that targets a specific machine with well-defined semantics for data
races. They would be invalid for a hypothetical machine that is not tolerant of races or provides hardware race detection.

g (é ironmental considerations

O]Set%gﬁgé%c]él%e d their associated eellatingsequenees-collating sequences shall be defined:
the set in which source files are written (the source character set), and the set interpreted in the
execution environment (the execution character set). Each set is further divided into a basic character
set, whose contents are given by this subclause, and a set of zero or more locale-specific members
(which are not members of the basic character set) called extended characters. The combined set is
also called the extended character set. The values of the members of the execution character set are
implementation-defined.

In a character constant or string literal, members of the execution character set shall be represented by
corresponding members of the source character set or by escape sequences consisting of the backslash
\ followed by one or more characters. A byte with all bits set to 0, called the null character, shall exist
in the basic execution character set; it is used to terminate a character string.

Both the basic source and basic execution character sets shall have the following members: the 26
uppercase letters of the Latin alphabet

A C H I J K L
N P u v w X Y Z

=14 o

B D E F
0 Q R S

the 26 lowercase letters of the Latin alphabet

b ¢ d e f g h
s t u

k
o p q r X

1]
vV ow

1
y z

modifications to ISO/IEC 9899:2018, § 5.2.1 page 20 Environment

N2644/P2309R0 cmin..corép5.2.1.1, working draft — January 20, 2021 CORE 202101 (E)

the 10 decimal digits

\ © 1 2 3 456 7 809

the following 29 graphic characters

bt o# s & T () %+, -
po<o=>?2 [N1~ - {0}

the space character, and control characters representing horizontal tab, vertical tab, and form feed.
The representation of each member of the source and execution basic character sets shall fit in a
byte. In both the source and execution basic character sets, the value of each character after 0 in
the above list of decimal digits shall be one greater than the value of the previous. In source files,
there shall be some way of indicating the end of each line of text; this document treats such an
end-of-line indicator as if it were a single new-line character. In the basic execution character set,
there shall be control characters representing alert, backspace, carriage return, and new line. If any
other characters are encountered in a source file (except in an identifier, a character constant, a string
literal, a header name, a comment, or a preprocessing token that is never converted to a token), the
behavior is undefined.

A letter is an uppercase letter or a lowercase letter as defined above; in this document the term does
not include other characters that are letters in other alphabets.

The universal character name construct provides a way to name other characters.

Forward references: universal character names (6.4.3), character constants (6.4.4.4), preprocessing

5.2.1.1 Multibyte characters

The source character set may contain multibyte characters, used to represent members of the
extended character set. The execution character set may also contain multibyte characters, which
need not have the same encoding as for the source character set. For both character sets, the following
shall hold:

— The basic character set shall be present and each character shall be encoded as a single byte.
— The presence, meaning, and representation of any additional members is locale-specific.

— A multibyte character set may have a state-dependent encoding, wherein each sequence of
multibyte characters begins in an initial shift state and enters other locale-specific shift states
when specific multibyte characters are encountered in the sequence. While in the initial shift
state, all single-byte characters retain their usual interpretation and do not alter the shift state.
The interpretation for subsequent bytes in the sequence is a function of the current shift state.

Environment modifications to ISO/IEC 9899:2018, § 5.2.1.1 page 21

CORE 202101 (E) § 5.2.2, working draft — January 20, 202Tmin..core3 N2644/P2309R0

— A byte with all bits zero shall be interpreted as a null character independent of shift state. Such
a byte shall not occur as part of any other multibyte character.

For source files, the following shall hold:

— An identifier, comment, string literal, character constant, or header name shall begin and end
in the initial shift state.

— An identifier, comment, string literal, character constant, or header name shall consist of a
sequence of valid multibyte characters.

NOTE Historically, C and C++ also had trigraph sequences , such that all occurences of the following triplets where replaced
with the corresponding single character during translation phase 1.

1=))
720 1 2?7 ° 77> 3
2?2/ \ ?27< { ?2?7- ~

C++ has now completely removed them, and also some C compilers only support these with additional commandline
options. They are only marginally used nowadays and therefore removed from the C/C++ core.

5.2.2 Character display semantics

The active position is that location on a display device where the next character output by the
fputc function would appear. The intent of writing a printing character (as defined by the isprint
function) to a display device is to display a graphic representation of that character at the active
position and then advance the active position to the next position on the current line. The direction
of writing is locale-specific. If the active position is at the final position of a line (if there is one), the
behavior of the display device is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution character set are
intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert without changing the active position.

\b (backspace) Moves the active position to the previous position on the current line. If the active
position is at the initial position of a line, the behavior of the display device is unspecified.

\f (form feed) Moves the active position to the initial position at the start of the next logical page.
\n (new line) Moves the active position to the initial position of the next line.
\r (carriage return) Moves the active position to the initial position of the current line.

\t (horizontal tab) Moves the active position to the next horizontal tabulation position on the current
line. If the active position is at or past the last defined horizontal tabulation position, the behavior
of the display device is unspecified.

\V (vertical tab) Moves the active position to the initial position of the next vertical tabulation
position. If the active position is at or past the last defined vertical tabulation position, the
behavior of the display device is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value which can be
stored in a single char object. The external representations in a text file need not be identical to the
internal representations, and are outside the scope of this document.

Forward references: the isprint function (7.4.1.8), the fputc function (7.21.7.3).

5.2.3 Signals and interrupts

Functions shall be implemented such that they may be interrupted at any time by a signal, or may be
called by a signal handler, or both, with no alteration to earlier, but still active, invocations’ control
flow (after the interruption), function return values, or objects with automatic storage duration.
All such objects shall be maintained outside the function image (the instructions that compose the
executable representation of a function) on a per-invocation basis.

modifications to ISO/IEC 9899:2018, § 5.2.3 page 22 Environment

N2644/P2309R0 cmin..core 5.2.4, working draft — January 20, 2021 CORE 202101 (E)

5.2.4 Environmental limits

Both the translation and execution environments constrain the implementation of language trans-
lators and libraries. The following summarizes the language-related environmental limits on a
conforming implementation; the library-related limits are discussed in Clause 7.

5.2.4.1 Translation limits

The implementation shall be able to translate and execute at least one program that contains at least
one instance of every one of the following limits:2!)

— 127 nesting levels of blocks
— 63 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic,
structure, union, or void type in a declaration

— 63 nesting levels of parenthesized declarators within a full declarator
— 63 nesting levels of parenthesized expressions within a full expression

— 63 significant initial characters in an internal identifier or a macro name(each universal charac-
ter name or extended source character is considered a single character)

— 31 significant initial characters in an external identifier (each universal character name specify-
ing a short identifier of 0000FFFF or less is considered 6 characters, each universal character
name specifying a short identifier of 00010000 or more is considered 10 characters, and each
extended source character is considered the same number of characters as the corresponding
universal character name, if any)?

— 4095 external identifiers in one translation unit

— 511 identifiers with block scope declared in one block

— 4095 macro identifiers simultaneously defined in one preprocessing translation unit
— 127 parameters in one function definition

— 127 arguments in one function call

— 127 parameters in one macro definition

— 127 arguments in one macro invocation

— 4095 characters in a logical source line

— 4095 characters in a string literal (after concatenation)

— 65535 bytes in an object (in a hosted environment only)

— 15 nesting levels for #included files

— 1023 case labels for a switch statement (excluding those for any nested switch statements)
— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 levels of nested structure or union definitions in a single member declaration list

The implementation shall be able to translate constant expressions that do not exceed the followin
limits. Other implementation-defined limits may be specified that constrain the evaluation of
constant expressions and possible calls to constexpr functions in such a context.

2DImplementations are encouraged to avoid imposing fixed translation limits whenever possible.
2)Gee “future language directions” (6.11.3).

Environment modifications to ISO/IEC 9899:2018, § 5.2.4.1 page 23

CORE 202101 (E) §5.2.4.2, working draft — January 20, 202imin..core3 N2644/P2309R0

— 512 recursive constexpr function invocations
— 1048576 full-expressions evaluated within a constant expression

5.2.4.2 Numerical limits

An implementation is required to document all the limits specified in this subclause, which are
specified in the headers <limits.h>and <float.h>. Additional limits are specified in <stdint.h>.

Forward references: integer types <stdint.h> (7.20).

5.2.4.2.1 Characteristics of integer types <limits.h>

The values given below shall be replaced by constant expressions suitable for use in #if preprocess-
ing directives. Their implementation-defined values shall be equal or greater to those shown.

— width for an object of type _Bool

[
| BOOL_WIDTH 1
L

— number of bits for smallest object thatisnota-bit-field-(byte)

| CHAR_BIT 8
L

The macros CHAR_WIDTH, SCHAR_WIDTH, and UCHAR_WIDTH that represent the width of the
types char, signed char and unsigned char shall expand to the same value as CHAR_BIT.

— width for an object of type unsigned short int

[
| USHRT_WIDTH 16
L

The macro SHRT_WIDTH represents the width of the type short int and shall expand to the
same value as USHRT_WIDTH.

— width for an object of type unsigned int

[
| UINT_WIDTH 16
L

The macro INT_WIDTH represents the width of the type int and shall expand to the same value
as UINT_WIDTH.

— width for an object of type unsigned long int

[
| ULONG_WIDTH 32
L

The macro LONG_WIDTH represents the width of the type long int and shall expand to the
same value as ULONG_WIDTH.

— width for an object of type unsigned long long int

[
‘ ULLONG_WIDTH 64
L

The macro LLONG_WIDTH represents the width of the type Long long int and shall expand to
the same value as ULLONG_WIDTH.

— the maximum width for a bit-set

[
INTBITFIELD MAX __ UINT WIDTH
L

— maximum number of bytes in a multibyte character, for any supported locale

modifications to ISO/IEC 9899:2018, § 5.2.4.2.1 page 24 Environment

N2644/P2309R0 cmin..co®53.2.4.2.2, working draft — January 20, 2021 CORE 202101 (E)

[
| MB_LEN_MAX 1
L

For all unsigned integer types for which <limits.h> or <stdint.h> define a macro with suffix
—WIDTH holding its width NV, there is a macro with suffix _MAX holding the maximal value 2N 1
that is representable by the type, that is suitable for use in #if preprocessing directives and that
has the same type as would an expression that is an object of the corresponding type converted
according to the integer promotions.

For all signed integer types for which <limits.h> or <stdint.h> define a macro with suffix_WIDTH
holding its width NN, there are macros with suffix _MIN and _MAX holding the minimal and maximal
values —2V~1 and 2V~! — 1 that are representable by the type, that are suitable for use in #if
preprocessing directives and that have the same type as would an expression that is an object of the
corresponding type converted according to the integer promotions.

If an object of type char can hold negative values, the value of CHAR_MIN shall be the same as that of
SCHAR_MIN and the value of CHAR_MAX shall be the same as that of SCHAR_MAX. Otherwise, the value
of CHAR_MIN shall be 0 and the value of CHAR_MAX shall be the same as that of UCHAR_MAX.2®)

Forward references: representations of types (6.2.6), conditional inclusion (6.10.1), integer types
<stdint.h> (7.20).

5.2.4.2.2 Characteristics of floating types <float.h>

The characteristics of floating types are defined in terms of a model that describes a representation
of floating-point numbers and values that provide information about an implementation’s floating-
point arithmetic.?¥ An implementation that defines __STDC_IEC_559__ shall implement floating
pomt types and anthmetlc conformmg to IEC 60559 as specified in Annex F. Aﬁﬂmp}emeﬂ%aﬁeﬁthat

The following parameters are used to define the model for each floating-point type:

sign (£1)

base or radix of exponent representation (an integer > 1)

exponent (an integer between a minimum ey,;, and a maximum e ax)
precision (the number of base-b digits in the significand)

r nonnegative integers less than b (the significand digits)

L ST YRS TIEON

For each floating-point type the parameters b, p, emin, and emax, are fixed constants.

For each floating-point type, a floating-point number () is defined by the following model:
p
T = sb® Z fkbik, €min < € < €max

Floating types shall be able to represent zero (all f==#9f; = 0) and all normalized floating-point
numbers (f; > 0 and all possible k digits and e exponents result in values representable in the type).
In addition, floating types may be able to contain other kinds of floating-point numbers,? such as
negative zero, subnormal floating-point numbers (x # 0, € = emin, f1 = 0) and unnormalized floating-point
numbers (x # 0, € > emin, f1 = 0), and values that are not floating-point numbers, such as infinities
and NaNs. A NaN is an encoding signifying Not-a-Number. A quiet NaN propagates through almost
every arithmetic operation without raising a floating-point exception; a signaling NaN generally
raises a floating-point exception when occurring as an arithmetic operand.®)

An implementation may give zero and values that are not floating-point numbers (such as infinities
and NaNs) a sign or may leave them unsigned. Wherever such values are unsigned, any requirement

P)See 6.2.5.

2YThe floating-point model is intended to clarify the description of each floating-point characteristic and does not require
the floating-point arithmetic of the implementation to be identical.

2Some implementations have types that include finite numbers with extra range and /or precision that are not covered by
the model.

20TEC 60559:1989 specifies quiet and signaling NaNs. For implementations that do not support TEC 60559:1989, the terms
quiet NaN and signaling NaN are intended to apply to encodings with similar behavior.

Environment modifications to ISO/IEC 9899:2018, § 5.2.4.2.2 page 25

10

11

CORE 202101 (E) §5.2.4.2.2, working draft — January 20, 2021 N2644/P2309R0

in this document to retrieve the sign shall produce an unspecified sign, and any requirement to set
the sign shall be ignored.

The minimum range of representable values for a floating type is the most negative finite floating-
point number representable in that type through the most positive finite floating-point number
representable in that type. In addition, if negative infinity is representable in a type, the range of
that type is extended to all negative real numbers; likewise, if positive infinity is representable in a
type, the range of that type is extended to all positive real numbers.

The accuracy of the floating-point operations (+,- , *, /) and of the library functions in <math.h>
and <complex. h> that return floating-point results is implementation-defined, as is the accuracy of
the conversion between floating-point internal representations and string representations performed
by the library functions in <stdio.h>, <stdlib.h>, and <wchar.h>. The implementation may state
that the accuracy is unknown.

All integer values in the <float.h> header, except FLT_ROUNDS, shall be constant expressions
suitable for use in #if preprocessing directives; all floating values shall be constant expressions. All
except DECIMAL_DIG, FLT_EVAL_METHOD, FLT_RADIX, and FLT_ROUNDS have separate names for all
three floating-point types. The floating-point model representation is provided for all values except
FLT_EVAL_METHOD and FLT_ROUNDS.

The rounding mode for floating-point addition is characterized by the implementation-defined
value of FLT_ROUNDS. Evaluation of FLT_ROUNDS correctly reflects any execution-time change of
rounding mode through the function fesetround in <fenv.h>.

-1 indeterminable

0 toward zero

1 to nearest, ties to even

2 toward positive infinity

3 toward negative infinity

4 to nearest, ties away from zero

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

The values of floating type yielded by operators subject to the usual arithmetic conversions, including
the values yielded by the implicit conversion of operands, and the values of floating constants are
evaluated to a format whose range and precision may be greater than required by the type. Such a
format is called an evaluation format. In all cases, assignment and cast operators yield values in the
format of the type. The extent to which evaluation formats are used is characterized by the value of
FLT_EVAL_METHOD:%

—1 indeterminable;
0 evaluate all operations and constants just to the range and precision of the type;

1 evaluate operations and constants of type float and doub'le to the range and precision of
the double type, evaluate long double operations and constants to the range and precision
of the long double type;

2 evaluate all operations and constants to the range and precision of the long double type.
All other negative values for FLT_EVAL_METHOD characterize implementation-defined behavior. The
value of FLT_EVAL_METHOD does not characterize values returned by function calls (see 6.8.6.4, E.6).

The presence or absence of subnormal numbers is characterized by the implementation-defined
values of FLT_HAS_SUBNORM, DBL_HAS_SUBNORM, and LDBL_HAS_SUBNORM:

?)The evaluation method determines evaluation formats of expressions involving all floating types, not just real types.
For example, if FLT_EVAL_METHOD is 1, then the product of two complex_type(float) operands is represented in the
complex_type(double) format, and its parts are evaluated to double.

modifications to ISO/IEC 9899:2018, § 5.2.4.2.2 page 26 Environment

N2644/P2309R0 §5.2.4.2.2, working draft — January 20, 2021 CORE 202101 (E)

—1 indeterminable®®
0 absent (type does not support subnormal numbers)?)

1 present (type does support subnormal numbers)

The values given in the following list shall be replaced by constant expressions with implementa-

tion-defined values that are greater or equal in magnitude (absolute value) to those shown, with the
same sign:

— radix of exponent representation, b

[
| FLT_RADIX 2
L

— number of base-FLT_RADIX digits in the floating-point significand, p

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

— number of decimal digits, n, such that any floating-point number with p radix b digits can be
rounded to a floating-point number with n decimal digits and back again without change to

the value,
ploggb if bis a power of 10
[1+plogyyb] otherwise
FLT_DECIMAL_DIG 6
DBL_DECIMAL_DIG 10
LDBL_DECIMAL_DIG 10

— number of decimal digits, n, such that any floating-point number in the widest supported
floating type with pp,ax radix b digits can be rounded to a floating-point number with n decimal
digits and back again without change to the value,

Dmax 1081 b if b is a power of 10
[1 4 pmax loggb] otherwise

I
| DECIMAL_DIG 10
L

This is an obsolescent feature, see 7.32.6.

— number of decimal digits, ¢, such that any floating-point number with ¢ decimal digits can be
rounded into a floating-point number with p radix b digits and back again without change to
the g decimal digits,

plogo b if b is a power of 10
[(p—1)log,,b] otherwise
FLT_DIG 6
DBL_DIG 10
LDBL_DIG 10

2)Characterization as indeterminable is intended if floating-point operations do not consistently interpret subnormal
representations as zero, nor as nonzero.

2)Characterization as absent is intended if no floating-point operations produce subnormal results from non-subnormal
inputs, even if the type format includes representations of subnormal numbers.

Environment modifications to ISO/IEC 9899:2018, § 5.2.4.2.2 page 27

CORE 202101 (E) §5.2.4.2.2, working draft — January 20, 2021 N2644/P2309R0

— minimum negative integer such that FLT_RADIX raised to one less than that power is a normal-
ized floating-point number, e,in

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

— minimum negative integer such that 10 raised to that power is in the range of normalized
floating-point numbers, [logyob®i»~"|

FLT_MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL_MIN_10_EXP -37

— maximum integer such that FLT_RADIX raised to one less than that power is a representable
finite floating-point number, e;ax

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

— maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers, [log1o((1 — b~ P)bcmex) |

FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37

13 The values given in the following list shall be replaced by constant expressions with implementa-
tion-defined values that are greater than or equal to those shown:

— maximum representable finite floating-point number; if that number is normalized, its value is
(1 — b=P)hemax

FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

— maximum normalized floating-point number, (1 — b=P)pcmax

FLT_NORM_MAX 1E+37
DBL_NORM_MAX 1E+37
LDBL_NORM_MAX 1E+37

14 The values given in the following list shall be replaced by constant expressions with implementa-
tion-defined (positive) values that are less than or equal to those shown:

— the difference between 1 and the least normalized value greater than 1 that is representable in
the given floating-point type, b' 7

FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9

— minimum normalized positive floating-point number, b¢min—1

modifications to ISO/IEC 9899:2018, § 5.2.4.2.2 page 28 Environment

N2644/P2309R0 §5.2.4.2.2, working draft — January 20, 2021 CORE 202101 (E)
FLT_MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37
— minimum positive floating-point number>")
FLT_TRUE_MIN 1E-37
DBL_TRUE_MIN 1E-37
LDBL_TRUE_MIN 1E-37

Recommended practice

15 Conversion between real floating type and decimal character sequence with at most T_DECIMAL_DIG
digits should be correctly rounded, where T is the macro prefix for the type. This assures conversion
from real floating type to decimal character sequence with T_DECIMAL_DIG digits and back, using
to-nearest rounding, is the identity function.

16 EXAMPLE 1 The following describes an artificial floating-point representation that meets the minimum requirements of this
document, and the appropriate values in a <float.h>header for type float:

6
x=s516° 3 frl67F, —31<e< 432
k=1

FLT_RADIX 16
FLT_MANT_DIG 6
FLT_EPSILON 9.53674316E-07F
FLT_DECIMAL_DIG 9
FLT_DIG 6
FLT_MIN_EXP -31
FLT_MIN 2.93873588E-39F
FLT_MIN_10_EXP -38
FLT_MAX_EXP +32
FLT_MAX 3.40282347E+38F
FLT_MAX_10_EXP +38

17 EXAMPLE 2 The following describes floating-point representations that also meet the requirements for single-precision and
double-precision numbers in IEC 60559,3D) and the appropriate values in a <float.h>header for types float and double:

24
xp=s82° 3 fu27k,

—125 < e < +128

k=1
53
zqg=52° Y fr2™F, —1021 <e < +1024
k=1
FLT_RADIX 2
FLT_MANT_DIG 24
FLT_EPSILON 1.19209290E-07F // decimal constant
FLT_EPSILON OX1P-23F // hex constant
FLT_DECIMAL_DIG 9
FLT_DIG 6
FLT_MIN_EXP -125
FLT_MIN 1.17549435E-38F // decimal constant
FLT_MIN OX1P-126F // hex constant
FLT_TRUE_MIN 1.40129846E-45F // decimal constant
FLT_TRUE_MIN OX1P-149F // hex constant
FLT_HAS_SUBNORM 1

30)1f the presence or absence of subnormal numbers is indeterminable, then the value is intended to be a positive number
no greater than the minimum normalized positive number for the type.

3DThe floating-point model in that standard sums powers of b from zero, so the values of the exponent limits are one less
than shown here.

Environment modifications to ISO/IEC 9899:2018, § 5.2.4.2.2 page 29

CORE 202101 (E) §5.2.4.2.2, working draft — January 20, 202tin..core3 N2644/P2309R0

FLT_MIN_10_EXP -37

FLT_MAX_EXP +128

FLT_MAX 3.40282347E+38F // decimal constant
FLT_MAX OX1.fffffeP127F // hex constant
FLT_MAX_10_EXP +38

DBL_MANT_DIG 53

DBL_EPSILON 2.2204460492503131E-16 // decimal constant
DBL_EPSILON 0X1P-52 // hex constant
DBL_DECIMAL_DIG 17

DBL_DIG 15

DBL_MIN_EXP -1021

DBL_MIN 2.2250738585072014E-308 // decimal constant
DBL_MIN 0X1P-1022 // hex constant
DBL_TRUE_MIN 4.9406564584124654E-324 // decimal constant
DBL_TRUE_MIN 0X1P-1074 // hex constant
DBL_HAS_SUBNORM 1

DBL_MIN_10_EXP -307

DBL_MAX_EXP +1024

DBL_MAX 1.7976931348623157E+308 // decimal constant
DBL_MAX OX1.fffffffffffffP1023 // hex constant
DBL_MAX_10_EXP +308

Forward references: conditional inclusion (6.10.1), predefined macro names (6.10.8), complex
arithmetic <complex. h> (7.3), extended multibyte and wide character utilities <wchar.h> (7.29),
floating-point environment <fenv.h> (7.6), general utilities <stdlib.h> (7.22), input/output

<stdio.h> (7.21), mathematics <math.h> (7.12), IEC 60559 floating-point arithmetic (Annex F);

TEC-60559-compatible complex-arithmetie (22).

modifications to ISO/IEC 9899:2018, § 5.2.4.2.2 page 30 Environment

N2644/P2309R0 cmin..core3 § 6, working draft — January 20, 2021 CORE 202101 (E)

6. Language

6.1 Notation

In the syntax notation used in this clause, syntactic categories (nonterminals) are indicated by italic
type, and literal words and character set members (terminals) by bold type. A colon (:) following
a nonterminal introduces its definition. Alternative definitions are listed on separate lines, except
when prefaced by the words “one of”. An optional symbol is indicated by the subscript “opt”, so
that

{ expressionop: }
indicates an optional expression enclosed in braces.

When syntactic categories are referred to in the main text, they are not italicized and words are
separated by spaces instead of hyphens.

A summary of the language syntax is given in Annex A.

6.2 Concepts
6.2.1 Scopes of identifiers

An identifier can denote an object; a function; a tag or a member of a structure, union, or enumeration;
a typedef name; a label name; a macro name; or a macro parameter. The same identifier can denote
different entities at different points in the program. A member of an enumeration is called an
enumeration constant. Macro names and macro parameters are not considered further here, because
prior to the semantic phase of program translation any occurrences of macro names in the source file
are replaced by the preprocessing token sequences that constitute their macro definitions.

For each different entity that an identifier designates, the identifier is visible (i.e., can be used) only
within a region of program text called its scope. Different entities designated by the same identifier
either have different scopes, or are in different name spaces. There are four kinds of scopes: function,
file, block, and function prototype. (A function prototype is a declaration of a function that declares
the types of its parameters.)

A label name is the only kind of identifier that has function scope. It can be used (in a goto statement)
anywhere-in the function body in which it appears, and is declared implicitly by its syntactic

appearance (followed by a : and a statement). Each function body has a function scope that is
separate from the function scope of any other function body. In particular, a label is visible in
exactly one function scope (the innermost function body in which it appears) and distinct function

bodies may use the same identifier to designate different labels.3?

Every other identifier has scope determined by the placement of its declaration (in a declarator
or type specifier). If the declarator or type specifier that declares the identifier appears outside
of any block or list of parameters, the identifier has file scope, which terminates at the end of the
translation unit. If the declarator or type specifier that declares the identifier appears inside a block
or within the list of parameter declarations in a function definition, the identifier has block scope,
which terminates at the end of the associated block. If the declarator or type specifier that declares
the identifier appears within the list of parameter declarations in a function prototype (not part
of a function definition), the identifier has function prototype scope, which terminates at the end of
the function declarator.3® If an identifier designates two different entities in the same name space,
the scopes might overlap. If so, the scope of one entity (the inner scope) will end strictly before the
scope of the other entity (the outer scope). Within the inner scope, the identifier designates the entity
declared in the inner scope; the entity declared in the outer scope is hidden (and not visible) within
the inner scope.

32) As a consequence, it is not possible to specify a goto statement that jumps into or out of a lambda or into another

function.

33)1dentifiers that are defined in the parameter list of a lambda expression do not have prototype scope, but a scope that
comprises the whole body of the lambda.

Language modifications to ISO/IEC 9899:2018, § 6.2.1 page 31

CORE 202101 (E) § 6.2.2, working draft — January 20, 202Tmin..core3 N2644/P2309R0

Unless explicitly stated otherwise, where this document uses the term “identifier” to refer to some
entity (as opposed to the syntactic construct), it refers to the entity in the relevant name space whose
declaration is visible at the point the identifier occurs.

Two identifiers have the same scope if and only if their scopes terminate at the same point.

Structure, union, and enumeration tags have scope that begins just after the appearance of the
tag in a type specifier that declares the tag. Each enumeration constant has scope that begins
just after the appearance of its defining enumerator in an enumerator list. An identifier that has

an underspecified declarator and that designates an object has a scope that starts at the end of its
initializer; if the same identifier declares another entity in an surrounding scope, that declaration
is hidden as soon as the inner declarator is met.* An identifier that designates a function with
an underspecified return type has a scope that starts after the lexically first return statement in its

function body or at the end of the function body if there is no such return, and from that point
extends to the whole translation unit. Any other identifier has scope that begins just after the

completion of its declarator.

As a special case, a type name (which is not a declaration of an identifier) is considered to have
a scope that begins just after the place within the type name where the omitted identifier would
appear were it not omitted.

Forward references: declarations (6.7), function calls (6.5.2.2), function definitions (6.9.1), identifiers
(6.4.2), macro replacement (6.10.3), name spaces of identifiers (6.2.3), source file inclusion (6.10.2),
statements and blocks (6.8).

6.2.2 Linkages of identifiers

An identifier declared in different scopes or in the same scope more than once can be made to refer to
the same object or function by a process called linkage.> There are three kinds of linkage: external,
internal, and none.

In the set of translation units and libraries that constitutes an entire program, each declaration of a
particular identifier with external linkage denotes the same object or function. Within one translation
unit, each declaration of an identifier with internal linkage denotes the same object or function. Each
declaration of an identifier with no linkage denotes a unique entity.

If the declaration of a file scope identifier for an object or a function contains the storage-class
specifier static, the identifier has internal linkage.®

For an identifier declared with the storage-class specifier extern in a scope in which a prior dec-
laration of that identifier is visible,*” if the prior declaration specifies internal or external linkage,
the linkage of the identifier at the later declaration is the same as the linkage specified at the prior
declaration. If no prior declaration is visible, or if the prior declaration specifies no linkage, then the
identifier has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage is determined
exactly as if it were declared with the storage-class specifier extern. If the declaration of an identifier
for an object has file scope and no storage-class specifier or only the specifier auto , its linkage is
external.

The following identifiers have no linkage: an identifier declared to be anything other than an object
or a function; an identifier declared to be a function parameter; a block scope identifier for an object
declared without the storage-class specifier extern.

If, within a translation unit, the same identifier appears with both internal and external linkage, the
behavior is undefined.

Forward references: declarations (6.7), expressions (6.5), external definitions (6.9), statements (6.8).

*That means, that the outer declaration is not visible for the initializer.
%) There is no linkage between different identifiers.
36) A function declaration can contain the storage-class specifier static only if it is at file scope; see 6.7.1.

%7) As specified in 6.2.1, the later declaration might hide the prior declaration.

modifications to ISO/IEC 9899:2018, § 6.2.2 page 32 Language

N2644/P2309R0 cmin..core 6.2.3, working draft — January 20, 2021 CORE 202101 (E)

6.2.3 Name spaces of identifiers

If more than one declaration of a particular identifier is visible at any point in a translation unit,
the syntactic context disambiguates uses that refer to different entities. Thus, in translation phase 7
there are separate name spaces for various categories of identifiers, as follows:

— label names (disambiguated by the syntax of the label declaration and use);

— the tags of structures, unions, and enumerations (disambiguated by following any®® of the
keywords struct, union, or enum);

— the members of structures or unions; each structure or union has a separate name space for its
members (disambiguated by the type of the expression used to access the member via the . or
->—— operator);

— standard attributes and attribute prefixes (disambiguated by the syntax of the attribute
specifier and the name of the attribute token) (6.7.15);

— the attribute suffixes of an attribute prefixed token; each attribute prefix has a separate name
space for the implementation-defined attributes that it introduces (disambiguated by the
attribute prefix and the :: token);

— all other identifiers, called ordinary identifiers (declared in ordinary declarators or as enumera-
tion constants).

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1), structure and union
specifiers (6.7.2.1), structure and union members (6.5.2.3), tags (6.7.2.3), attributes (6.7.15), the goto
statement (6.8.6.1).

6.2.4 Storage durations and object lifetimes
The lifetime of an object is-the-pertion-of program-execution-during-which-sterage-isguaranteed
has a start and an end, which both constitute side effects in the abstract state machine, and is the
set of all evaluations that happen after the start and before the end. An object exists, has a storage
instance that is guaranteed to be reserved for it—An-ebjeetexists, has a constant address, if any,

and retains its last-stored value throughout its lifetime.*?) -
The lifetime of an object is referred-to-outside-of-its-lifetime;the behavior-is-undefined—The-value

O1r<aPo D O c O PO O—©O t pa d <

its-lifetime-determined by its storage duration . There are four storage durations: static, thread,
automatic, and allocated. Allocated storage and its duration are described in 6.7.15.3 and 7.22 4.

Object definitions (6.7) do not have allocated storage duration and give rise to a unique storage
instance that has the same lifetime as the object that is defined. Members of an object of aggregate
or union type share the storage instance with their defining object. Objects that do not originate
from definitions and that are not explicitly created within a storage instance by means of effective
type, such as compound literals, string literals, or temporary objects may share or reuse storage
instances in unspecified ways, provided that the lifetime of the object is included in the lifetime of
41)

the storage instance.
An-The storage instance of an object whose identifier is declared without the storage-class specifier
=Thread=tecal;thread_local, and either with external or internal linkage or with the storage-
class specifier statie;-static, has static storage duration —Its-, as do storage instances for strin:

3%)There is only one name space for tags even though three are possible.

3)The term “constant address” means that two pointers to the object constructed at possibly different times will compare
equal. The address can be different during two different executions of the same program.

40)In the case of a volatile object, the last store need not be explicit in the program.

*n particular, such an object need not have a unique address, and, if suitable for their concrete value, string literals,
compound literals or certain objects with temporary lifetime may overlap.

Language modifications to ISO/IEC 9899:2018, § 6.2.4 page 33

10

CORE 202101 (E) § 6.2.5, working draft — January 20, 202Tmin..core3 N2644/P2309R0

literals and some compound literals. The lifetime is the entire execution of the program and its
stored value is initialized only once, prior to program startup.

An-The storage instance of an object whose identifier is declared with the storage-class specifier
=Thread=tocalt-thread_local has thread storage duration. Its lifetime is the entire execution of the
thread for which it is created, and its stored value is initialized when the thread is started. There
is a distinct ebjectinstance of the object and associated storage per thread, and use of the declared
name in an expression refers to the object associated with the thread evaluating the expression. The
result of attempting to indirectly access an object with thread storage duration from a thread other
than the one with which the object is associated is implementation-defined.

An-The storage instance of an object whose identifier is declared with no linkage and without the
storage-class specifier static has automatic storage duration, as de-are storage instances of temporary
objects and some compound literals. The result of attempting to indirectly access an object with
automatic storage duration from a thread other than the one with which the object is associated is
implementation-defined.

For such an object that does not have a variable length array type, its lifetime extends from entry
into the block with which it is associated until execution of that block ends in any way. (Entering an
enclosed block or calling a function suspends, but does not end, execution of the current block.) If
the block is entered recursively, a new instance of the object and associated storage is created each
time. The initial value of the object is indeterminate. If an initialization is specified for the object, it
is performed each time the declaration or compound literal is reached in the execution of the block;
otherwise, the value becomes indeterminate each time the declaration is reached.

For such an object that does have a variable length array type, its lifetime extends from the declaration
of the object until execution of the program leaves the scope of the declaration.*? If the scope is
entered recursively, a new instance of the object and associated storage is created each time. The
initial value of the object is indeterminate.

A non-lvalue expression with structure or union type, where the structure or union contains a
member with array type (including, recursively, members of all contained structures and unions)
refers to an-ebjeeta temporary object with automatic storage duration and temporary lifetime.*3 Its
lifetime begins when the expression is evaluated and its initial value is the value of the expression.
Its lifetime ends when the evaluation of the containing full expression ends. Any attempt to modify
an object with temporary lifetime results-in-has undefined behavior. An object with temporary
lifetime behaves as if it were declared with the type of its value for the purposes of effective type.

Such-an-object neednothaveaunique-address—

NOTE C and C++ diverge on their concepts for auxiliary objects. In particular in C++ there is no concept that would be
similar to compound literals in C, namely of a temporary unnamed object that has a lifetime of the surrounding scope. In
Ci+, all temporary objects are more similar to objects of temporary storage duration as they are defined above, only that
references to them may be taken without restriction on the type.

If addresses of compound literals are taken and passed into functions, they may leak to places in the program that are
difficult to foresee. To be portable in the C/C++ core, application code should always ensure that addresses of compound
literals are not used in a wider range than within the expression in which they are defined.

Implementations are invited, as much as this is possible, to diagnose the usage of compound literals outside of their
originating expression.

Forward references: object definitions (6.7), aggregate or union type (6.2.5), array declarators
(6.7.8.2), compound literals (6.5.2.5), declarators (6.7.8), function calls (6.5.2.2), initialization (6.7.12),
statements (6.8), effective type (6.5).

6.2.5 Types

The meaning of a value stored in an object or returned by a function is determined by the type of the
expression used to access it. (An identifier declared to be an object is the simplest such expression;
the type is specified in the declaration of the identifier.) Types are partitioned into object types (types
that describe objects) and function types (types that describe functions). At various points within a

#2)Leaving the innermost block containing the declaration, or jumping to a point in that block or an embedded block prior
to the declaration, leaves the scope of the declaration.
43)The address of such an object is taken implicitly when an array member is accessed.

modifications to ISO/IEC 9899:2018, § 6.2.5 page 34 Language

10

11

N2644/P2309R0 cmin..core 6.2.5, working draft — January 20, 2021 CORE 202101 (E)

translation unit an object type may be incomplete (lacking sufficient information to determine the
size of objects of that type) or complete (having sufficient information).*¥ Additionally, there are

opaque object types that are types that have internal state but no accessible value.*
An object declared as type —=Beot-bool is large enough to store the values 6-and-tfalse and true.

An object declared as type char is large enough to store any member of the basic execution character
set. If a member of the basic execution character set is stored in a char object, its value is guaranteed
to be nonnegative. If any other character is stored in a char object, the resulting value is implemen-
tation-defined but shall be within the range of values that can be represented in that type.

There are five standard signed integer types, designated as signed char, short int, int, long int,
and long long int. (These and other types may be designated in several additional ways, as
described in 6.7.2.) There may also be implementation-defined extended signed integer types.*®) The
standard and extended signed integer types are collectively called signed integer types.*”

An object declared as type signed char occupies the same amount of storage as a “plain” char
object. A “plain” int object has the natural size suggested by the architecture of the execution
environment (large enough to contain any value in the range INT_MIN to INT_MAX as defined in the
header <limits.h>).

For each of the signed integer types, there is a corresponding (but different) unsigned integer type
(designated with the keyword unsigned) that uses the same amount of storage (including sign
information) and has the same alignment requirements. The type =Beet-bool and the unsigned
integer types that correspond to the standard signed integer types are the standard unsigned integer
types. The unsigned integer types that correspond to the extended signed integer types are the
extended unsigned integer types. The standard and extended unsigned integer types are collectively
called unsigned integer types.*)

The standard signed integer types and standard unsigned integer types are collectively called the
standard integer types; the extended signed integer types and extended unsigned integer types are
collectively called the extended integer types.

For any two integer types with the same signedness and different integer conversion rank (see
6.3.1.1), the range of values of the type with smaller integer conversion rank is a subrange of the
values of the other type.

The range of nonnegative values of a signed integer type is a subrange of the corresponding unsigned
integer type, and the representation of the same value in each type is the same.*” A computation
involving unsigned operands can never overflow, because a result that cannot be represented by the
resulting unsigned integer type is reduced modulo the number that is one greater than the largest
value that can be represented by the resulting type.

There are three real floating types, designated as float, double, and long double.’® The set of
values of the type float is a subset of the set of values of the type double; the set of values of the
type double is a subset of the set of values of the type long double.

There are three complex types, designated as fltoat—Coempltex,—complex_type(float),

deublte——Comptex-complex_type (double), and tong—double—Compltex-complex_type(long double) {(Complex

#) A type can be incomplete or complete throughout an entire translation unit, or it can change states at different points
within a translation unit.

*)Opaque types defined by this specification are atomic_flag, cnd_t, fenv_t, fexcept_t, FILE, jmp_buf mtx_t,
once_flag, va_list, and void, which are complete types _and aggregate or union types that are entirely composed of
such types. Opaque types can be complete, such that objects of such a type can be defined and initialized, and such that
the typeof, sizeof, alignof and address-of operators can be applied to them, but they are such that no other operation
such as evaluation or assignment is defined for them. In particular, opague types can neither be copied by assignment, nor,
unless specified otherwise, by memepy or byte-wise copy.

46)Implementation-defined keywords have the form of an identifier reserved for any use as described in 7.1.3.

47)Therefore, any statement in this document about signed integer types also applies to the extended signed integer types.

#)Therefore, any statement in this document about unsigned integer types also applies to the extended unsigned integer
types.

#)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and members of unions.

50)See “future language directions” (6.11.1).

Language modifications to ISO/IEC 9899:2018, § 6.2.5 page 35

12

13

14

15

16

17

18

19

20

CORE 202101 (E) § 6.2.5, working draft — January 20, 202Tmin..core3 N2644/P2309R0

The real

ﬂoatmg and complex types are collectlvely called the floatzng types

For each floating type there is a corresponding real type, which is always a real floating type. For real

floating types, it is the same type. For complex types, it is the typegivenby-deleting-the keywored
=Complexfromthetypenamefloatin e from which it is derived when using the complex_type

macro as above.

Each complex type has the same representation and alignment requirements as an array type
containing exactly two elements of the corresponding real type; the first element is equal to the real
part, and the second element to the imaginary part, of the complex number.

The type char, the signed and unsigned integer types, and the floating types are collectively called
the basic types. The basic types are complete object types. Even if the implementation defines two or
more basic types to have the same representation, they are nevertheless different types.>!

The three types char, signed char, and unsigned char are collectively called the character types.
The implementation shall define char to have the same range, representation, and behavior as either
signed char or unsigned char.>?

An enumeration comprises a set of named integer constant values. Each distinct enumeration
constitutes a different enumerated type.

The type char, the signed and unsigned integer types, and the enumerated types are collectively
called integer types. The integer and real floating types are collectively called real types.

Integer and floating types are collectively called arithmetic types.>® Each arithmetic type belongs to
one type domain: the real type domain comprises the real types, the complex type domain comprises the
complex types.

The void type comprises an empty set of values; it is an-incomplete-object-type-thatcannoet-be
completeda complete opaque object type with a size of 1.

Any number of derived types can be constructed from the object and function types, as follows:

— An array type describes a contiguously allocated nonempty set of objects with a particular
member object type, called the element type. The element type shall be complete whenever the
array type is specified. Array types are characterized by their element type and by the number
of elements in the array. An array type is said to be derived from its element type, and if its
element type is T, the array type is sometimes called “array of T”. The construction of an array
type from an element type is called “array type derivation”.

— A structure type describes a sequentially allocated nonempty set of member objects (and, in
certain circumstances, an incomplete array), each of which has an optionally specified name
and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of which has an
optionally specified name and possibly distinct type.

— A function type describes a function with specified return type. A function type is characterized
by its return type and the number and types of its parameters. A function type is said to
be derived from its return type, and if its return type is T, the function type is sometimes
called “function returning T”. The construction of a function type from a return type is called
“function type derivation”.

— A lambda type is an object type that describes the value of a lambda expression. A complete
lambda e is characterized but not determined by a return type that is inferred from the

51) An implementation can define new keywords that provide alternative ways to designate a basic (or any other) type; this
does not violate the requirement that all basic types be different. Implementation-defined keywords have the form of an
identifier reserved for any use as described in 7.1.3.

52) CHAR_MIN, defined in <limits.h>, will have one of the values 0 or SCHAR_MIN, and this can be used to distinguish the
two options. Irrespective of the choice made, char is a separate type from the other two and is not compatible with either.

53 Annex H documents the extent to which the C language supports the ISO/IEC 10967-1 standard for language-
independent arithmetic (LIA-1).

modifications to ISO/IEC 9899:2018, § 6.2.5 page 36 Language

21

22

23

24

25

26

N2644/P2309R0 cmin..core 6.2.5, working draft — January 20, 2021 CORE 202101 (E)

function body of the lambda expression, and by the number, order, and type of parameters
that are expected for function calls; the function type that has the same return type and list
of parameter types as the lambda is called the prototype of the lambda. A lambda expression
that has underspecified parameters has an incomplete lambda type that can be completed by
function call arguments.

— A pointer type may be derived from a function type or an object type, called the referenced type. A
pointer type describes an object whose value provides a reference to an entity of the referenced

type. 1f the type is an object type, the pointer also carries a provenance, typically identifying
the storage instance holding the corresponding object, if any. A pointer value is valid if and
and the address is either within or one-past the addresses of that storage instance. It is null

to indicate that it does not refer to such a function or object,®® and indeterminate otherwise.
A pointer type derived from the referenced type T is sometimes called “pointer to T”. The

construction of a pointer type from a referenced type is called “pointer type derivation”. A

pointer type is a complete object type.” Under certain circumstances a pointer value can have
an address that is the end address of one storage instance and the start address of another. It
(and any pointer value derived from it by means of arithmetic operations) shall then only be
used with one and the same of these provenances as operand to subsequent operations that
require a provenance.

— An atomic type describes the type designated by the construct %emeétype%e}—ﬁ%emte
types—are-a—conditionalfeature—thatimplementations—atomic_t e-name).
W%@W&m
type is the same as the type from which it is derived, but alignment requirements may be

more strict,

These methods of constructing derived types can be applied recursively.

Arithmetic types and pointer types are collectively called scalar types. Array and structure types are
collectively called aggregate types.>®

An array type of unknown size is an incomplete type. It is completed, for an identifier of that type,
by specifying the size in a later declaration (with internal or external linkage). A structure or union
type of unknown content (as described in 6.7.2.3) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same structure or union tag with its defining content later

in the same scope. An aggregate or union type is opaque, if all of its members are opaque.
A type has known constant size if the type is not incomplete and is not a variable length array type.

Array, function, and pointer types are collectively called derived declarator types. A declarator type
derivation from a type T is the construction of a derived declarator type from T by the application of
an array-type, a function-type, or a pointer-type derivation to T.

A type is characterized by its type category, which is either the outermost derivation of a derived
type (as noted above in the construction of derived types), or the type itself if the type consists of no
derived types.

Any type so far mentioned is an unqualified type. Each unqualified type has several qualified versions
of its type,? corresponding to the combinations of one ;twe,er-all-three-or two of the const -
volatile andrestrietand volatile qualifiers. The qualified or unqualified versions of a type
are distinct types that belong to the same type category and have the same representation and

54 A pointer object can be null by implicit or explicit initialization or assignment with a null pointer constant or by another

null pointer value. A pointer value can be null if it is either a null pointer constant or the result of an lvalue conversion of a.
null pointer object. A null pointer will not appear as the result of an arithmetic operation.

*The provenance of a pointer value and the property that such a pointer value is indeterminate are generally not
observable. In particular, in the course of the same program execution the same pointer representation (6.2.6) may refer
to objects with different provenance and may sometimes be valid and sometimes be indeterminate. Yet, this information is
part of the abstract state machine and may restrict the set of operations that can be performed on the pointer.

%6)Note that aggregate type does not include union type because an object with union type can only contain one member at
a time.

57)See 6.7.3 regarding qualified array and function types.

Language modifications to ISO/IEC 9899:2018, § 6.2.5 page 37

27

28

29

30

CORE 202101 (E) § 6.2.5.1, working draft — January 20, 202imin..core3 N2644/P2309R0

alignment requirements.>®)

which it is derived.

A derived type is not qualified by the qualifiers (if any) of the type from

A pointer to void shall have the same representation and alignment requirements as a pointer to a
character type.>® Similarly, pointers to qualified or unqualified versions of compatible types shall
have the same representation and alignment requirements. All pointers to structure types shall have
the same representation and alignment requirements as each other. All pointers to union types shall
have the same representation and alignment requirements as each other. Pointers-to-other-types

neednotlt is implementation-defined if other groups of pointer types have the same representation

or alignment requirements.””

NOTE Neither C nor C++ currently have the explicit concept of opaque types. It is introduced here, such that this core
specification may better accommodate C with the implicit initialization properties that C++ provides for types that are not
copyable.

EXAMPLE 1 The type designated as “float *” has type “pointer to float”. Its type category is pointer, not a floating type.
The const-qualified version of this type is designated as “float * const” whereas the type designated as “const float *”
is not a qualified type — its type is “pointer to const-qualified float” and is a pointer to a qualified type.

EXAMPLE 2 The type designated as “struct tag (x[5]) (float)” has type “array of pointer to function returning
struct tag”. The array has length five and the function has a single parameter of type float. Its type category is array.

Forward references: compatible type and composite type (6.2.7), declarations (6.7), predefined
macros (6.10.8).

6.2.5.1 Predefined types
The following types shall be defined with the indicated names:

type hame integer category
‘typeof (nullptr) nullptr_t | none

typeof (((charx)0)-((charx)0)) | ptrdiff_t | signed
‘typeof(sizeof 1) size_t unsigned
‘typeof (+L.""[0]) wchar_t | signed or unsigned
‘typeof (+u”"[0]) charl6_t | unsigned
‘typeof (+U""[0]) char32_t | unsigned

It is implementation-defined if any of these, other than nullptr_t, represent proper types or are
provided as an alias as if by typedef to one of the basic integer types as previously defined. If any
such type is a proper type, the value of the corresponding feature test macro in 6.10.8.1 expands to
true and the type is added to the type categories (and all categories that include any of these) as
specified. If the category is signed, there shall be a corresponding unsigned integer type that is also
a proper type; if the category is unsigned, there shall be a corresponding signed integer type that
is also a proper type. If such a type has a width less than or equal to int, it has a conversion rank
lower than int. Otherwise it has a conversion rank that is different from any other integer type,
and, if it has a width that is less than or equal to the width of an integer type T’ other than one of

those defined in this subclause as a proper type, its conversion rank is less than or equal to the rank
of 7.%0

These types shall have the following properties:

%) The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and members of unions.
59 An implementation might represent all pointers the same and with the same alignment requirements.

60)These rules are chosen, such that promotion and arithmetic conversion has not to take special considerations for these
types.

modifications to ISO/IEC 9899:2018, § 6.2.5.1 page 38 Language

N2644/P2309R0 cmin..core 6.2.6, working draft — January 20, 2021 CORE 202101 (E)

— nullptr_t is the e of the nullptr constant. This is an unspecified type that has the same

— ptrdiff_t is a signed integer type that is the result of subtracting two pointers.

— size_t is the unsigned integer type that is the result of the sizeof operator, the alignof
operator and the offsetof macro.

— wchar_t is an integer type whose range of values can represent distinct codes for all members
of the largest extended character set specified among the supported locales; the null character
shall have the code value zero. Each member of the basic character set shall have a code value
equal to its value when used as the lone character in an integer character constant. It is imple-

mentation-defined if wchar_t is any of the basic integer types as defined above or if it is
distinct from these,

— char8_t is an integer type used to encode the bytes of UTF-8 multi-byte characters as defined
by ISO/IEC 10646.°V) It has the same alienment and representation as a character type.

— charl6_t is an unsigned integer type used for UTF-16 encoded characters as defined b
ISO/IEC 10646. It has the same alignment and representation as uint_least16_t (described
in7.20.1.1).

— char32_t is an unsigned integer type used for UTF-32 encoded characters as defined b
ISO/IEC 10646. It has the same alignment and representation as uint_least32_t (also
described in 7.20.1.1).

Additionally there is max_align_t, which is an object type whose alienment is the greatest
fundamental alienment,

NOTE For C, these identifiers are usually typedef, traditionally provided through C library headers. In particular
char8_t, charl6_t and char32_t have the same type as char, uint_leastl6_t and uint_least32_t, respectively. C++
has nullptr_t, wchar_t, char8_t, charl6_t and char32_t as proper es that are distinct from any other basic type.

Which of these properties prevail is testable through combinations of __cplusplus and __STDC_VERSION__ macros. To be
ortable in the C/C++ core, applications should not rely on such properties.

Recommended practice

The types used for size_t and ptrdiff_t should not have an integer conversion rank greater
than that of signed long int unless the implementation supports objects large enough to make
this necessary.

Forward references: Predefined identifiers (6.4.2.2), additive operators (6.5.6), the sizeof

and alignof operators (6.5.3.4), alienment (6.2.8), typeof specifier 6.7.11, localization (7.11
mandatory type and value macros .

6.2.6 Representations of types

6.2.6.1 General
The representations of all types are unspecified except as stated in 6.2.5 and in this subclause.

An object is represented (or held) by a storage instance (or part thereof) that is either created b
an allocation (for allocated storage duration), at program startup (for static storage duration), at
thread startup (for thread storage duration), or when the lifetime of the object starts (for automatic
storage duration).

e62)

Except-for bit-fields; objects An addressable storage instance™of size m provides access to a byte
array of length m. All bytes of the array have an abstract address , which is a non-negative integer
value that is determined in an implementation-defined manner. The abstract addresses of the bytes
are increasing with the ordering within the array, and they shall be unique and constant during
the lifetime. The address of the first byte of the array is the start address of the storage instance,

61)
62)

This effectively means that such characters that have a one-byte UTF-8 encoding are encoded using an ASCII encoding.
All storage instances that do not originate from an object definition with core:: noalias attribute are addressable by
using the pointer value that was retumed by their allocation (for allocated storage duration) or by applying the address-of
operator & (6.5.3.2) to the object that gave rise to their definition (for other storage durations).

Language modifications to ISO/IEC 9899:2018, § 6.2.6.1 page 39

CORE 202101 (E) § 6.2.6.1, working draft — January 20, 202imin..core3 N2644/P2309R0

the address one element beyond the array at index m is its end address , The abstract addresses of
the bytes of all storage instances of a program execution form its address space . A storage instance
Y _follows storage instance X if the start address of Y is greater or equal than the end address of
X, and it follows immediately if they are equal. During the common lifetime of any two distinct
addressable storage instances X and Y, either V" follows X or X follows Y in the address space.
This document imposes no other constraints about such relative position of addressable storage
instances whenever they are created.*”

Unless stated otherwise, a storage instance is exposed if a pointer value p of effective type Tx with
this provenance is used in the following contexts:**

— Any byte of the object representation of p is used in an expression.®®

— Any byte of the object representation of p is passed to the fwrite library function.
— p s converted to an integer.
— pisused as an argument to a %p conversion specifier of the printf family of library functions.

— pis used as an argument to the totext type-generic macro or any of the related features such
that a textual conversion of the pointer value is stored or written ot an output stream.

Other provisions of this document not withstanding, if the object representation of p is read through
an lvalue of a pointer type S* that has the same representation and alignment requirements as T,
that Ivalue has the same provenance as p and the provenance is not exposed.”’ Exposure of a
storage instance is irreversible and constitutes a side effect in the abstract state machine.

Unless stated otherwise, pointer value p is synthesized if it is constructed by one of the following:®”)

— Any byte of the object representation of p is changed

e by an explicit byte operation

e by type punning with a non-pointer object or with a pointer object that only partiall
overlaps,

e or by a call to memcpy or similar function that does not write the entire pointer
representation or where the source object does not have an effective pointer e.

— Any byte of the object representation of p is passed to the fread library function.
— p.is converted from an integer value.
— pis used as an argument to a %p conversion specifier of the scanf family of library functions.

Special provisions in the respective clauses clarify when such a synthesized pointer is a null, valid,
or indeterminate.

63)This means that no relative ordering between storage instances and the objects they represent can be deduced from

syntactic properties of the program (such as declaration order or order inside a parameter list) or sequencing properties of
the execution (such as one instantiation happening before another).
*“Pointer values with exposed provenance may alias in ways that cannot be predicted by simple data flow analysis.
*The exposure of bytes of the object representation can happen through a conversion of the address of a pointer object
containing p to a character type and a subsequent access to the bytes, or by storing p in a union that allows access to all
or parts of the object representation by means of a type that is not a pointer type or by a pointer type that gives rise to a
different object representation.

6)This means that pointer members in a union can be used to reinterpret representations of different character and void
ointers, different struct pointers, different union pointers or pointers with differently qualified target types.
67)Pointer values with synthesized provenance may alias in ways that cannot be predicted by simple data flow analysis.

modifications to ISO/IEC 9899:2018, § 6.2.6.1 page 40 Language

10

11

12

N2644/P2309R0 cmin..corép6.2.6.1, working draft — January 20, 2021 CORE 202101 (E)

Objects are composed of contiguous sequences of one or more bytes, the number, order, and encoding
of which are either explicitly specified or implementation-defined.

ValuesstoredHin-unsighed-bit-fields-and-objeets-Objects of type unsigned char shall be represented

using a pure binary notation.®®

Values stored in non-bit-field-objects of any other object type consist of n x CHAR_BIT bits, where n is

the size of an object of that type, in bytes. Thevalue maybecopiedinto-an-objectoftype Converting
WWWWWWW
Me%%%%&wﬁ%%&&%ﬁ%aﬁ%&%m
the value of the object; the position of the first byte of these in the byte array is the size-specified

for-the bit-fieldbyte offset of the object in its storage instance, the converted address is called the byte
address of the object, and the set of b tes is called the ob]ect representatzon \o@theyglug The ob]ect

representation 1

may be used to copy the Value of the ob ect 1nto another object (e.g., by memc Two values (other

than NaNs) with the same object representation compare equal, but values that compare equal may

have different object representations. The object representations of pointers and how they relate to
the abstract addresses they represent are not further specified by this document.

Certaln ob]ect representatrons need not represent a value of the ob]ect type If thestered—va}ueef—an

type,—thebehavier—is—undeﬁned—}ﬂsuch a representatlon is produced by a side effect that m0d1f1es

all or any part of the object by an lvalue expression that does not have character type, the behavior
is undefined.®” Such a representation is called a trap representation.

When a value is stored in an object of structure or union type, including in a member object, the
bytes of the object representation that correspond to any padding bytes take unspecified values and
bytes that correspond to opaque members have an indeterminate state.”” The value of a structure
or union object is never a trap representation, even though the value of a member of the structure or
union object may be a trap representation.

When a value is stored in a member of an object of union type, the bytes of the object representation
that do not correspond to that member but do correspond to other members take unspecified values.

Where an operator is applied to a value that has more than one object representation, which object
representation is used shall not affect the value of the result.”)) Where a value is stored in an object
using a type that has more than one object representation for that value, it is unspecified which
representation is used, but a trap representation shall not be generated.

Loads-and-stores-of objeets—with-atomietypes-All operations on atomic objects are-done-with-
memory—order—seg=ecstsemanties:that do not specify otherwise have memory_order_seq_cst

memory consistency. If an operation with identical values on the non-atomic type is erroneous,”?

the atomic operation results in an unspecific object representation, that may or may not be an
invalid value for the type, such as an invalid address or a floating point NaN. Thereby such an
operation may by itself never raise a signal, a trap, or result otherwise in an interruption of the

control flow.”

68) A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive
bits are additive, begin with 1, and are multiplied by successive integral powers of 2, except perhaps the bit with the highest
position. (Adapted from the American National Dictionary for Information Processing Systems.) A byte contains CHAR_BIT bits,
and the values of type unsigned char range from 0 to 2¢HARBIT _ 7,

#)Thus, an automatic variable can be initialized to a trap representation without causing undefined behavior, but the value
of the variable cannot be used until a proper value is stored in it.

79Thus, for example, structure assignment need not copy any padding bits or members that have an opaque type.

"Dt is possible for objects x and y with the same effective type T to have the same value when they are accessed as objects
of type T, but to have different values in other contexts. In particular, if = is defined for type T, then x = y does not imply.
that mememp (\&x, \&y, sizeof (T)) =0.Furthermore, x =y does not necessarily imply that X and y have the same
value; other operations on values of type T might distinguish between them.

"Such erroneous operations may for example incur arithmetic overflow, division by zero or negative shifts.

73'Whether or not an atomic operation may be interrupted by a signal depends on the lock-free property of the underlyin
type.

Language modifications to ISO/IEC 9899:2018, § 6.2.6.1 page 41

CORE 202101 (E) § 6.2.6.2, working draft — January 20, 202imin..core3 N2644/P2309R0

Forward references: declarations (6.7), expressions (6.5), address and indirection operators
6.5.3.2), lvalues, arrays, and function designators (6.3.2.1), order and consistency (7.17.3),

input/output (7.21).

6.2.6.2 Integer types

For unsigned integer types the bits of the object representation shall be divided into two groups:
value bits and padding bits. If there are IV value bits, each bit shall represent a different power of
2 between 1 and 2V ~!, so that objects of that type shall be capable of representing values from 0
to 2V — 1 using a pure binary representation; this shall be known as the value representation. The
values of any padding bits are unspecified. The number of value bits NV is called the width of the
unsigned integer type. There need not be any padding bits; unsigned char shall not have any
padding bits.

For signed integer types, the bits of the object representation shall be divided into three groups:
value bits, padding bits, and the sign bit. If the corresponding unsigned type has width N, the
signed type uses the same number of NV bits, its width, as value bits and sign bit. N — 1 are value
bits and the remaining bit is the sign bit. Each bit that is a value bit shall have the same value as the
same bit in the object representation of the corresponding unsigned type. If the sign bit is zero, it
shall not affect the resulting value. If the sign bit is one, it has value — (2 ~1!). There need not be any
padding bits; signed char shall not have any padding bits.

The values of any padding bits are unspecified. A valid (non-trap) object representation of a signed
integer type where the sign bit is zero is a valid object representation of the corresponding unsigned
type, and shall represent the same value. For any integer type, the object representation where all
the bits are zero shall be a representation of the value zero in that type.

The precision of an integer type is the number of value bits.

NOTE 1 Some combinations of padding bits might generate trap representations, for example, if one padding bit is a parity
bit. Regardless, no arithmetic operation on valid values can generate a trap representation other than as part of an exceptional
condition such as an overflow, and this cannot occur with unsigned types. All other combinations of padding bits are
alternative object representations of the value specified by the value bits.

NOTE 2 The sign representation defined in this document is called fwo’s complement. Previous revisions of this document
additionally allowed other sign representations.

NOTE 3 For unsigned integer types the width and precision are the same, while for signed integer types the width is one
greater than the precision.

6.2.7 Compatible type and composite type

Two types have compatible type if their types are the same. Additional rules for determining whether
two types are compatible are described in 6.7.2 for type specifiers, in 6.7.3 for type qualifiers, and in
6.7.8 for declarators.”? Moreover, two structure, union, or enumerated types declared in separate
translation units are compatible if their tags and members satisfy the following requirements: If
one is declared with a tag, the other shall be declared with the same tag. If both are completed
anywhere within their respective translation units, then the following additional requirements
apply: there shall be a one-to-one correspondence between their members such that each pair of
corresponding members are declared with compatible types; if one member of the pair is declared
with an alignment specifier, the other is declared with an equivalent alignment specifier; and if
one member of the pair is declared with a name, the other is declared with the same name. For
two structures, corresponding members shall be declared in the same order —Fertwo-structures-or
unions; corresponding bit-fieldsshall-and have the same widthscore:: noalias and core::alias

attributes. For two enumerations, corresponding members shall have the same values.

All declarations that refer to the same object or function shall have compatible type; otherwise, the
behavior is undefined.

A composite type can be constructed from two types that are compatible; it is a type that is compatible
with both of the two types and satisfies the following conditions:

— If both types are array types, the following rules are applied:

" Two types need not be identical to be compatible.

modifications to ISO/IEC 9899:2018, § 6.2.7 page 42 Language

N2644/P2309R0 cmin..core 6.2.8, working draft — January 20, 2021 CORE 202101 (E)

e If one type is an array of known constant size, the composite type is an array of that size.

o Otherwise, if one type is a variable length array whose size is specified by an expression
that is not evaluated, the behavior is undefined.

e Otherwise, if one type is a variable length array whose size is specified, the composite
type is a variable length array of that size.

o Otherwise, if one type is a variable length array of unspecified size, the composite type is
a variable length array of unspecified size.

o Otherwise, both types are arrays of unknown size and the composite type is an array of
unknown size.

The element type of the composite type is the composite type of the two element types.

— If only one type is a function type with a parameter type list (a function prototype), the
composite type is a function prototype with the parameter type list.

— If both types are function types with parameter type lists, the type of each parameter in the
composite parameter type list is the composite type of the corresponding parameters.

These rules apply recursively to the types from which the two types are derived.

For an identifier with internal or external linkage declared in a scope in which a prior declaration of
that identifier is visible,” if the prior declaration specifies internal or external linkage, the type of
the identifier at the later declaration becomes the composite type.

Forward references: array declarators (6.7.8.2).

EXAMPLE Given the following two file scope declarations:

int f(int (%)(), double (x)[3]);
int f(int (x)(char x), double (x)[]);

The resulting composite type for the function is:

\ int f(int (x)(char x), double (x)[3]);

6.2.8 Alignment of objects

Complete object types have alignment requirements which place restrictions on the addresses at
which objects of that type may be allocated. An alignment is an implementation-defined integer
value representing the number of bytes between successive addresses at which a given object can be
allocated. An object type imposes an alignment requirement on every object of that type: stricter
alignment can be requested using the —Atignas-alignas keyword.

A fundamental alignment is a valid alignment less than or equal to —Atignef—{max=atign=t)-
alignof (max_align_t) . Fundamental alignments shall be supported by the implementation
for objects of all storage durations. The alignment requirements of the following types shall be
fundamental alignments:

— all atomic, qualified, or unqualified basic types;

— all atomic, qualified, or unqualified enumerated types;

— all atomic, qualified, or unqualified pointer types;

— all array types whose element type has a fundamental alignment requirement;
— all types specified in Clause 7 as complete object types;

— all structure or union types all of whose elements have types with fundamental alignment
requirements and none of whose elements have an alignment specifier specifying an alignment
that is not a fundamental alignment.

75 As specified in 6.2.1, the later declaration might hide the prior declaration.

Language modifications to ISO/IEC 9899:2018, § 6.2.8 page 43

CORE 202101 (E) § 6.2.9, working draft — January 20, 202Tmin..core3 N2644/P2309R0

An extended alignment is represented by an alignment greater than —Atignef {max=atign=t)-
alignof (max_align_t) . It is implementation-defined whether any extended alignments are

supported and the storage durations for which they are supported. A type having an extended
alignment requirement is an over-aligned type.”®

Alignments are represented as values of the type size_t. Valid alignments include only fundamental
alignments, plus an additional implementation-defined set of values, which may be empty. Every
valid alignment value shall be a nonnegative integral power of two.

Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments have
larger alignment values. An address that satisfies an alignment requirement also satisfies any weaker
valid alignment requirement.

The alignment requirement of a complete type can be queried using an =Atignof-alignof ex-
pression. The types char, signed char, and unsigned char shall have the weakest alignment
requirement.

Comparing alignments is meaningful and provides the obvious results:

— Two alignments are equal when their numeric values are equal.
— Two alignments are different when their numeric values are not equal.

— When an alignment is larger than another it represents a stricter alignment.

6.2.9 Mutual representability of types and objects

For the purpose of interoperability between functions and their callers, in the above clauses
and in some library clauses, several representations of types are required to be the same. Type
representability extends this concept to aggregate and union types. When restricted to types such
that no members or elements are pointers, flexible array members, atomics, or opaque types the
concept of representability models a situation that is similar to type punning through unions. The
type of union member A can be represented by the type of a wider union member B, if for any
valid representation for the type of B, union member A can be modified in any permitted way and
the result remains a valid representation for B.

NOTE This document requires that the following groups of types have the same representation:

— Qualified versions of the same type.

— Integer types with same width that have no padding bits.””)

— Complex types and two element vectors of the corresponding real type.

— Pointers to character types and void.

— Pointers to structure types.

— Pointers to union types.

— The atomic integer types (7.17.6) and their corresponding direct type.
Other types may form such groups or some of the above groups might fuse to larger groups with the same representation in
an implementation-defined way. For example many implementations with a flat address space represent all pointers (data
and function) the same. For types that contain no pointers, such implementation-defined properties of representations
should only have an impact for the following definitions by the sizes of integer types, and by the fact of whether or not
these have padding. On the other hand, definitions for types that contain pointer types to non-character types as elements
or members are strongly affected by implementation specific choices concerning representations of pointers.
A type is primitive if it is not an aggregate or union type. If T is an aggregate or union type, a direct
leaf is a pack or an element or member e, if it is primitive or a flexible array member; a leaf of T is a
direct leaf of T or recursively a leaf of one of its elements or members. The offset o(7T, ¢) of a leaf e
in 7T is is the byte offset of e in an object of type 7.79

76)Every over-aligned type is, or contains, a structure or union type with a member to which an extended alignment has
been applied.
7Nn particular, char, signed char and unsigned char have the same representation.

78)Note that a union type in general has several leaves at offset 0, and so types that recursively contain union types ma
have several leaves at a particular offset.

modifications to ISO/IEC 9899:2018, § 6.2.9 page 44 Language

N2644/P2309R0 cmin..core 6.2.9, working draft — January 20, 2021 CORE 202101 (E)

An interval I of a type 7 is a construct to describe sequences of adjacent elements that have all the
same representation as 7 such that an array of type 7[k] can stand in for the whole sequence:

— For T an aggregate or union type, an interval I of an arithmetic type 7 is a sequence of k
leafs all having the same representation as 7 and such that they follow each other in the
representation of 7 without padding.”” The interval array type A(I) is 7[k], the size of the

interval is sizeof (A(/)) and the offset o(7T, I) of the interval is the offset of its first element.

— A pack e may only occur as the single element of an interval / said to have the size s and offset
of the pack and the interval array type A([J) then are both void[s].

— A flexible array member e of type s[] may only occur as the single element of an interval 1

said to be of infinite size and the type of the interval and the interval array type A(I) then are

— Any other member e with type 7 of an aggregate or union type forms an interval I(e) of its
own, with A(I) being of type 7[1] and offset o(T, e).

— If T itself is a primitive type it is said to be its own leaf, it has exactly one interval, (T'), with

interval array T'[1] and offset 0.

An interval partition T of T is a partition of the set of leaves of 7T into intervals.5”

We say that an interval partition Z of one type embeds in a partition .7 of another type if intervals
of Z can be mapped on intervals of .7 by respecting offset and size, that is if 7 has the same
decomposition into “arrays” of storage units. More precisely, let T and S be two types and 7
and J be interval partitions for 7"and 3, respectively. A mapping f:Z — J is an embedding of T'
into S if forall I € 7, I and f(I) are intervals of the same offset and size," and for all J € J with

o(S,J) < sizeof (T') thereis I ¢ T with J = f(I).

To extend embeddability to representations, we will use recursion on the structure of the types.
For the bottom of this recursion we first consider array types, t[N] and s[M], that have the same

size (sizeof (¢[N]) = sizeof (s[}/])) and such that ¢ and s are primitive types. ¢[N] is said to be

representable by s[M] if s has no more qualifiers than ¢ and if one of the following holds:

— t and s are compatible types.
— t and s are basic types and have the same representation.

— tand s are pointers to character type or void, ux and v*, respectively, such that v has no more
ualifiers than u.

— One of t or s is a complex type and the other is the corresponding real type.
— Both ¢ and s are integer types without padding.

82)

If both have the same qualifiers, the array types are said to be mutually representable.

To extend this notion recursively to be arbitrary object types T and .S, we assume that S does not
have more qualifiers than T, and, if both are complete types, sizeof(7') < sizeof(S). Then T is
representable by S if one of the following holds:

— T and S are array types of base ¢ and s, respectively, S is incomplete and ¢[sizeof(s)] can
be represented by s[sizeof(¢)].

PIThatis o(T, epxn) s o(Th e0) + sizeof (1) for all .

STf the type T is a union type or contains a union type, byte ranges within the representation of different intervals may.
overlap.

*This means in particular that intervals for flexible array members can only map or be mapped by intervals with the
same property.

$2For the first three cases, N and M must be equal, and for the complex and real case one must be twice the other.

Language modifications to ISO/IEC 9899:2018, § 6.2.9 page 45

9

CORE 202101 (E) § 6.2.9, working draft — January 20, 202Tmin..core3 N2644/P2309R0

— T has no flexible array members, S is a structure or union type with flexible array members,
and there is an integer n such that T is representable by the type S’ where each flexible arra
member e of type s[] is replaced with an array e’ of type s[n] at the same offset.

— If T and S are pointer types tx and sx*, respectively, that have the same representation, such
that neither is a pointer to character type or void:

e ¢ and s are both structure or union types with a flexible array member such that ¢ is
representable by s.

e {[] and s[] are mutually representable.
— There are 7 and 7 interval partitions for 7" and S, respectively, and an embeddin 7 —

such that forall € 7, A(I) is representable by A(F(I)), or additionally, if I is (¢e) for a flexible
array member e, A(F(I)) is an incomplete array of character type that is not more qualified
than e.

T and S are mutually representable if in addition they have the same qualifications and the same size.
Two union or structure packs e and f are said to be mutually representable, if the union or structure
types that have their respective sequences as members are mutually representable.

The effective size of an object represented by an Ivalue A of type T4 is the size that it occupies within
its provenance; if T4 is a complete type that has no flexible array members it is sizeof (T'4); if T
has flexible array members or is an incomplete array type it is the number of bytes from the first
byte of A to the end of the provenance. An lvalue A4 of type T4 is representable by an object B3 of
type Ty if

— the alignment of B is a valid alienment for type T
— the effective size of A is less than or equal to the effective size of B, and
— either

e T4 is representable by Tz, and for each leaf ¢’ of pointer type sx in T with
o(T < sizeof (7T4) and the corresponding pointer leaf e of type ¢+ in T4, such that
e’ in B has a valid non-null value p, the lvalue *(¢x)p is representable by *p, or

e B isa character array that is not more qualified than T'4.
EXAMPLE 1 For the following types we assume that there is no padding between or after the elements of A, B, C, and D:

typedef struct A a; double e; int i; B;
___typedef union { B b; int j; } ;

typedef struct size_t len; complex_type(double) cdat[]; } cvec;

typedef struct size_t len; alignas(double) unsigned char bdat[]; bvec;

The following table shows examples where T' is representable by S or not:

L £ Tepres.

signed unsigned yes.

unsigned signed yes.

double complex_type(double) yes. maps to the real part
complex_type (double) double[2] yes.

complex_type (double) [k] double[2+k] yes,

double[2+k] complex_type (double) [K] yes,

complex _type (double)[] double[] yes.

double[] complex_type(double)[] yes,

modifications to ISO/IEC 9899:2018, § 6.2.9 page 46 Language

N2644/P2309R0 § 6.3, working draft — January 20, 2021 CORE 202101 (E)

dvec bvec Yes.

bvec dvec no base type of bdat does
not fit

dvec, cvec yes.

cvec dvec 1o member ddat is const
qualified

complex_type (double)) yes.

complex_type (double) [3] D[2) yes.

complex_type (double) [sizeof(D)] | Disizeof(complex_type(double))] | yes

complex_type (double)[] oL yes.

D complex_type (double) 1o too small

biz]. complex_type (double) [3] yes.

Dlsizeof (complex_type(double))] | complex_type(double)[sizeof(D)] | yes

m complex_type(double)[] yes

double A yes. via member d

Al42] ALl Yes.

ALL Al42] no incomplete array needs
another _incomplete
array,

double B yes. via membera

complex_type(double) B yes. viamembersa.dand e

A B yes, same

Al B yes. same.

Al2]. BI1] yes. Via element [0]

A[3] Bl2] no element [2] is not
representable

int £ no no int leaf at offset 0

B < yes. via member b

A < yes. recursively via member
b.a

double < yes | recursively via member
b.a.d

6.3 Conversions

Several operators convert operand values from one type to another automatically. This subclause
specifies the result required from such an implicit conversion, as well as those that result from a cast
operation (an explicit conversion). The list in 6.3.1.8 summarizes the conversions performed by most
ordinary operators; it is supplemented as required by the discussion of each operator in 6.5.

Unless explicitly stated otherwise, conversion of an operand value to a compatible type causes no
change to the value or the representation.

Forward references: cast operators (6.5.4).

6.3.1 Arithmetic operands

6.3.1.1 Boolean, characters, and integers
Every integer type has an integer conversion rank defined as follows:

— No two signed integer types shall have the same rank, even if they have the same representa-
tion.

— The rank of a signed integer type shall be greater than the rank of any signed integer type with
less precision.

— The rank of long long int shall be greater than the rank of long int, which shall be greater
than the rank of int, which shall be greater than the rank of short int, which shall be greater
than the rank of signed char.

— The rank of any unsigned integer type shall equal the rank of the corresponding signed integer
type, if any.

— The rank of any standard integer type shall be greater than the rank of any extended integer
type with the same width.

Language modifications to ISO/IEC 9899:2018, § 6.3.1.1 page 47

CORE 202101 (E) § 6.3.1.2, working draft — January 20, 202imin..core3 N2644/P2309R0

— The rank of char shall equal the rank of signed char and unsigned char.
— The rank of bool shall be less than the rank of all other standard integer types.

— The rank of any enumerated type shall equal the rank of the compatible integer type (see
6.7.2.2).

— The rank of any extended signed integer type relative to another extended signed integer
type with the same precision is implementation-defined, but still subject to the other rules for
determining the integer conversion rank.

— For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than
T3, then T1 has greater rank than T3.

The following may be used in an expression wherever an int or unsigned int may be used:

— An object or expression with an integer type (other than int or unsigned int) whose integer
Convers1on rank is less than or equal to the rank of int and unsigned int. A-bit-field-oftype

— 7 7 7

If an int can represent all values of the original type(asrestricted-by-the-width; for-abit-field), the

value is converted to an int; otherwise, it is converted to an unsigned int. These are called the
integer promotions.8¥ All other types are unchanged by the integer promotions.

The integer promotions preserve value including sign. As discussed earlier, whether a “plain” char
can hold negative values is implementation-defined.

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers (6.7.2.1).

6.3.1.2 Boolean type

When any scalar value is converted to bool, the result is 6-false if the value comparesequal-to-is
0; otherwise, the result is 1true .59

6.3.1.3 Signed and unsigned integers

When a value with integer type is converted to another integer type other than —Beet-bool , if the
value can be represented by the new type, it is unchanged.

Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or subtracting
one more than the maximum value that can be represented in the new type until the value is in the
range of the new type.®

Otherwise, the new type is signed and the value cannot be represented in it; either the result is
implementation-defined or an implementation-defined signal is raised.

6.3.1.4 Real floating and integer

When a finite value of real floating type is converted to an integer type other than —Beot-bool, the
fractional part is discarded (i.e., the value is truncated toward zero). If the value of the integral part
cannot be represented by the integer type, the behavior is undefined.5

When a value of integer type is converted to a real floating type, if the value being converted can
be represented exactly in the new type, it is unchanged. If the value being converted is in the
range of values that can be represented but cannot be represented exactly, the result is either the
nearest higher or nearest lower representable value, chosen in an implementation-defined manner.
If the value being converted is outside the range of values that can be represented, the behavior is

83)The integer promotions are applied only: as part of the usual arithmetic conversions, to certain argument expressions, to
the operands of the unary+,- , and ~ operators, and to both operands of the shift operators, as specified by their respective
subclauses.

89NaNs do not compare equal to 0 and thus convert to true.

8)The rules describe arithmetic on the mathematical value, not the value of a given type of expression.

89)The remaindering operation performed when a value of integer type is converted to unsigned type need not be
performed when a value of real floating type is converted to unsigned type. Thus, the range of portable real floating values is
(=1, Utype_MAX + 1).

modifications to ISO/IEC 9899:2018, § 6.3.1.4 page 48 Language

N2644/P2309R0 cmin..corép6.3.1.5, working draft — January 20, 2021 CORE 202101 (E)

undefined. Results of some implicit conversions may be represented in greater range and precision
than that required by the new type (see 6.3.1.8 and 6.8.6.4).

6.3.1.5 Real floating types

When a value of real floating type is converted to a real floating type, if the value being converted
can be represented exactly in the new type, it is unchanged. If the value being converted is in the
range of values that can be represented but cannot be represented exactly, the result is either the
nearest higher or nearest lower representable value, chosen in an implementation-defined manner.
If the value being converted is outside the range of values that can be represented, the behavior is
undefined. Results of some implicit conversions may be represented in greater range and precision
than that required by the new type (see 6.3.1.8 and 6.8.6.4).

6.3.1.6 Complex types

When a value of complex type is converted to another complex type, both the real and imaginary
parts follow the conversion rules for the corresponding real types.

6.3.1.7 Real and complex

When a value of real type is converted to a complex type, the real part of the complex result value is
determined by the rules of conversion to the corresponding real type and the imaginary part of the
complex result value is a positive zero or an unsigned zero.

When-avalue-of complex-typeisconverted-

NOTE C and C++ differ much in their strategies for conversions of complex types, in particular for conversions from
complex types to real types. Therefore, this specification only defines a conversion from a complex type to a real type other
than=Bee-%) if that type is bool, see 6.3.1.2. C is more permissive, and allows more conversions to real types that just dro

the imaginary part of the

—a complex number. Applications that target the common C and C++ core should not
use that feature but use an explicit call to real_value instead.

6.3.1.8 Usual arithmetic conversions

Many operators that expect operands of arithmetic type cause conversions and yield result types in
a similar way. The purpose is to determine a common real type for the operands and result. For the
specified operands, each operand is converted, without change of type domain, to a type whose
corresponding real type is the common real type. Unless explicitly stated otherwise, the common
real type is also the corresponding real type of the result, whose type domain is the type domain of
the operands if they are the same, and complex otherwise. This pattern is called the usual arithmetic
conversions:

First, if the corresponding real type of either operand is long double, the other operand
is converted, without change of type domain, to a type whose corresponding real type is
long double.

Otherwise, if the corresponding real type of either operand is double, the other operand is
converted, without change of type domain, to a type whose corresponding real type is double.

Otherwise, if the corresponding real type of either operand is float, the other operand is
converted, without change of type domain, to a type whose corresponding real type is float.®”

Otherwise, the integer promotions are performed on both operands. Then the following rules
are applied to the promoted operands:

If both operands have the same type, then no further conversion is needed.

Otherwise, if both operands have signed integer types or both have unsigned integer
types, the operand with the type of lesser integer conversion rank is converted to the type
of the operand with greater rank.

See 6.3.1.2:
87)For example, addition of a complex_type(double) and a float entails just the conversion of the float operand to
double (and yields a complex_type(double) result).

Language modifications to ISO/IEC 9899:2018, § 6.3.1.8 page 49

CORE 202101 (E) § 6.3.2, working draft — January 20, 202Tmin..core3 N2644/P2309R0

Otherwise, if the operand that has unsigned integer type has rank greater or equal to
the rank of the type of the other operand, then the operand with signed integer type is
converted to the type of the operand with unsigned integer type.

Otherwise, if the type of the operand with signed integer type can represent all of the
values of the type of the operand with unsigned integer type, then the operand with
unsigned integer type is converted to the type of the operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type corresponding to
the type of the operand with signed integer type.

The values of floating operands and of the results of floating expressions may be represented in
greater range and precision than that required by the type; the types are not changed thereby.
See 5.2.4.2.2 regarding evaluation formats.

NOTE C and Ct+ differ much in their strategies for arithmetic of complex types, in parficular for operations that mix
complex types and real types, which are generally not defined for C++ Implementations that target the common C and C++
core must provide means to circumvent problems that may originate in that restriction of C++. For example, they may offer
overloaded wrappers for all four arithmetic operations that are defined for complex numbers, such that the other operand
can be any real type.

6.3.2 Other operands

Constraints_

No evaluation shall be formed that has a result that is an object with

— an incomplete type;
— an opaque type, other than a as void expression, or as the operand of a cast to void.

No evaluation shall be formed that has an operand that is an object with

— an incomplete type that is not an array, other than for the unary & operator;

— an opaque type, other than for the the sizeof operator, the alignof operator, or the unary &
operator, or, if it is an opaque array type, for array to pointer conversion.

6.3.2.1 Lvalues, arrays, function designators and lambdas

An [value is an expression {(with-an-object-type-other-than-veid)-that potentially designates an

object;®® if an lvalue does not designate an object when it is evaluated, the behavior is undefined.
When an object is said to have a particular type, the type is specified by the Ivalue used to designate
the object. A modifiable lvalue is an lvalue that does not have array type, does not have an incomplete
type, does not have an opaque type, does not have a const-qualified type, and if it is a structure or
union, does not have any member (including, recursively, any member or element of all contained
aggregates or unions) with a const-qualified type.®

For an Ivalue expression that has not an enumerated, array or function type the generic type is the
non-atomic type of the Ivalue with all qualifiers dropped; for an expression that has an enumerated
type, it is the non-atomic compatible integer type with all qualifiers dropped; for an expression that
has type “array of fype” it is “pointer to type”; for a function designator with type "function with
the type of the expression. Unless specified otherwise in the following, the evaluation of an lvalue
expression yields a value with the generic type of the Ivalue.

Except when it is the operand of the typeof specifier, the sizeof operator, the alignof operator,
the unary & operator, the ++ operator, the- - operator, or the left operand of the . operator or an

89)The name “Ivalue” comes originally from the assignment expression E1 = E2, in which the left operand E1 is required to
be a (modifiable) lvalue. It is perhaps better considered as representing an object “locator value”. What is sometimes called
“rvalue” is in this document described as the “value of an expression”.

An obvious example of an Ivalue is an identifier of an object. As a further example, if E is a unary expression that is a
pointer to an object, *E is an lvalue that designates the object to which E points.

89)This means in particular that a structure or union type that contains some members that are opaque and some that are
not can still be the type of a modifiable lvalue.

modifications to ISO/IEC 9899:2018, § 6.3.2.1 page 50 Language

N2644/P2309R0 cmin..corép6.3.2.1, working draft — January 20, 2021 CORE 202101 (E)

assignment operator, an Ivalue that does not have array type is converted to the value stored in
the designated object (and is no longer an lvalue); this is called lvalue conversion. If the lvalue has
qualified type, the value has the unqualified version of the type of the lvalue; additionally;, if the
lvalue has atomic type, the value has the non-atomic version of the type of the lvalue; otherwise, the
value has the type of the lvalue. H-the lvalue has-anincomplete type and-doesnothavearray type
the behavior is undefined—If the The behavior is undefined if one of the following conditions hold:

— The lvalue does not designate an object when it is evaluated.

— The object representation is a trap representation for the type.””
— The lvalue designates an object of automatic storage duration that eould-have been-declared

; att

{notdeclared-was not defined with an initializeranel, no assignment to it has been performed
prior to use);the-, and the unary & operator and array-to-pointer conversion are never applied
to the object.”V

4 Additionally, if the type is a pointer e Tx, a pointer value and an associated provenance, if any,

is determined as follows:

— If the object representation represents a null pointer the result is a null pointer.

— If the last store to the representation array was with a pointer type Sx that has the
same representation and alienment requirements as Tx, the result is the same address and
rovenance as the stored value.

— Otherwise, the object representation of the lvalue shall represent an abstract address within
or one-past) an exposed storage instance, such that the exposure happened before this lvalue
conversion, and the result has that address and provenance.”?

The behavior is undefined if the lvalue conversion does not happen during the lifetime of
the associated provenance, the address is not a valid address (or one-past) for the associated
rovenance, or the address is not correctly aligned for the type.

5 Except when it is the operand of the typeof specifier, the unary sizeof operator, or the unary &
operator, or is a string literal used to initialize an array, an expression that has type “array of type” is
converted to an expression with type “pointer to type” that points to the initial element of the array
object and is not an lvalue. i i - b i

6 A function designator is an expression that has function type. Except when it is the operand of the
typeof specifier, the sizeof operator,”® or the unary & operator, a function designator with type
“function returning type” is converted to an expression that has type “pointer to function returning

type”.

7 Other than specified in the following, lambda types shall not be converted to any other object type.
A function literal with a type “lambda with prototype type” can be converted implicitly or explicitly
to an expression that has type "pointer to type”.For a type-generic lambda, types of underspecified
parameters shall first be completed according to the parameters of the target prototype; that is, for
each underspecified parameter there shall be a type specifier as described in 6.7.13 such that the
adjusted parameter type is compatible with the parameter type of the target function type. After

*"Character types have no trap representation, thus reading representation bytes of an addressable live storage instance
s always defined.

*"The lvalue is necessarily the result of the evaluation of an identifier. This requirement is not a constraint, because
complicated control flows might make the detection of such an error difficult. It is recommended that implementations
diagnose such situations as good as they may. If detected it does not suggest that the corresponding execution path is
unreachable, but that a programming error has occurred.

9)1f the address corresponds to more than one provenance, only one of these shall be used in the sequel, see 6.2.5.

9)Because this conversion does not occur, the operand of the sizeof operator remains a function designator and violates
the constraints in 6.5.3.4.

Language modifications to ISO/IEC 9899:2018, § 6.3.2.1 page 51

CORE 202101 (E) § 6.3.2.2, working draft — January 20, 202imin..core3 N2644/P2309R0

that, the inferred return type of the thus completed lambda shall be compatible with the return type
of the target prototype.” The function pointer value behaves as if a function with internal linkage
with the appropriate prototype, a unique name, and the same function body as for A had been
specified in the translation unit and the function pointer had been formed by function-to-pointer
conversion of that function, The only differences are that, if) is not type-generic, the resulting
met™ and that the function pointer needs not necessarily to be distinct from any other compatible
function pointer that provides the same observable behavior.

Forward references: lambda expressions (6.5.2.6) address and indirection operators (6.5.3.2), as-
signment operators (6.5.17), common-definitions{719)typeof specifier 6.7.11, initialization (6.7.12),
postfix increment and decrement operators (6.5.2.4), prefix increment and decrement operators
(6.5.3.1), the sizeof and —Atignef-alignof operators (6.5.3.4), structure and union members

(6.5.2.3)—, type inference (6.7.13).

6.3.2.2 void

The (nonexistent) value of a void expression (an expression that has type void) shall not be used in any
way, and implicit or explicit conversions (except to void) shall not be applied to such an expression.
If an expression of any other type is evaluated as a void expression, its value or designator is
discarded. (A void expression is evaluated for its side effects.)

6.3.2.3 Pointers

A pointer to void may be converted to or from a pointer to any object type. A pointer to any object
type may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

For any qualifier g, a pointer to a non-g-qualified type may be converted to a pointer to the g-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

An integer constant expression with the value 0, er-such an expression cast to type void x*, iscalled
or the constant nullptr are all a null pointer constant.’® If a null pointer constant is converted to
a pointer type, the resulting pointer, called a null pointer, is guaranteed to compare unequal to a

pointer to any object or function. If the constant nullptr is converted to a type other than a pointer
e or bool, the behavior is undefined.

Conversion of a null pointer to another-a pointer type yields a null pointer of that type. Any two
null pointers shall compare equal.

An integer may be converted to any pointer type. If the source type is signhed, the operand is

first converted to the corresponding unsigned type. The result is then determined in the followin
order:

— The operand has a value that could have been the result of the conversion of a null pointer
value. The result is a null pointer.

— The operand is an abstract address within or one past a live and exposed storage instance,
such that the exposure happened before this integer-to-pointer conversion. The conversion
synthesizes a pointer value with that address, provenance and target e.”)

— The pointer value is indeterminate.

Except as previously specified, the result is implementation-defined, might not be correctly aligned,
might not point to an entity of the referenced type, and might be a trap representation.

*1t follows that lambdas of different type cannot be assigned to each other. Thus, in the conversion of a function literal
to a function pointer, the prototype of the originating lambda expression can be assumed to be known, and a diagnostic can
be issued if the prototypes do not aggree.

*Thus a function literal that is not type-generic has properties that are similar to a function declared with static and
inline. A possible implementation of the lambda type is to be the the function pointer type to which they convert.

**'The obsolescent macro NULL is predefined as a null pointer constant, see 6.10.8.1, but new code should prefer the
keyword nullptr wherever a null pointer constant is specified.

9N1f the address corresponds to more than one provenance, only one of these shall be used in the sequel, see 6.2.5.

modifications to ISO/IEC 9899:2018, § 6.3.2.3 page 52 Language

10

N2644/P2309R0 cmin..corép6.3.2.3, working draft — January 20, 2021 CORE 202101 (E)

A pointer value may be converted to bool.”® The result is false if it is a null pointer and true if it
is valid. Otherwise the behavior is undefined.

Any-Otherwise, any pointer type may be converted to an integer type. Except-as—previously
speeifiedFor a null pointer, the result is @Wmmplementahon—deﬁned 3
the result cannotbe represented-in the integer-values.” If the pointer value is valid, its provenance
is henceforth exposed. Except as previously specified, the result is the bit representation of the
abstract address interpreted in the target type. If the abstract address has more significant bits than
the width of the target type, the behavior is undefined. The result need not be in the range of values
of any integer type. If the pointer is null or valid, the integer result converted back to the pointer
type shall compare equal to the original pointer."” For two valid pointer values that compare
equal, conversion to the same integer type yields identical values.

A pointer to an object type may be converted to a pointer to a different object type with the same
provenance. If the resulting pointer is not correctly aligned!®V for the referenced type, the behavior
is undefined. Otherwise, when converted back again, the result shall compare equal to the original
pomter When a pomter to an object is converted toa pomter to a character type m the result

ef—the—ebjeetw—yie}et—pehﬁtefste—the—femaiﬂtﬂg—byte&is the b te address of the object.

A pointer to a function of one type may be converted to a pointer to a function of another type and
back again; the result shall compare equal to the original pointer. If a converted pointer is used to
call a function whose type is not compatible with the referenced type, the behavior is undefined.

Forward references: the nullptr constant (6.4.4.5.2), cast operators (6.5.4), equality operators
(6.5.10), integer types capable of holding object pointers (7.20.1.4), simple assignment (6.5.17.1).

NOTE If the result p of an lvalue conversion or integer-to-pointer conversion is the end address of an exposed storage
instance A and the start address of another exposed storage instance B that happens to follow immediately in the address
space, a conforming program must only use one of these provenances in any expressions that is derived from p, see 6.2.5.

The following three cases determine if p is used with one of A or B and must hence not be used otherwise:

— Operations that constitute a use of p with either A or B and do not prohibit a use with the other:

e any relational operator or pointer subtraction where the other operand g may have both provenances, that is
where q is also the result of a similar conversion and where p == q;

e g == pand q != pregardless of the provenance of g;

o addition or subtraction of the value 0;

For the latter, A and B must have been exposed before, and so a any choice of provenance, that would otherwise
have exposed one of the storage instances, is consistent with any other use.
— Operations that, if otherwise well defined, constitute a use of p with A and prohibit any use with B:

e Any relational operator or pointer subtraction where the other operand g has provenance A and cannot have
provenance B.
e p + nand p[n], where n is an integer strictly less than 0.

° - n, where n is an integer strictly greater than 0.
— Operations that, if otherwise well defined, constitute a use of p with B and prohibit any use with A:

e Any relational operator or pointer subtraction where the other operand g has provenance B and cannot have
rovenance A.

° + nand p[n], where n is an integer strictly greater than 0.
° - n, where n is an integer strictly less than 0.

e operations that access an object in B, that is indirection (xp or p[n] for n == 0) and member access (
p->member).

*¥Such a conversion happens implicitly when a pointer value is a controlling expression or when it is the operand of
logical operators.

)t is recommended that 0 is a member of that set,

1% Although such a round:trip conversion may be the identity for the pointer value, the side effect of exposing a storage

10D)1n general, the concept “correctly aligned” is transitive: if a pointer to type A is correctly aligned for a pointer to type B,
which in turn is correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.

Language modifications to ISO/IEC 9899:2018, § 6.3.2.3 page 53

CORE 202101 (E) § 6.3.2.4, working draft — January 20, 202imin..core3 N2644/P2309R0

6.3.24 nullptr_t

Constraint

A value of nullptr_t type shall not be converted to a type other than bool or a pointer type.
Description

When converted to bool, a value of type nullptr_t vields false. When converted to a pointer
type, it yields a null pointer of that type.

modifications to ISO/IEC 9899:2018, § 6.3.2.4 page 54 Language

1

N2644/P2309R0 cmin..core3§ 6.4, working draft — January 20, 2021 CORE 202101 (E)

6.4 Lexical elements

Syntax
token:
keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator
each non-white-space character that cannot be one of the above

Constraints

Each preprocessing token that is converted to a token shall have the lexical form of a keyword, an
identifier, a constant, a string literal, or a punctuator.

Semantics

A token is the minimal lexical element of the language in translation phases 7 and 8. The categories of
tokens are: keywords, identifiers, constants, string literals, and punctuators. A preprocessing token
is the minimal lexical element of the language in translation phases 3 through 6. The categories of
preprocessing tokens are: header names, identifiers, preprocessing numbers, character constants,
string literals, punctuators, and single non-white-space characters that do not lexically match
the other preprocessing token categories.'®? If a’ or a " character matches the last category,
the behavior is undefined. Preprocessing tokens can be separated by white space; this consists of
comments (described later), or white-space characters (space, horizontal tab, new-line, vertical tab, and
form-feed), or both. As described in 6.10, in certain circumstances during translation phase 4, white
space (or the absence thereof) serves as more than preprocessing token separation. White space
may appear within a preprocessing token only as part of a header name or between the quotation
characters in a character constant or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the next
preprocessing token is the longest sequence of characters that could constitute a preprocessing
token. There is one exception to this rule: header name preprocessing tokens are recognized only
within #include preprocessing directives and in implementation-defined locations within #pragma
directives. In such contexts, a sequence of characters that could be either a header name or a string
literal is recognized as the former.

EXAMPLE 1 The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid floating or integer
constant token), even though a parse as the pair of preprocessing tokens 1 and Ex might produce a valid expression (for

example, if Ex were a macro defined as+1). Similarly, the program fragment 1E1 is parsed as a preprocessing number (one
that is a valid floating constant token), whether or not E is a macro name.

EXAMPLE 2 The program fragment x+++++y is parsed as x ++ ++ + y, which violates a constraint on increment operators,
even though the parse x ++ + ++ y might yield a correct expression.

Forward references: character constants (6.4.4.4), comments (6.4.9), expressions (6.5), floating
constants (6.4.4.2), header names (6.4.7), macro replacement (6.10.3), postfix increment and decrement
operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), preprocessing directives (6.10),
preprocessing numbers (6.4.8), string literals (6.4.5).

102) An additional category, placemarkers, is used internally in translation phase 4 (see 6.10.3.3); it cannot occur in source
files.

Language modifications to ISO/IEC 9899:2018, § 6.4 page 55

1

CORE 202101 (E) § 6.4.1, working draft — January 20, 202Tmin..core3 N2644/P2309R0

6.4.1 Keywords

Syntax

keyword: one of
~Noreturn do nullptr void
alignas double or_ volatile
alignof else or_eq while
and enum return =Atignas-
and_eq extern short —Atignhof-
auto false signed =Atemic-
bitand float sizeof =Bool-
bitor for | . static =Complex-
bool generlc_selectlonm _Generic
break B N VN VPPN -1 4 g 1 Tef o =Imaginary-
case goto switch —Noreturn-
char if thread_local =Statie—assert
compl. inline true. xor_
const {'“t typedef —Thread=local—
constexpr ong typeof xor_e
default restrietnot_eq ypsigned

Constraints

The keywords

alignas bitor generic_selection_eq typeof

alignof bool or xor_eq

and_eq compl not_eq static_assert xor

and false not thread_local

bitand nullptr true

may optionally be predefined macro names (6.10.8.4). None of these shall be the subject of a
#define or a #undef preprocessing directive.

Semantics
The above tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as keywords
except in an attribute token, and shall not be used otherwise. The-

The following table provides alternate spellings for certain keywords. These can be used wherever
the keyword can.10?

keyword =Imaginary-is reserved for specifying imaginary types | alternative spelling
alignas -Alignas
alignof ~Alignof

bool. <Bool
static_assert <Static_assert
‘thread_local ~Thread_local

The spelling of keywords that are also predefined macros and that are subject to the # and ##
preprocessing operators is unspecified.'*

NOTE C also has optional imaginary types that are introduced with the keyword _Imaginary. This is rarely implemented
in C and C++ has no equivalent for this, so this feature is not included in the C/C++ core. C also has the restrict and
_Atomic qualifiers, which for the purpose of the C/C++ common core can be replaced by the core:: noalias attribute and

103)
104)

These alternative keywords are obsolescent features and should not be used for new code.
The intent of these specifications is to allow but not to force the implementation of the correspondig feature by means
of a predefined macro.

modifications to ISO/IEC 9899:2018, § 6.4.1 page 56 Language

N2644/P2309R0 § 6.4.2, working draft — January 20, 2021 CORE 202101 (E)

the atomic_type specifier, respectively. C’s register keyword can also be replaced by using a core:: noalias attribute,
which can even be applied in a wider context, e.g. for file scope identifiers.

6.4.2 Identifiers

6.4.2.1 General

Syntax

identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of

=Z2>»>5S 90
o wmwmOoO T
TWOT N
o U Qo
m-= O
»n M un -
- O ~+Q
cxTc =
< H < H-
=S U S W
X X X X
<rr< ~
N =N 3

digit: one of
0123456789

Semantics

An identifier is a sequence of nondigit characters (including the underscore _, the lowercase and
uppercase Latin letters, and other characters) and digits, which designates one or more entities as
described in 6.2.1. Lowercase and uppercase letters are distinct. There is no specific limit on the
maximum length of an identifier.

The use of universal character names in identifiers is specified in Annex D: Each universal character
name in an identifier shall designate a character whose encoding in ISO/IEC 10646 falls into
one of the ranges specified in D.1.1% The initial character shall not be a universal character
name designating a character whose encoding falls into one of the ranges specified in D.2. An
implementation may allow multibyte characters that are not part of the basic source character set to
appear in identifiers; which characters and their correspondence to universal character names is
implementation-defined.

When preprocessing tokens are converted to tokens during translation phase 7, if a preprocessing
token could be converted to either a keyword or an identifier, it is converted to a keyword except in
an attribute token.

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of significant initial characters
in an identifier; the limit for an external name (an identifier that has external linkage) may be more
restrictive than that for an internal name (a macro name or an identifier that does not have external
linkage). The number of significant characters in an identifier is implementation-defined.

Any identifiers that differ in a significant character are different identifiers. If two identifiers differ
only in nonsignificant characters, the behavior is undefined.

Forward references: universal character names (6.4.3), macro replacement (6.10.3).

1050n systems in which linkers cannot accept extended characters, an encoding of the universal character name can be used
in forming valid external identifiers. For example, some otherwise unused character or sequence of characters can be used to
encode the \u in a universal character name. Extended characters can produce a long external identifier.

Language modifications to ISO/IEC 9899:2018, § 6.4.2.1 page 57

CORE 202101 (E) § 6.4.2.2, working draft — January 20, 202imin..core3 N2644/P2309R0

6.4.2.2 Predefined identifiers

Several identifiers although they are not keywords are predefined and shall not be given a different
definition by the program, be it by object, function, e or macro definitions. There are such

identifiers of different categories, namely macros (6.10.8), constants (6.4.4.5), types (6.2.5.1) and

objects (6.4.2.2.1).

6.4.2.2.1 Predefined objects
Semantics

The identifier __func__ shall be implicitly declared by the translator as if, immediately following
the opening brace of each function definition, the declaration

\ static const char __func__[] = "function-name";
L

appeared, where function-name is the name of the lexically-enclosing function.!%®)

This name is encoded as if the implicit declaration had been written in the source character set and
then translated into the execution character set as indicated in translation phase 5.

Recommended practice

Because C and C++ have a different instantiation model for inline functions, block scope static
objects of such functions can be represented differently between the two languages. It is
recommended that the control flow of applications is not made dependent of the comparison of
the addresses of the __func__ object(s) of an inline function, and that implementations issue a
diagnostic whenever an attempt is made to expose the address of __func__ beyond the function
body of an inline function.

EXAMPLE Consider the code fragment:

#include <stdio.h>

void myfunc(void)

{
printf("%s\n", __func_);
/* ... %/

Each time the function is called, it will print to the standard output stream:

i myfunc
L

Forward references: the inline specifier (6.7.5), function definitions (6.9.1).
6.4.3 Universal character names

Syntax
universal-character-name:
\u hex-quad
\U hex-quad hex-quad
hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit
Constraints

A-No universal character name shall be formed that specifies a short identifier that is not an
ISO/IEC 10646 code point. Unless specified otherwise, no universal character name shall be formed

106)Since the name —func_ is reserved for any use by the implementation (7.1.3), if any other identifier is explicitly declared
using the name __func__, the behavior is undefined.

modifications to ISO/IEC 9899:2018, § 6.4.3 page 58 Language

1

N2644/P2309R0 cmin..core 6.4.4, working draft — January 20, 2021 CORE 202101 (E)

that specifies a short identifier that is in the range D800 through DFFF inclusive.'”” Unless used

within a character constant (6.4.4.4) or a string literal (6.4.5), a universal character name shall not
specify a character whose short identifier is less than 00AO other than 0024($- ($), 0040{@- (@), or

0060(’), nor one in the range D800 through DFFF inclusive (°).1%)
Description

Universal character names may be used in identifiers, character constants, and string literals to
designate characters that are not in the basic character set.

Semantics

The universal character name \Unnnnnnnn designates the character whose eight-digit short identifier
(as specified by ISO/IEC 10646) is nnnnnnnn.l%®) Similarly, the universal character name \unnnn
designates the character whose four-digit short identifier is nnnn (and whose eight-digit short
identifier is 0000nnnn).

NOTE Cis a bit more restrictive than C++ about short identifiers that are less than 00A0. It extends the above interdictions

for that range also to character constants and string literals. It seemed important to have one-to-one compatibility of such
basic tools between C and C++ and to privilige usability. So this specification removes that restriction.

6.4.4 Constants

Syntax
constant:
integer-constant
floating-constant
enumeration-constant
character-constant

redefined-constant

Constraints

Each constant shall have a type and the value of a constant shall be in the range of representable
values for its type.

Semantics
Each constant has a type, determined by its form and value, as detailed later.

6.4.4.1 Integer constants

Syntax

integer-constant:
decimal-constant integer-suffixXopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

107)The notable exception is that four-digit short identifiers may be used with in UTE-16 wide strings to encode surrogate

pairs.

109)The disallowed characters are the characters in the basic character set and the code positions reserved by ISO/IEC 10646
for control characters, the character DELETE, and the S-zone (reserved for use as UTF-16 surrogates).

109)Short identifiers for characters were first specified in ISO/IEC 10646-1:1993/ Amd 9:1997.

Language modifications to ISO/IEC 9899:2018, § 6.4.4.1 page 59

CORE 202101 (E) § 6.4.4.1, working draft — January 20, 2021 N2644/P2309R0

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

hexadecimal-prefix: one of
ox 0Xx

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hexadecimal-digit: one of

0123456789
abcdef
ABCDETF

integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffix
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt

unsigned-suffix: one of
ud

long-suffix: one of
1L

long-long-suffix: one of
11 LL

Baseriptiorconstant begins with a digit, but has no period or exponent part. It may have a prefix
that specifies its base and a suffix that specifies its type.

A decimal constant begins with a nonzero digit and consists of a sequence of decimal digits. An
octal constant consists of the prefix 0 optionally followed by a sequence of the digits 0 through 7
only. A hexadecimal constant consists of the prefix @x or 0X followed by a sequence of the decimal
digits and the letters a (or A) through f (or F) with values 10 through 15 respectively.

$emantics of a decimal constant is computed base 10; that of an octal constant, base 8; that of a
hexadecimal constant, base 16. The lexically first digit is the most significant.

The type of an integer constant is the first of the corresponding list in which its value can be
represented.

modifications to ISO/IEC 9899:2018, § 6.4.4.1 page 60 Language

N2644/P2309R0 cmin..corép6.4.4.2, working draft — January 20, 2021

CORE 202101 (E)

Octal or Hexadecimal
Suffix Decimal Constant Constant
none int int
long int unsigned int
long long int long int
unsigned long int
long long int
unsigned long long int
uor U unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int | unsigned long long int
lor L long int long int
long long int unsigned long int
long long int
unsigned long long int
Both uor U unsigned long int unsigned long int
and lor L unsigned long long int | unsigned long long int
1lor LL long long int long long int
unsigned long long int
Both uor U unsigned long long int | unsigned long long int
and 1lor LL

If an integer constant cannot be represented by any type in its list, it may have an extended integer
type, if the extended integer type can represent its value. If all of the types in the list for the constant
are signed, the extended integer type shall be signed. If all of the types in the list for the constant
are unsigned, the extended integer type shall be unsigned. If the list contains both signed and
unsigned types, the extended integer type may be signed or unsigned. If an integer constant cannot
be represented by any type in its list and has no extended integer type, then the integer constant has

no type.

6.4.4.2 Floating constants

Syntax
floating-constant:

decimal-floating-constant
hexadecimal-floating-constant

decimal-floating-constant:

fractional-constant exponent-partop; floating-suffixopt

digit-sequence exponent-part floating-suffix,pt

hexadecimal-floating-constant:

hexadecimal-prefix hexadecimal-fractional-constant
binary-exponent-part floating-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence
binary-exponent-part floating-suffixop:

fractional-constant:

digit-sequenceopt -

digit-sequence .

exponent-part:

digit-sequence

e signep digit-sequence
E signop digit-sequence

sign: one of

Language

modifications to ISO/IEC 9899:2018, § 6.4.4.2 page 61

CORE 202101 (E) § 6.4.4.2, working draft — January 20, 202imin..core3 N2644/P2309R0

digit-sequence:
digit
digit-sequence digit

hexadecimal-fractional-constant:
hexadecimal-digit-sequenceqpt
hexadecimal-digit-sequence
hexadecimal-digit-sequence .

binary-exponent-part:
P signop: digit-sequence
P signep: digit-sequence

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

floating-suffix:
recision-suffix complex-suffix
complex-suffix precision-suffix

precision-suffix: one of
flLFL

complex-suffix: one of

il

Description

A floating constant has a significand part that may be followed by an exponent part and a suffix that
specifies its type. The components of the significand part may include a digit sequence representing
the whole-number part, followed by a period (.), followed by a digit sequence representing the
fraction part. The components of the exponent part are an e, E, p, or P followed by an exponent
consisting of an optionally signed digit sequence. Either the whole-number part or the fraction part
has to be present; for decimal floating constants, either the period or the exponent part has to be
present.

Semantics

The significand part is interpreted as a (decimal or hexadecimal) rational number; the digit sequence
in the exponent part is interpreted as a decimal integer. For decimal floating constants, the exponent
indicates the power of 10 by which the significand part is to be scaled. For hexadecimal floating
constants, the exponent indicates the power of 2 by which the significand part is to be scaled. For
decimal floating constants, and also for hexadecimal floating constants when FLT_RADIX is not a
power of 2, the result is either the nearest representable value, or the larger or smaller representable
value immediately adjacent to the nearest representable value, chosen in an implementation-defined
manner. For hexadecimal floating constants when FLT_RADIX is a power of 2, the result is correctly
rounded.

An unsuffixed floating constant has type double. If suffixed by the letter f or F, it has type float.
If suffixed by the letter 1 or L, it has type long double. If the suffix contains the letter i or I, the

types are the corresponding complex types, and the value is a complex value with real part 0 and
the value of the literal as imaginary part.

The values of floating constants may be represented in greater range and precision than that required
by the type (determined by the suffix); the types are not changed thereby. See 5.2.4.2.2 regarding

modifications to ISO/IEC 9899:2018, § 6.4.4.2 page 62 Language

N2644/P2309R0 cmin..corép6.4.4.3, working draft — January 20, 2021 CORE 202101 (E)

evaluation formats.'’9 The representation of the imaginary part of a complex floating constant shall
be identical to the representation of the same real floating constant when i or I are omitted.

Floating constants are converted to internal format as if at translation-time. The conversion of a
floating constant shall not raise an exceptional condition or a floating-point exception at execution
time. All floating constants of the same source form!''V shall convert to the same internal format
with the same value.

Recommended practice

The implementation should produce a diagnostic message if a hexadecimal constant cannot be
represented exactly in its evaluation format; the implementation should then proceed with the
translation of the program.

The translation-time conversion of real floating constants should match the execution-time conver-
sion of character strings by library functions, such as strtod, given matching inputs suitable for
both conversions, the same result format, and default execution-time rounding.“z)

6.4.4.3 Enumeration constants
Syntax

enumeration-constant:
identifier

Semantics
An identifier declared as an enumeration constant has type int.

Forward references: enumeration specifiers (6.7.2.2).

6.4.4.4 Character constants
Syntax

character-constant:
encoding-prefixopt

’ ’

c-char-sequence

encoding-prefix:

u8

u

U

L
c-char-sequence:

c-char

c-char-sequence c-char
c-char:
any member of the source character set except
the single-quote ’, backslash \, or new-line character
escape-sequernce

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

110)Hexadecimal floating constants can be used to obtain exact values in the semantic type that are independent of the
evaluation format. Casts produce values in the semantic type, though depend on the rounding mode and may raise the
inexact floating-point exception.

11D71,23,1.230, 123e-2, 123e-02, and 1. 23L are all different source forms and thus need not convert to the same internal
format and value.

112)The specification for the library functions recommends more accurate conversion than required for floating constants
(see 7.22.1.3).

Language modifications to ISO/IEC 9899:2018, § 6.4.4.4 page 63

CORE 202101 (E) § 6.4.4.4, working draft — January 20, 202imin..core3 N2644/P2309R0

simple-escape-sequence: one of
\VA"ANZAN
\a\b\f\n\r\t\v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\X hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Description

An integer character constant is a sequence of one or more multibyte characters enclosed in single-
quotes, as in 'x’ . A UTF-8 character constant is the same, except prefixed by u8. A wide character
constant is the same, except prefixed by the letter L, u, or U—; if it is prefixed by u it is a UTF-16
character constant and if by U it is a UTF-32 character constant . With a few exceptions detailed
later, the elements of the sequence are any members of the source character set; they are mapped
in-an-implementation-defined-manner-to-members-of the-exeeution-charaeterset—as described for

translation phase 1 to a universal character name.

The single-quote ’, the double-quote ", the question-mark ?, the backslash \, and arbitrary integer
values are representable according to the following table of escape sequences:

single quote ’ \’
double quote " \"
question mark ? \?
backslash \ \\
octal character \octal digits

hexadecimal character \x hexadecimal digits

The double-quote " and question-mark ? are representable either by themselves or by the escape
sequences \" and \?, respectively, but the single-quote ' and the backslash \ shall be represented,
respectively, by the escape sequences \ ' and \\.

The octal digits that follow the backslash in an octal escape sequence are taken to be part of the
construction of a single character for an integer character constant or of a single wide character for a
wide character constant. The numerical value of the octal integer so formed specifies the value of
the desired character or wide character.

The hexadecimal digits that follow the backslash and the letter x in a hexadecimal escape sequence
are taken to be part of the construction of a single character for an integer character constant or of a
single wide character for a wide character constant. The numerical value of the hexadecimal integer
so formed specifies the value of the desired character or wide character.

Each octal or hexadecimal escape sequence is the longest sequence of characters that can constitute
the escape sequence.

In addition, characters not in the basic character set are representable by universal character names
and certain nongraphic characters are representable by escape sequences consisting of the backslash \
followed by a lowercase letter: \a, \b, \f, \n, \r, \t, and \v.!¥

113)The semantics of these characters were discussed in 5.2.2. If any other character follows a backslash, the result is not a
token and a diagnostic is required. See “future language directions” (6.11.4).

modifications to ISO/IEC 9899:2018, § 6.4.4.4 page 64 Language

10

11

12

13

14

15
16

17

18

N2644/P2309R0 cmin..corép6.4.4.4, working draft — January 20, 2021 CORE 202101 (E)

Constraints
The value of an octal or hexadecimal escape sequence shall be in the range of representable values
for the corresponding type:

Prefix | Corresponding Type
none | unsigned char

u8 unsigned char

L the unsigned type corresponding to wchar_t
u charl6_t

u char32_t

A UTF-8, UTF-16, or UTF-32 character constant shall not contain more than one character.!'¥ The
valueshall-be Such a character constant shall have any value that is representable with a single code
unit of the corresponding encoding, in particular UTF-8-eode-unit——8 character constants shall be

in the range 0 to 0x7F, UTF-16 character constants shall be in the range 0 to OXFFFF, and UTE-32
character constants shall be in the ranges 0 to 0xD7FF or 0xE000 to 0x10FFFE.!1%

Semantics

An integer character constant has type int. The value of an integer character constant containing
a single character that maps to a single-byte execution character is the numerical value of the
representation of the mapped character interpreted as an integer. The value of an integer character
constant containing more than one character (e.g.,ab '), or containing a character or escape sequence
that does not map to a single-byte execution character, is implementation-defined. If an integer
character constant contains a single character or escape sequence, its value is the one that results
when an object with type char whose value is that of the single character or escape sequence is
converted to type int.

A UTF-8, UTF-16 or UTF-32 character constant has type unsigned—char—unsigned char,
charl6_t or char32_t, respectively. The Value of a%ﬂéF—&such a character constant is equal

to its ISO/IEC 10646 code point value
single-UTF-8-code-unit.
A w1de character constant preﬁxed by the letter L has type wchar_t ﬁaﬂ&nteger—type—deﬁﬂed—m—the

. The Value of §yAchN a w1de character constant contammg a smgle
multibyte character that maps to a single member of the extended execution character set is the
wide character corresponding to that multibyte character, as defined by the mbtowc ;-erfunction
as-appropriatefor-itstype,function with an implementation-defined current locale. The value
of a wide character constant containing more than one multibyte character or a single multibyte
character that maps to multiple members of the extended execution character set, or containing a
multibyte character or escape sequence not represented in the extended execution character set, is
implementation-defined.

NOTE C and C++ differ in their types for integer character constants. Where C has type int, C++ has the type char.
As a consequence, not even the values for sizeof ’a’ or alignof(’a’) are the same between the two languages. For
applications that target the C/C++ core it is recommended that they don’t use these properties of integer character constants
such they can be ported between the two languages.

EXAMPLE 1 The construction '\0" is commonly used to represent the null character.

EXAMPLE 2 Consider implementations that use eight bits for objects that have type char. In an implementation in which
type char has the same range of values as signed char, the integer character constant '\xFF' has the value —1; if type
char has the same range of values as unsigned char, the character constant '\xFF’ has the value +255.

EXAMPLE 3 Even if eight bits are used for objects that have type char, the construction’\x123" specifies an integer character
constant containing only one character, since a hexadecimal escape sequence is terminated only by a non-hexadecimal
character. To specify an integer character constant containing the two characters whose values are '\x12’' and '3’, the
construction '\0223" can be used, since an octal escape sequence is terminated after three octal digits. (The value of this
two-character integer character constant is implementation-defined.)

EXAMPLE 4 Even if 12 or more bits are used for objects that have type wchar_t, the construction L'\1234" specifies the

14 For example u8’ab’ violates this constraint.

115This means that characters for UTF-8 encodings that need more than one byte can not be represented in a UTF-8
character constant. Also UTF-16 character constants may be surrogates, but UTF-32 character constants may not.

Language modifications to ISO/IEC 9899:2018, § 6.4.4.4 page 65

CORE 202101 (E) § 6.4.4.5, working draft — January 20, 202imin..core3 N2644/P2309R0

implementation-defined value that results from the combination of the values 0123 and 4" .

Forward references: eommon-definitions{719},-the mbtowc function (7.22.8.2), Unicode utilities
<uchar.h> (7.28).

6.4.4.5 Predefined constants
Syntax

redefined-constant: one of
false nullptr true

Description
Some keywords represent constants of a specific value and e.

6.4.4.5.1 The false and true constants
Description

The keywords false and true represent constants of type bool that are suitable for use as are
integer literals. Their values are 0 for false and 1 for true."'” When used in preprocessor
conditional expressions, the keywords false and true behave as if replaced with the pp-numbers
0.and 1, respectively."”

NOTE Historically, C had the constants false and true with type int. This lead to unexpected results when used as
arguments to type-generic interfaces and introduced an unfortunate incompatibility with C++. Users and implementations
are invited to diagnose such situations, in particular where Boolean values (be they bool or int) are used in arithmetic other
than amray indexing.

6.4.4.5.2 The nullptr constant
Description

The keyword nullptr represents a null pointer constant of type nullptr_t. Unless specified
otherwise, it is a suitable primary expression wherever a constant operand of pointer type is
allowed for initialization, assignment, conversion, function argument, equality testing, the sizeof
operator, logical operators, and as a controlling expression. If nullptr is used in any other context,

the behavior is undefined."®

NOTE Because its type is underspecified, using nullptr as a controlling expression in a generic selection can lead to
non-portable results.

Recommended practice

Implementations are encouraged to implement nullptr with a type that is not a scalar type, that
is incompatible to any other type. They should diagnose the use of nullptr

— in any context where its use is undefined;

— as the controlling expression of a generic selection, unless that generic selection is itself not
evaluated or the resulting type of the expression is independent of the effective choice;

— in a conversion to a type that is not a pointer type;

— as a second or third operand of a conditional operator if the other (second or third) operand
has arithmetic type.

116)
117)

When used in arithmetic expressions after translation phase 4 the values of the keywords are promoted to type int.
Therefore, arithmetic with false and true in translation phase 4 presents results that are generally consistent with later
translation phases.

!'9In particular this prohibits the use of nullptr for any type of arithmetic operation, relational comparison, or in an

modifications to ISO/IEC 9899:2018, § 6.4.4.5.2 page 66 Language

1

N2644/P2309R0 cmin..core 6.4.5, working draft — January 20, 2021 CORE 202101 (E)

6.4.5 String literals

Syntax
string-literal:

encoding-prefixopt " s-char-sequenceqpy
s-char-sequence:
s-char

s-char-sequence s-char

s-char:
any member of the source character set except
the double-quote ", backslash \, or new-line character
escape-sequence

Constraints

A sequence of adjacent string literal tokens shall not include both a wide string literal and a UTF-8
string literal.

Description

A character string literal is a sequence of zero or more multibyte characters enclosed in double-quotes,
asin "xyz". A UTF-8 string literal is the same, except prefixed by u8. A wide string literal is the same,
except prefixed by the letter L, u, or U; if it is prefixed by u it is a UTF-16 string literal and if by U it is
a UTF-32 string literal .

The same considerations apply to each element of the sequence in a string literal as if it were in an
integer character constant (for a character or UTF-8 string literal) or a wide character constant (for a
wide string literal), except that the single-quote ’ is representable either by itself or by the escape
sequence \’, but-the double-quote " shall be represented by the escape sequence \"—, and that a

universal-character-name in a UTF-16 string literal may vield a surrogate pair.

Semantics

In translation phase 6, the multibyte character sequences specified by any sequence of adjacent
character and identically-prefixed string literal tokens are concatenated into a single multibyte
character sequence. If any of the tokens has an encoding prefix, the resulting multibyte character
sequence is treated as having the same prefix; otherwise, it is treated as a character string literal.
Whether differently-prefixed wide string literal tokens can be concatenated and, if so, the treatment
of the resulting multibyte character sequence are implementation-defined.

In translation phase 7, a byte or code of value zero is appended to each multibyte character sequence
that results from a string literal or literals.!'” The multibyte character sequence is then used to

initialize an array of static storage duration and length just sufficient to contain the sequence. For
character string literals, the array elements have type char, and are initialized with the individual
bytes of the multibyte character sequence. For UTF-8, UTF-16 and UTF-32 string literals, the

array elements have type eha%e&mﬁahzedwth%k&ehm&ef&e%thefnﬁhbﬁefhaﬁetef

wrthﬂfﬁmp}emeﬁtaﬁeﬂ-defmeére&ffeﬂkleea}&encodm sequence of the corres ondm encodm .
For wide string literals prefixed by the letter w-or-UL, the array elements have type orrespectively,-

wchar_t and are initialized with the sequence of wide characters corresponding to the multibyte
character sequence, as defined by sticcessive-calls-to-the-orfunction-as-appropriate for-itstype;
the mbstowcs function with an implementation-defined current locale. The value of a string literal
containing a multibyte character or escape sequence not represented in the execution character set is
implementation-defined.

119) A string literal might not be a string (see 7.1.1), because a null character can be embedded in it by a \0 escape sequence.

Language modifications to ISO/IEC 9899:2018, § 6.4.5 page 67

10

CORE 202101 (E) § 6.4.6, working draft — January 20, 202Tmin..core3 N2644/P2309R0

It is unspecified whether these arrays are distinct provided their elements have the appropriate
values.!? If the program attempts to modify such an array, the behavior is undefined.

NOTE Cand C++ differ in their types for string literals. The base type of the underlying character arrays is the same, but
for C the element type is unqualified and not modifyable. For C++ the element types are additionally const qualified. For
applications that target the C/C++ core it is recommended that they only use pointers to const qualified character types to
capture the address of a string literal. Thereby they can be ported between the two languages, and accidental modification
of the character array can be diagnosed by the translator.

EXAMPLE 1 This pair of adjacent character string literals

i "\x12" "3" |

produces a single character string literal containing the two characters whose values are '\x12’ and '3’ , because escape
sequences are converted into single members of the execution character set just prior to adjacent string literal concatenation.

EXAMPLE 2 Each of the sequences of adjacent string literal tokens

"a" "b" L"c"
"a" L"b" "c"
L"a" "b" L"c"
L"a" L"b" L"c"

is equivalent to the string literal

[|
L"abc"

Likewise, each of the sequences

"a" "b" u"c"
"a" u"b" "c"
u"a" "b" u"c"
u"a" u"b" u"c

is equivalent to

i u"abc" i
Forward references: commen-definitions{719)the mbstowcs function (7.22.9.1), Unicode utilities
<uchar.h> (7.28).

6.4.6 Punctuators

Syntax
punctuator: one of

L1 L)y {3} . —>=
+ - ~—t

+H+ == & * Lo

=== te A S X/ % W B
<= < > < > = n =~ U A V

2 e

Semantics

A punctuator is a symbol that has independent syntactic and semantic significance. Depending on
context, it may specify an operation to be performed (which in turn may yield a value or a function

120)This allows implementations to share storage instances for string literals and constant compound literals (6.5.2.5) with
the same or overlapping representations.

modifications to ISO/IEC 9899:2018, § 6.4.6 page 68 Language

N2644/P2309R0 cmin..core 6.4.7, working draft — January 20, 2021 CORE 202101 (E)

designator, produce a side effect, or some combination thereof) in which case it is known as an
operator (other forms of operator also exist in some contexts). An operand is an entity on which an
operator acts.

In all aspects of the language, the six-tokens'2V tokens in the first column of the following table,
called digraphs , and the keywords found in the last column, behave, respectively, the same as the

punctuators in the second except for their spelling. %—%>—%:—'?) For those
Mmﬁ
in ISO 10646 that corresponds to_the token. When placed in a character string either directly or
by applying the # operator (see 6.10.3.2) the resulting multi-byte sequence for the token shall be
exactly the same as when the corresponding code is used as short identifier in a universal character

digraph | token | code | keyword digraph | token | code | keyword behave;
< L | 0x005b & 0 | 0x2229 | bitand
> 1| 0x005d 1 U | 0x222a | bitor
<% { | 6xeo7b & | A | 0x2227 | and
S 3 | exe07d AL | v | 0x2228 | or
RS X 0x00ac | not AN oo | BX2026
~ | 0x007e | compl = | x=
* x| 0x00d7 <= | wm=
<< W | 0x232b >>= | =
> | = | 6x2326 = | n= and_eq
<= < | 0x2264 A= Y= or-eq
= = | 0x2261 %1t RN
A= # | 6x2260 | not_eq Z. | ©x805e | xor
N xor_eq
el hesixtol SR
except-for-their-spelling—Similarly, the token pairs and stand in for the tokens [[(code

0x27e6) and || (code 0x27e7), respectively.

NOTE 1 Currently, neither C nor C++ support all the four digit Unicode characters as punctuators. Nevertheless, using
the digraphs can lead to lexical ambiguities because the same digraph may represent different tokens or because adjancent
tokens may be merged, or not. C and C++ apply different strategies to resolve such ambiguities and so generally the use of
digraphs should be avoided when writing programs for the C/C++ core. Therefore implementations that wish to serve the
C/Ct+ core should offer support for these punctuators as extensions.

NOTE 2 In C, the keywords that are listed in this table are only available as macros via the library header <is0646.h> . In
contrast, in C++ they have been keywords since the beginning. Code that targets the C/C++ core must be able to deal with
legacy code that uses these keywords so they were added to this specification.

Recommended practice

If they have to use digraphs, applications should avoid lexical ambiguities by adding white space
around these digraphs.

Forward references: expressions (6.5), declarations (6.7), preprocessing directives (6.10), statements
(6.8).

6.4.7 Header names

Syntax

header-name:
< h-char-sequence >
' g-char-sequence "

h-char-sequence:
h-char

121) Thesetokens : Hed“di e

12DThus [and <: behave differently when “stringized” (see 6.10.3.2), but can otherwise be freely interchanged.

Language modifications to ISO/IEC 9899:2018, § 6.4.7 page 69

1

CORE 202101 (E) § 6.4.8, working draft — January 20, 2021 N2644/P2309R0

h-char-sequence h-char

h-char:
any member of the source character set except
the new-line character and >

g-char-sequence:

g-char
g-char-sequence g-char
g-char:
any member of the source character set except
the new-line character and "
Semantics

The sequences in both forms of header names are mapped in an implementation-defined manner to
headers or external source file names as specified in 6.10.2.

If the characters ', \, ", //, or /* occur in the sequence between the < and > delimiters, the behavior
is undefined. Similarly, if the characters ', \, //, or /* occur in the sequence between the "
delimiters, the behavior is undefined.'?® Header name preprocessing tokens are recognized only
within #include preprocessing directives and in implementation-defined locations within #pragma
directives.!?

EXAMPLE The following sequence of characters:

0x3<1/a.h>1e2
#include <1/a.h>
#define const.member@$

forms the following sequence of preprocessing tokens (with each individual preprocessing token delimited by a { on the left
and a / on the right).

{0x3}{<H{1}{/}{a}{.{h}{>}{1le2}
{#}{include} {<1/a.h>}

{#}{define} {const}{.}{member}{@}{$}

Forward references: source file inclusion (6.10.2).

6.4.8 Preprocessing numbers

Syntax

pp-number:
digit
. digit
pp-number digit
pp-number identifier-nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

122)Thus, sequences of characters that resemble escape sequences cause undefined behavior.
123)For an example of a header name preprocessing token used in a #pragma directive, see 6.10.9.

modifications to ISO/IEC 9899:2018, § 6.4.8 page 70 Language

N2644/P2309R0 § 6.4.9, working draft — January 20, 2021 CORE 202101 (E)

Description
A preprocessing number begins with a digit optionally preceded by a period (.) and may be followed
by valid identifier characters and the character sequences e+, e-, E+, E-, p+, p-, P+ or P-.

Preprocessing number tokens lexically include all floating and integer constant tokens.

Semantics

A preprocessing number does not have type or a value; it acquires both after a successful conversion
(as part of translation phase 7) to a floating constant token or an integer constant token.

6.4.9 Comments

Except within a character constant, a string literal, or a comment, the characters /* introduce a
comment. The contents of such a comment are examined only to identify multibyte characters and
to find the characters */ that terminate it.1?%

Except within a character constant, a string literal, or a comment, the characters // introduce a
comment that includes all multibyte characters up to, but not including, the next new-line character.
The contents of such a comment are examined only to identify multibyte characters and to find the
terminating new-line character.

EXAMPLE

“a//b" // four-character string literal
#include "//e" // undefined behavior
// */ // comment, not syntax error
f = g/*x//h; // equivalent to f =g / h;
//\
i(); // part of a two-line comment
/\
/ 30); // part of a two-line comment
#define glue(x,y) x##y
glue(/,/) k(); // syntax error, not comment
/x//*/ 1(); // equivalent to 1();
m = n//*x/0

+ p; // equivalent tom =n + p;

12)Thus, /* ...*/ comments do not nest.

Language modifications to ISO/IEC 9899:2018, § 6.4.9 page 71

CORE 202101 (E) § 6.5, working draft — January 20, 2021cmin..core3 N2644/P2309R0

6.5 Expressions

An expression is a sequence of operators and operands that specifies computation of a value,'?® or
that designates an object or a function, or that generates side effects, or that performs a combination
thereof. The value computations of the operands of an operator are sequenced before the value
computation of the result of the operator.

If a side effect on a scalar object is unsequenced relative to either a different side effect on the
same scalar object or a value computation using the value of the same scalar object, the behavior
is undefined. If there are multiple allowable orderings of the subexpressions of an expression, the
behavior is undefined if such an unsequenced side effect occurs in any of the orderings.!2)

The grouping of operators and operands is indicated by the syntax.!?”) Except as specified later,

side effects and value computations of subexpressions are unsequenced.?®

Some operators (the unary operator ~, and the binary operators <<, >>, & %, and |, collectively
described as bitwise operators) are required to have operands that have integer type. These operators
yield values that depend on the internal representations of integers, and have implementation-
defined and undefined aspects for signed types.

If an exceptional condition occurs during the evaluation of an expression (that is, if the result is not
mathematically defined or not in the range of representable values for its type), the behavior is
undefined.

The effective type of an object for an access to its stored value and state is the declared type of the
object, if anyunless that type is compatible to void[] ."* Otherwise, the object has a declared type
that is compatible to void[]. If a value is stored into an-object-having no-declared-+type-such an
object through an lvalue having a type that is not a character type, then the type of the lvalue
becomes the effective type of the object for that access and for subsequent accesses that do not
modify the stored value. If a value is copied into an-ebjecthaving ne-deelared-typesuch an object
using memcpy or memmove, or is copied as an array of character type, then the effective type of the
modified object for that access and for subsequent accesses that do not modify the value is the
effective type of the object from which the value is copied, if it has one."*” For all other accesses to

an-objecthaving no-declared-typesuch an object, the effective type of the object is simply the type
of the Ivalue used for the access.

An object shall have its stored value accessed only by an lvalue expression that has one of the

125 Annex H documents the extent to which the C language supports the ISO/IEC 10967-1 standard for language-
independent arithmetic (LIA-1).
126)This paragraph renders undefined statement expressions such as

i=++1+ 1;
a[i++] = 1i;

while allowing

127)The syntax specifies the precedence of operators in the evaluation of an expression, which is the same as the order of the
major subclauses of this subclause, highest precedence first. Thus, for example, the expressions allowed as the operands
of the binary + operator (6.5.6) are those expressions defined in 6.5.1 through 6.5.6. The exceptions are cast expressions
(6.5.4) as operands of unary operators (6.5.3), and an operand contained between any of the following pairs of operators:
grouping parentheses () (6.5.1), subscripting brackets [] (6.5.2.1), function-call parentheses () (6.5.2.2), and the conditional
operator ?: (6.5.16).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is indicated in each

subclause by the syntax for the expressions discussed therein.

128)In an expression that is evaluated more than once during the execution of a program, unsequenced and indeterminately
sequenced evaluations of its subexpressions need not be performed consistently in different evaluations.

1#For the purpose of the determination of the effective type of an object with allocated storage duration behaves as if
declared with a type compatible to void[]..

"*These provisions concerning the effective type not withstanding, the internal state of an opaque object or sub-object
cannot be copied, Therefore a byte copy operation may bless an object with an effective type whereas the state of that object

Is still indeterminate.

modifications to ISO/IEC 9899:2018, § 6.5 page 72 Language

N2644/P2309R0 cmin..core 6.5.1, working draft — January 20, 2021 CORE 202101 (E)

following types:'3!)

— a type compatible with the effective type of the object,
— a qualified version of a type compatible with the effective type of the object,
— atype that is the signed or unsigned type corresponding to the effective type of the object,

— a type that is the signed or unsigned type corresponding to a qualified version of the effective
type of the object,

— an aggregate or union type that includes one of the aforementioned types among its members
(including, recursively, a member of a subaggregate or contained union), or

— acharacter type.

A floating expression may be contracted, that is, evaluated as though it were a single opera-
tion, thereby omitting rounding errors implied by the source code and the expression evaluation
method.!®? The FP_CONTRACT pragma in <math.h> provides a way to disallow contracted ex-
pressions. Otherwise, whether and how expressions are contracted is implementation-defined.!*®

NOTE C and C++ have very different strategies concerning the value category of expressions. Generally, for C++
expressions are Jualues whenever that is possible. In contrast to that, in C most operators undergo lvalue conversion
(see 6.3.2.1) before they enter an expression and the information about the object(s) that entered into an expression is
discarded. By that, a lot of expressions that are valid for C++ are not valid for C. E g in C++ the prefix increment operator
*+ can be applied multiple times in the same expression (++ ++a) or the ternary operator can be used on the left side of an
assignment (isit 7 a : b)= 76;. Bothare invalid for C.

For C, lvalues only enter into expressions that are supposed to modify an object (such as assignment operators, increment
and decrement), that compute its address (address-of operator), that access members (.member operator), or that query type

roperties such as size or alignment. The result of an expression is only an lvalue for the dereference operator * and for
member access (. and —).

Programming for the C/C++ core implies not to use such constructs and we volutarily keep the possibility of returnin:
Ivalues out of this core specification.

Forward references: the FP_CONTRACT pragma (7.12.2), copying functions (7.24.2).

6.5.1 Primary expressions
Syntax
primary-expression:
identifier
constant
string-literal
(expression)
generic-selection

Semantics

An identifier is a primary expression, provided it has been declared as designating an object (in
which case it is an Ivalue) or a function (in which case it is a function designator).'3%

A constant is a primary expression. Its type depends on its form and value, as detailed in 6.4.4.

A string literal is a primary expression. It is an lvalue with type as detailed in 6.4.5.

13D The intent of this list is to specify those circumstances in which an object can or cannot be aliased.

132)The intermediate operations in the contracted expression are evaluated as if to infinite range and precision, while the
final operation is rounded to the format determined by the expression evaluation method. A contracted expression might
also omit the raising of floating-point exceptions.

133)This license is specifically intended to allow implementations to exploit fast machine instructions that combine multiple
C operators. As contractions potentially undermine predictability, and can even decrease accuracy for containing expressions,
their use needs to be well-defined and clearly documented.

139 Thus, an undeclared identifier is a violation of the syntax.

Language modifications to ISO/IEC 9899:2018, § 6.5.1 page 73

CORE 202101 (E) § 6.5.1.1, working draft — January 20, 202imin..core3 N2644/P2309R0

A parenthesized expression is a primary expression. Its type and value are identical to those of
the unparenthesized expression. It is an Ivalue, a function designator, or a void expression if the
unparenthesized expression is, respectively, an lvalue, a function designator, or a void expression.

A generic selection is a primary expression. Its type and value depend on the selected generic
association, as detailed in the following subclause.

Forward references: declarations (6.7).

6.5.1.1 Generic selection
Syntax
generic-selection:
generic-assoc-list)
generic-assoc-list:
generic-association
generic-assoc-list , generic-association
generic-association:
type-name : assignment-expression
default : assignment-expression

controlling-expression:
expression

Constraints

The controlling expression shall be an assignment expression.

A generic selection shall have no more than one default generic association. The type name in a
generic association shall specify a complete object type other than a variably modified type. No two
generic associations in the same generlc selectlon shall spec1fy Compatlble types The type of the
controlling expression is : v
generic type.'% affay%epemteﬁeeﬂvefs&eﬂ—e%ﬁﬂﬂeﬁeﬂ%&pemte%eenvefﬂethhat type shall be
compatible with at most one of the types named in the generic association list. If a generic selection
has no default generic association, its controlling expression shall have type compatible with
exactly one of the types named in its generic association list.

135)

Semantics

The controlling expression of a generic selection is not evaluated. If a generic selection has a generic
association with a type name that is compatible with the type of the controlling expression, then the
result expression of the generic selection is the expression in that generic association. Otherwise, the
result expression of the generic selection is the expression in the default generic association. None
of the expressions from any other generic association of the generic selection is evaluated.

The type and value of a generic selection are identical to those of its result expression. It is an
lvalue, a function designator, or a void expression if its result expression is, respectively, an lvalue,

a function designator, or a void expression. A generic selection that is the operand of a typeof
specification behaves as if the selected assignment expression had been the operand.

e

EXAMPLE 1 Provided there are functions cbrt, cbrtf and chrtl, the chrt type-generic macro could be implemented as
follows:

i—#deﬁﬁ&cbrtﬁefeeﬁeﬁ%%,—¥
#define cbrt
| [](auto x)

\mmmmreturn eneric_selection(x, \

I

135)That means that it may not have a top level comma operator.
136) AnJvalue conversion-drops-A generic type has no qualifiers.

modifications to ISO/IEC 9899:2018, § 6.5.1.1 page 74 Language

N2644/P2309R0 cmin..core 6.5.2, working draft — January 20, 2021 CORE 202101 (E)

\ long double: cbrtl, \ ‘
\ default: chrt, \ ‘
‘ float—ebrtf N ‘
| 16 |
.. _float: cbrtf)(x); \ |

|

@ew%mwmmﬁgmmmm
function literal has a return type that is the return type of the selected function. The function literal ensures that this version
of the cbrt macro is converted to a function pointer when used outside a function call,

EXAMPLE 2 A combination of a generic selection with a lambda may also be used to avoid to write several functions to

. __char: _______(unsigned char)+(X), \
_signed char: __(unsigned char)+(X), \.
e Siined Shorts. (unstaned shortl(Kl,

/2/

. int: (unsigned)+(X), \
e YO unsigned Long) (),)
e long long: (unsigned long lon X),\
T T et)
#define abs \

____I1 (auto x) \

o ._.___auto y = absconvert(x); \

e A S 0) L \

y = -absconvert(+x); \

A A A A A

A~ A A A Ao~

6.5.2 Postfix operators

Syntax
postfix-expression:
primary-expression

-postfix-expression——expression—1

. . - ;
fmwww%%wm
“postfix-expression—+ member-access_
-postfix-expressiotn—— postfix-addition
~type-namey—{initiatizer-tst—} compound-literal
~Hype-name }——initiatizer-list5—} lambda-expression

6.5.2.1 Array subscripting

Syntax
-y

—&s&tgnmeﬂ%-e%p%essfeﬁ -array-subscript:
argent-expression-Hst——assignment-expression postfix-expression [expression]

Language modifications to ISO/IEC 9899:2018, § 6.5.2.1 page 75

CORE 202101 (E) § 6.5.2.2, working draft — January 20, 202imin..core3 N2644/P2309R0

Constraints

One of the expressions shall have type “pointer to complete object fype”, the other expression shall
have integer type, and the result has type “type”.

Semantics

A postfix expression followed by an expression in square brackets [] is a subscripted designation of
an element of an array object. The definition of the subscript operator [] is that E1[E2] is identical
to (*((EL1)+(E2))). Because of the conversion rules that apply to the binary+ operator, if E1 is an
array object (equivalently, a pointer to the initial element of an array object) and E2 is an integer,
E1[E2] designates the E2 -th element of E1 (counting from zero).

Successive subscript operators designate an element of a multidimensional array object. If E is an
n-dimensional array (n > 2) with dimensions i x j x - -- X k, then E (used as other than an lvalue) is
converted to a pointer to an (n — 1)-dimensional array with dimensions j x - -- x k. If the unary *
operator is applied to this pointer explicitly, or implicitly as a result of subscripting, the result is the
referenced (n — 1)-dimensional array, which itself is converted into a pointer if used as other than an
Ivalue. It follows from this that arrays are stored in row-major order (last subscript varies fastest).

EXAMPLE Consider the array object defined by the declaration

| int x[31[51;

Here x
isa 3 x 5 array of

int-ints; more precisely, x is an array of three element objects, each of which is an array of five int-ints. In the expression

x[1], which is equivalent to (*((x)+(1))), x is first converted to a pointer to the initial array of five int-ints. Then i is
adjusted according to the type of x, which conceptually entails multiplying i by the size of the object to which the pointer
points, namely an array of five int objects. The results are added and indirection is applied to yield an array of five int-ints.
When used in the expression x[1][]j], that array is in turn converted to a pointer to the first of the #at-ints, so x[1]1[j]

yields an int-int.

Forward references: additive operators (6.5.6), address and indirection operators (6.5.3.2), array
declarators (6.7.8.2).

6.5.2.2 Function calls
Syntax

unction-call:
ostfix-expression (argument-expression-listop;)

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

Constraints

The expression-that-denotes-the-ealled-funetionpostfix expression'®) shall have typelambda type

or pointer to function type, returning void or returning a complete object type other than an array

type.

If the expression-that-denotes-the-called-funetionhas-atype-thatpostfix expression is a lambda or if
the type of the function includes a prototype, the number of arguments shall agree with the number

of parameters of the function or lambda type. Each argument shall have a type such that its value
may be assigned to an object with the unqualified version of the type of its corresponding parameter.

Semantics

A postfix expression followed by parentheses () containing a possibly empty, comma-separated list
of expressions is a function call. The postfix expression denotes the called function or lambda. The

137)Most often, this is the result of converting an identifier that is a function designator.

modifications to ISO/IEC 9899:2018, § 6.5.2.2 page 76 Language

10

11

12

13

14

15

N2644/P2309R0 cmin..corép6.5.2.3, working draft — January 20, 2021 CORE 202101 (E)

list of expressions specifies the arguments to the function or lambda.

An argument may be an expression of any complete object type. In preparing for the call to a
function, the arguments are evaluated, and each parameter is assigned the value of the corresponding
argument.'*®

If the expression that denotes the called function has lambda type or type pointer to function
returning an object type, the function call expression has the same type as that object type, and has
the value determined as specified in 6.8.6.4. Otherwise, the function call has type void.

If the expression that denotes the called function has a type that does not include a prototype, the
integer promotions are performed on each argument, and arguments that have type float are
promoted to double. No such an argument shall be nullptr. These are called the default arqument
promotions. If the number of arguments does not equal the number of parameters, the behavior is
undefined. If the function is defined with a type that includes a prototype, and either the prototype
ends with an ellipsis (——,__...) or the types of the arguments after promotion are not compatible
with the types of the parameters, the behavior is undefined.

If the expression that denotes the called function is a lambda or is a function has a type that does
include a prototype, the arguments are implicitly converted, as if by assignment, to the types of
the corresponding parameters, taking the type of each parameter to be the unqualified version of
its declared type. The ellipsis notation in a function prototype declarator causes argument type
conversion to stop after the last declared parameter. The default argument promotions are performed
on trailing arguments.

No other conversions are performed implicitly; in particular, the number and types of arguments are
not compared with those of the parameters in a function definition that does not include a function
prototype declarator.

If the lambda or function is defined with a type that is not compatible with the type (of the expression)
pointed to by the expression that denotes the called lambda or function, the behavior is undefined.

There is a sequence point after the evaluations of the function designator and the actual arguments
but before the actual call. Every evaluation in the calling function (including other function calls) that
is not otherwise specifically sequenced before or after the execution of the body of the called function
or lambda is indeterminately sequenced with respect to the execution of the called function.!>

Recursive function calls shall be permitted, both directly and indirectly through any chain of other
functions —or lambdas.

NOTE C and C++ differ on an important aspect concerning function calls. Where for C the evaluations of the arguments are
unsequenced, for C++ they are indeterminately sequenced ([expr.calll p8). As a consequence, for C using expressions
that must be sequenced to be valid (such as multiple occurence of the same increment operation) leads to undefined behavior.

It is recommended that implementations that target the common C/C++ core diagnose argument expressions that require
sequencing as much as possible.

EXAMPLE In the function call

\ (pf[f1()1) (f2(), f3() + f4())

the functions f1, f2, f3, and f4 can be called in any order. All side effects have to be completed before the function pointed
toby pf[f1()] is called.

Forward references: function declarators (6.7.8.3), function definitions (6.9.1), the return statement
(6.8.6.4), simple assignment (6.5.17.1).

6.5.2.3 Structure and union members
Syntax

138) A function or lambda can change the values of its parameters, but these changes cannot affect the values of the arguments.

On the other hand, it is possible to pass a pointer to an object, and the function or lambda can then change the value of the
object pointed to. A parameter declared to have array or function type is adjusted to have a pointer type as described in 6.9.1.
1391n other words, function executions do not “interleave” with each other.

Language modifications to ISO/IEC 9899:2018, § 6.5.2.3 page 77

CORE 202101 (E) § 6.5.2.3, working draft — January 20, 202imin..core3 N2644/P2309R0

ostfix-expression . identifier
ostfix-expression — identifier

Constraints

The first operand of the . operator shall have an atomic, qualified, or unqualified structure or union
type, and the second operand shall name a member of that type.

The first operand of the->—— operator shall have type “pointer to atomic, qualified, or unqualified
structure” or “pointer to atomic, qualified, or unqualified union”, and the second operand shall
name a member of the type pointed to.

Semantics

A postfix expression followed by the . operator and an identifier designates a member of a structure
or union object. The value is that of the named member,'*? and is an lvalue if the first expression is
an lvalue. If the first expression has qualified type, the result has the so-qualified version of the type
of the designated member.

A postfix expression followed by the->—— operator and an identifier designates a member of a

structure or union object. The pointer value shall be valid, not be the end address of its provenance
and be correctly aligned for the structure or union type. The value is that of the named member of

the object to which the first expression points, and is an lvalue.!*? If the first expression is a pointer
to a qualified type, the result has the so-qualified version of the type of the designated member.

Accessing a member of an atomic structure or union object results in undefined behavior.!4?

One special guarantee is made in order to simplify the use of unions: if a union contains several
structures that share a common initial sequence (see below), and if the union object currently contains
one of these structures, it is permitted to inspect the common initial part of any of them anywhere
that a declaration of the completed type of the union is visible. Two structures share a common initial

sequence if corresponding members have compatible types (and;for-bit-fields; the same-widths)-for

a sequence of one or more initial members.

NOTE C++ has a third notation to access a member of a structure (class) or union, but without refering to an object. This
works with identifiers that are chained with a :: token. Translated into C an access as in the followin

typedef struct A A;
typedef struct B B;
struct A { double a; };

struct B A ba; };

would be equivalent to

sizeof B){ }).ba.a)

that is, to create a compound literal of the requested type (the first element in the identifier chain, B) and then iteratively
accessing the members of that compound literal (ba and a) with the . operator. C has no structure or union members that
would be allowed in evaluations without having a concrete instance of such a type, and the use of such a construct would
be restricted to contexts that are not evaluated, that is sizeof, alignof, and the controlling expression in a generic selection

140)1f the member used to read the contents of a union object is not the same as the member last used to store a value in the
object, the appropriate part of the object representation of the value is reinterpreted as an object representation in the new
type as described in 6.2.6 (a process sometimes called “type punning”). This might be a trap representation.

14D1f &E is a valid pointer expression (where & is the “address-of” operator, which generates a pointer to its operand), the
expression (&) — MOS is the same as E.MOS.

142)For example, a data race would occur if access to the entire structure or union in one thread conflicts with access to a
member from another thread, where at least one access is a modification. Members can be safely accessed using a non-atomic
object which is assigned to or from the atomic object.

modifications to ISO/IEC 9899:2018, § 6.5.2.3 page 78 Language

10

11

12

N2644/P2309R0 cmin..corép6.5.2.3, working draft — January 20, 2021 CORE 202101 (E)

lus typeof with this specification). Therefore, this feature seemed to be of minor importance for the common C/C++ core

and was not added.

The usage of that feature is not conforming to the syntax of C and is therefore a constraint violation. All implementations
that target the common C/C++ core should diagnose this use of the :: token.

EXAMPLE 1 If f is a function returning a structure or union, and x is a member of that structure or union, f() .x is a valid
postfix expression but is not an lvalue.

EXAMPLE 2 In:

struct s { int i; const int ci; };
struct s s;

const struct s cs;

volatile struct s vs;

the various members have the types:
s.i int
s.ci const int
cs.i const int
cs.ci const int
vs.i volatile int
vs.ci volatile const int

EXAMPLE 3 The following is a valid fragment:

union {
struct {
int alltypes;
Pon;
struct {
int type;
int intnode;
} ni;
struct {
int type;
double doublenode;
} nf;
ou;

u.nf.type = 1;

u.nf.doublenode = 3.14;

/* ... %/
——if{u-natttypes—==1})
———if{sinftunf-doublenode)===0-0)
. if (u.n.alltypes = 1)
___Lif (sin(u.nf.doublenode) = 0.0)

/* ... x/

A A A

The following is not a valid fragment (because the union type is not visible within function f):

struct t1 { int m; };
struct t2 { int m; };
int f(struct tl *xpl, struct t2 xp2)

A A A A

union {
struct tl si;

Language modifications to ISO/IEC 9899:2018, § 6.5.2.3 page 79

CORE 202101 (E) § 6.5.2.4, working draft — January 20, 202imin..core3 N2644/P2309R0

\ struct t2 s2;

| }u; |
\ /% ... %/

\ return f(&u.sl, &u.s2); \
| |
L |

Forward references: address and indirection operators (6.5.3.2), structure and union specifiers
(6.7.2.1).

6.5.2.4 Postfix increment and decrement operators
Syntax

ostfix-addition:
ostfix-expression ++

Constraints

The operand of the postfix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

Semantics

The result of the postfix++ operator is the value of the operand. As a side effect, the value of the
operand object is incremented (that is, the value 1 of the appropriate type is added to it). See the
discussions of additive operators and compound assignment for information on constraints, types,
and conversions and the effects of operations on pointers. The value computation of the result is
sequenced before the side effect of updating the stored value of the operand. With respect to an
indeterminately-sequenced function call, the operation of postfix++ is a single evaluation.Pestfix

The postfix- - operator is analogous to the postfix++ operator, except that the value of the operand
is decremented (that is, the value 1 of the appropriate type is subtracted from it).

Forward references: additive operators (6.5.6), compound assignment (6.5.17.2).

6.5.2.5 Compound literals
Syntax

type-name) initializer-list
type-name) initializer-list , }

Constraints

The type name shall specify a complete object type or an array of unknown size, but not a variable
length array type.

143)Where a pointer to an atomic object can be formed and E has integer type or pointer type, E++ is equivalent to the
following code sequence where A is the type of E and C is the corresponding non-atomic, unqualified type:

A xaddr = &E;
C old = *addr;
C new;

do {

new = old + 1;
} while ('atomic_compare_exchange_weak(addr, &old, new));

with old being the result of the operation.
Special care is necessary if E has floating type; see 6.5.17.2.

modifications to ISO/IEC 9899:2018, § 6.5.2.5 page 80 Language

10

11

12

13

14

N2644/P2309R0 cmin..corép6.5.2.5, working draft — January 20, 2021 CORE 202101 (E)

All the constraints for initializer lists in 6.7.12 also apply to compound literals.

Semantics

A postfix expression that consists of a parenthesized type name followed by a brace-enclosed list of

initializers is a compound literal. It provides an unnamed object whose value is given by the initializer
list.!4%)

If the type name specifies an array of unknown size, the size is determined by the initializer list
as specified in 6.7.12, and the type of the compound literal is that of the completed array type.
Otherwise (when the type name specifies an object type), the type of the compound literal is that
specified by the type name. In either case, the result is an lvalue.

The value of the compound literal is that of an unnamed object initialized by the initializer list. If
the compound literal occurs outside the body of a function, the object has static storage duration;
otherwise, it has automatic storage duration associated with the enclosing block.

All the semantic rules for initializer lists in 6.7.12 also apply to compound literals.!*>)

String literals, and compound literals with const-qualified types, need not designate distinct ob-
jects.140)

NOTE C and C++ have quite different concepts of the lifetime of the object that are created by compound literals.
Applications should constrain their usage to the full expression that contains them, see 62.4

EXAMPLE 1 The file scope definition

\ int xp = (int []){2, 4};

initializes p to point to the first element of an array of two ints, the first having the value two and the second, four. The
expressions in this compound literal are required to be constant. The unnamed object has static storage duration.

EXAMPLE 2 In contrast, in

void f(void)
{
int *p;
/*...x/
p = (int [2]){*p};
/*...%/
}

p is assigned the address of the first element of an array of two ints, the first having the value previously pointed to by p and
the second, zero. The expressions in this compound literal need not be constant. The unnamed object has automatic storage
duration.

EXAMPLE 3 Initializers with designations can be combined with compound literals. Structure objects created using
compound literals can be passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if drawline instead expected pointers to struct point:

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

EXAMPLE 4 A read-only compound literal can be specified through constructions like:

(const float []){1e0, lel, le2, 1le3, le4, le5, le6}

EXAMPLE 5 The following three expressions have different meanings:

14)Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types or void only, and
the result of a cast expression is not an Ivalue.
145)For example, subobjects without explicit initializers are initialized to zero.

146)This allows implementations to share storage instances for string literals and constant compound literals with the same

Language modifications to ISO/IEC 9899:2018, § 6.5.2.5 page 81

15

16

17

18

CORE 202101 (E) § 6.5.2.6, working draft — January 20, 202imin..core3 N2644/P2309R0

"/tmp/ fileXXXXXX"
(char [1){"/tmp/fileXXXXXX"}
(const char []){"/tmp/fileXXXXXX"}

The first always has static storage duration and has type array of char, but need not be modifiable; the last two have
automatic storage duration when they occur within the body of a function, and the first of these two is modifiable.

EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory and can even be
shared. For example,

___(const char []){"abc"} = "abc"

might yield 1 if the literals” storage instance is shared.

EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly linked object. For
example, there is no way to write a self-referential compound literal that could be used as the function argument in place of
the named object endless_zeros below:

struct int_list { int car; struct int_list xcdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

EXAMPLE 8 Each compound literal creates only a single object in a given scope:

struct s { int i; };

int f (void)

{
struct s *xp = 0, x*q;
int j = 0;
again:
a=p, p==~&((struct s){ j++ });
if (j < 2) goto again;
e TEtUrN P = 9 A 21 = 15
}

The function f () always returns the value 1.

Note that if an iteration statement were used instead of an explicit goto and a labeled statement, the lifetime of the unnamed
object would be the body of the loop only, and on entry next time around p would have an indeterminate value, which would
result in undefined behavior.

Forward references: type names (6.7.9), initialization (6.7.12).

6.5.2.6 Lambda expressions
Syntax

lambda-expression;
capture-clause parameter-clause,; attribute-specifier-sequenceq,: function-bod

L captuTelistop: 1

capture-default

capture-list-element
capture-list , capture-list-element

capture-default:

modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 82 Language

N2644/P2309R0 cmin..coré6.5.2.6, working draft — January 20, 2021 CORE 202101 (E)

&

capture-list-element:
V8l Ue-Capture
e Avalue-capture

value-capture:
capture
capture = assignment-expression

o S capture.

capture;

arameter-type-list ope)

Constraints
147)

A lambda expression shall not be operand of the unary & operator.

A capture that is listed in the capture list is an explicit capture . If the first element in the capture list
is a capture default, id is the name of an object with automatic storage duration in a surrounding
scope, id is used within the function body of the lambda without redeclaration and id is not an
explicit capture or a parameter, the effect is as if id were a value capture (for an = token) or a
reference capture (for an & token). Such a capture is an implicit capture . 1f the first element in the
capture list is an = token, all other elements shall be lvalue captures; if it is an & token, all shall be
value captures.

Value captures without assignment expression or Ivalue captures shall be names of complete objects
with automatic storage duration in a scope surrounding the lambda expression that are visible at
the point of evaluation of the lambda expression. Additionally, value captures shall not have an
array type. An identifier shall appear at most once; either as an explicit capture or as a parameter

Within the function body, identifiers (including explicit and implicit captures, and parameters of
the lambda) shall be used according to the usual scoping rules, but identifiers of a scope that
includes the lambda expression, that are not Ivalue captures and that are declared with automatic
storage duration shall only be evaluated within the assignment expression of a value capture."*®

A closure that has an explicit or implicit lvalue capture id shall not be used as the expression of a
return statement, unless that return statement is itself associated to another closure for which id

is an lvalue capture that refers to the same object.!*)

After determining the type of all captures and parameters the function body shall be such that a
return type fype according to the rules in 6.8.6.4 can be inferred. If the lambda occurs in a conversion
to a function pointer, the inferred return type shall be compatible to the specified return type of the

147)Objects with lambda type that can be operand of the unary & operator can be formed by type inference and initialization

with a lambda value.

A A A A AN AA

48)1dentifiers of visible automatic objects that are not captured, may still be used if they are not evaluated, for example in

typeof and sizeof (if they are not VM types) or as controlling expression of a generic primary expression.

149)Since each closure expression may have a unique type, it is generally not possible to assign it to an object with lambda

value or to a function pointer that is declared outside of its defining scope or to use it, even indirectly, through a pointer to
lambda value. Therefore the present constraint inhibits the use of an lvalue closure outside of the widest enclosing scope of
its defining closure expression in which all its Ivalue captures are visible.

Language modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 83

10

11

12

13

14

15

CORE 202101 (E) § 6.5.2.6, working draft — January 20, 202imin..core3 N2644/P2309R0

Semantics

If the parameter clause is omitted, a clause of the form () is assumed. A lambda expression without
capture list is called a function literal expression , otherwise it is called a closure expression . A lambda
value originating from a function literal expression is called a function literal , otherwise it is called a
closure . A closure that has an lvalue capture is called an [value closure , otherwise it is a value closure

Similar to a function definition, a lambda expression forms a single block scope that comprises its
capture clause, its parameter clause and its function body. Each explicit capture and parameter
has a scope of visibility that starts immediately after its definition is completed and extends to
the end of the function body. The scope of visibility of implicit captures is the function body. In
particular, captures and parameters are visible throughout the whole function body, unless they
are redeclared in a depending block within that function body. Value captures and parameters
have automatic storage duration; in each function call to the formed lambda value, a new instance
of each value capture and parameter is created and initialized in order of declaration and has a
lifetime until the end of the call, only that the address of value captures is not necessarily unique.

A lambda expression for which at least one parameter declaration in the parameter list has no
type specifier is a type-generic lambda with an imcomplete lambda type. It shall only occur in a
void expression, as the postfix expression of a function call or, if the capture clause is empty, in
a conversion to a pointer to function with fully specified parameter types, see 6.3.2.1. For a void
expression, it has no side effects and shall be ignored.

For a function call, the e of an argument (after lvalue, array-to-pointer or function-to-pointer

conversion) to an underspecified parameter shall be such that it can be used to complete the type of
that parameter analogous to 6.7.13, only that the inferred type for an parameter of array or function
type is adjusted analogously to function declarators (??) to a possibly qualified object pointer type
conversion of any arguments, the parameter types shall be those of the function type.

If a value capture id is defined without an assignment expression, the assignment expression is
assumed to be id itself, referring to the object of automatic storage duration of the surroundin

scope that exists according to the constraints.'?

The implicit or explicit assignment expression E in the definition of a value capture determines
a value Ey with type To, which is E after possible Ivalue, array-to-pointer or function-to-pointer
conversion. The type of the capture is Ty const and its value is Ey for all evaluations in all function
calls to_the lambda value. If, within the function body, the address of the capture id or one of
its members is taken, either explicitly by applying a unary & operator or by an array to pointer
conversion,'* and that address is used to modify the underlying object, the behavior is undefined.
The evaluation of E takes place during the evaluation of the lambda expression; for an explicit
capture when the value capture is met and for an implicit capture at the beginning of the evaluation
of the function body.

The object of automatic storage duration id of the surrounding scope that corresponds to an Ivalue
capture shall be visible within the function body according to the usual scoping rules and shall be
accessible within the function body throughout each call to the lambda. Access to the object within
a call to the lambda follows the happens-before relation, in particular modifications to the object
that happen before the call are visible within the call, and modifications to the object within the call

are visible for all evaluations that happen after the call.>?

For each lambda expression, the return type type is inferred as indicated in the constraints. A
lambda expression X that is not type-generic has an uns n unspecified lambda type L that is the same
for every evaluation of A\, If X appears in a context that is not a function call, a value of type L is

150)The evaluation in rules in the next paragraph then stipulates that it is evaluated at the point of evaluation of the lambda

expression, and that within the body of the lambda an unmutable auto object of the same name, value and type is made
accesssible.
15D The capture does not have array type, but if it has a union or structure type, one of its members may have such a type.

152)That is, Ivalue conversion of id results in the same lvalue with the same type and address as for the scope surroundin
the lambda.

modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 84 Language

16

17

18

19

N2644/P2309R0 cmin..coré6.5.2.6, working draft — January 20, 2021 CORE 202101 (E)

formed that identifies A and the specific set of values of the identifiers in the capture clause for the
evaluation, if any. This is called a lambda value . It is unspecified, whether two lambda expressions
A and r share the same lambda type even if they are lexically equal but appear at different points
of the program. Objects of lambda type shall not be modified.

Recommended practice

To avoid their accidental modification, it is recommended that declarations of lambda type objects
are const qualified. Whenever possible, implementations are encouraged to diagnose any attempt
to modify a lambda type object.

EXAMPLE 1 The usual scoping rules extend to lambda expressions; the concept of captures only restricts which identifiers
may be evaluated or not.

#include <stdio.h>

static long var;_

L J(void){ printf("sld\n", var); }(); //_valid, prints 0
var](void){ printf("%ld\n", var); }(); // invalid, var is static

Ant var = 55

_.auto const \ = void){ printf("%d\n" var)' Yi [/ freeze var
[&var] (void) r1ntf("°/d\n" var); // valid, prints 7
MMMMMMWM

[var](void){ printf ()

"%zu\n", sizeof var); rints sizeof(int)
"%zu\n", sizeof var); ; rints sizeof(int)
L J(void){ extern lon var, rintf("sld\n", var; }(); // valid, prints 0O

// valid,

2\,—!

NOTE This specification opted to also apply and extend the C rules for parameter visibility from function declarationss
to lambda expressions, such that parameter or capture names can be used as soon as they are declared. That possibility is
important wherever there is a need to ensure consistency between types, array lengths or attributes.

EXAMPLE 2 The following uses a function literal as a comparison function argument for qsort.

#define SORTFUNC(TYPE) [](size_t nmemb, TYPE A[nmemb]) \
gsort(A, nmemb, sizeof (A[O]), N\
oS void constx x, void constx y){ _______/* comparison lambda x/ \
TYPE X = x(TYPE constx*)Xx; \

return (X <Y) ? -1 : ((X>Y) ?1:0); /*x return of type int *x/ \

e A A\
ISSUIIUIY F SNSUUUIIIIIIIIIUIISIIIIIINUUUISIUIIIUUUUUUIIIIU USSR §
return A; \
Ak
long C[5] = {4, 3,2,.1, 0, };
SORTFUNC(long)(5, C); ~ _________ [/ lambda — (pointer —) function call
auto const sortDouble = SORTFUNC(double); // lambda value — lambda object
doublex (*sF)(size_t nmemb, double[nmemb]) = sortDouble; // conversion

"~ doublex ap = sortDouble(4, (double[]){ 5, 8.9, 0.1, 99, }):

double B[27] = /* some values ... *x/
sF(27, B); //_reuses_the same function

Magable* (*sG) (size_t nmemb, double[nmemb]) = SORTFUNC(double); // conversion

Language modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 85

20

21

CORE 202101 (E) § 6.5.2.6, working draft — January 20, 202imin..core3 N2644/P2309R0

This code evaluates the macro SORTFUNC twice, therefore in total four lambda expressions are formed.

The function literals of the “comparison lambdas” are not operands of a function call expression, and so by conversion a
pointer to function is formed and passed to the corresponding call of gsort. Since the respective captures are empty, the
effectis as if to define two comparison functions, that could equally well be implemented as static functions with auxiliary
names and these names could be used to pass the function pointers to gsort.

The outer lambdas are again without capture. In the first case, for Long, the lambda value is subject to a function call, and
it is unspecified if the function call uses a specific lambda type or directly uses a function pointer. For the second, a copy,
of the lambda value is stored in the variable sortDouble and then converted to a function pointer sF. Other than for the
difference in the function arguments, the effect of calling the lambda value (for the compound literal) or the function pointer
(for array B) is the same:

For optimization purposes, an implementation may fold lambda values that are expanded at different points of the program
such that effectively only one function is generated. For example here the function pointers sF and sG may or may not be
equal.

EXAMPLE 3 Even more, it is possible to implement a type-generic macro for sorting:

#define SPECIALIZE(MACRO, -2) .\
[1 (size_t _01, typeof(_2) _02) { \

return MACRO(_01, _02); ..\

~

#define SORT size_t nmemb, auto A[nmemb \
gsort(A, nmemb, sizeof (AlO]) . N
void const*x x, void constx /* comparison lambda x*/ \

auto X = x(typeof(A))Xx;
auto Y = x(typeof(A))y;
return (X <Y) ? -1 : ((X>Y) 21 : 0); /x return of type int x/

H

return A;

IR P

L

_long C[5] ={4,3,2,1,0,};
SORT(5, C);
double D[] = { 5, 8.9, 0.1, 99, };
auto sortDouble = SPECIALIZE(SORT, D); //_lambda value — lambda object

doublex (*sF)(size_t nmemb, double[nmemb]) = sortDouble; // conversion

doublex ap = sortDouble(4, D);

double B[27] = { /* some values ... x/
L SF271, B o[/ Teuses the same function
doublex (*sG)(size_t nmemb, double[nmemb]) = SPECIALIZE(SORT, B); // conversion

A can be used in a typeof specifier, because it is not evaluated, there. The SORT macro can then be used without providin
further type specification to sort array C.

Usage of the SORT macro other than in a function call are not defined, because otherwise the two nested lambda values have
insufficient type information. So to provide a specialization for double, the SPECIALIZE macro wraps the call to SORT in a

third level of lambda expression. This lambda expression has fully specified parameter types, and so the result can be kept
in the sortDouble variable.

That specialization can then be used as above for direct calls or after conversion to a function pointer. Again, it is unspecified
if the two function pointers sF and sG are identical or not.

EXAMPLE 4 Consider the following type-generic function literal that computes the maximum value of two parameters X
and Y.

. [llauto a, auto b){
return (a < 0)
: ((b>=0) ? ((@a<b)?2b:a):a);
X X)

L
bl v o

modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 86 Language

22

1

N2644/P2309R0 cmin..core 6.5.3, working draft — January 20, 2021 CORE 202101 (E)

auto S = MAXIMUM(-1U, -1L);

After preprocessing, the definition of R, becomes

auto R = auto a, auto b){
return (a < G)

(-1 -1U)

To determine type and value of R, first the type of the parameters in the function call are inferred to be signed int and
unsigned int, respectively. With this information, the type of the return expression becomes the common arithmetic type
of the two, which is unsigned int. Thus the return type of the lambda is that type; The resulting lambda value is the first
operand to the function call operator (). So R has the type unsigned int and a value of UINT_MAX.

For S, a similar deduction shows that the value still is UINT_MAX but the type could be unsigned int (if int and long have
the same width) or long (if long is wider than int).

As long as they are integers, regardless of the specific type of the arguments, the e of the expression is always such that
the mathematical maximum of the values fits. So MAXIMUM implements a type-generic maximum macro that is suitable for
any combination of integer types.

EXAMPLE 5

void matmult(size_t k, size_t 1, size_t m

___________double const ALKI[U], double const BILI[ml, double const CIK][m]) {
/[ensure constant_propagation of 1 and m

ok
return ret;
i
[/ vector matrix product
ok
A
double const (*Ap)[l] = A[kO];
double (xCp)[m] = C[KkO];
At
}

This function evaluates two closures; Ad has a return type of double, Ay of void. Both lambda values serve repeatedly as
first operand to function evaluation but the evaluation of the captures is only done once for each of the closures. For the
purpose of optimization, an implementation could generate copies of the underlying functions for each evaluation of such
a closure such that the values of the captures 1 and m are replaced on a machine instruction level.

6.5.3 Unary operators

Syntax

unary-expression:
postfix-expression
++ Unary-expression
- - unary-expression
unary-operator cast-expression

Language modifications to ISO/IEC 9899:2018, § 6.5.3 page 87

CORE 202101 (E) § 6.5.3.1, working draft — January 20, 202imin..core3 N2644/P2309R0

sizeof unary-expression
sizeof (type-name)
—Atignef-alignof (type-name)

unary-operator: one of
& *x + - ~ —+ 5

A~

6.5.3.1 Prefix increment and decrement operators
Constraints

The operand of the prefix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

Semantics

The value of the operand of the prefix++ operator is incremented. The result is the new value of the
operand after incrementation. The expression++E is equivalent to (E+=1). See the discussions of
additive operators and compound assignment for information on constraints, types, side effects,
and conversions and the effects of operations on pointers.

The prefix- - operator is analogous to the prefix++ operator, except that the value of the operand is
decremented.

Recommended practice
C and C++ differ by the result category for these operators. Whereas for C they are values (and in

this aspect equivalent to the corresponding postfix operator), in C++ they are lvalues and so the
can be chained. Applications that target the C/C++ core should avoid the usage of these operators
as operands to other expressions.

Forward references: additive operators (6.5.6), compound assignment (6.5.17.2).

6.5.3.2 Address and indirection operators
Constraints

The operand of the unary & operator shall be either a function designator, the result of a [] or unary
* operator, or an Ivalue that designates an objectthatisnet-a-bit-field-andisnotdeclared-with-the

register storage-class specifier.. !>

The operand of the unary x operator shall have pointer type.

Semantics

The unary & operator yields the address of its operand. If the operand has type “type”, the result has
type “pointer to type”. If the operand is the result of a unary * operator, neither that operator nor
the & operator is evaluated and the result is as if both were omitted, except that the constraints on
the operators still apply and the result is not an lvalue. Similarly, if the operand is the result of a []
operator, neither the & operator nor the unary that is implied by the [] is evaluated and the result
is as if the & operator were removed and the [] operator were changed to a+ operator. Otherwise,
the result is a pointer to the object or function designated by its operand.

The unary * operator denotes indirection. If the operand points to a function, the result is a function
de51gnator if it points to an object, the result is an lvalue de51gnat1ng the object. If the operand
has type “pointer to type”, the result has type “type”.

pointer-the behavior-of the unary+operator-is-undefinedThe pointer value shall be valid, not be

o 154)

the end address of its provenance and be correctly aliened for “t .

153)The core:: noalias attribute may be used to inhibit the application of the unary & operator to objects and functions.
159)Thus, &+E is equivalent to E (even if E is a null pointer), and &(E1[E2]) to ((E1)+(E2)). Itis always true thatif Eis a

function designator or an Ivalue that is a valid operand of the unary & operator, *&E is a function designator or an lvalue
equal to E. If *P is an Ivalue and T is the name of an object pointer type, * (T)P is an lvalue that has a type compatible with
that to which T points.

Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an address inappropriately

modifications to ISO/IEC 9899:2018, § 6.5.3.2 page 88 Language

N2644/P2309R0 cmin..corép6.5.3.3, working draft — January 20, 2021 CORE 202101 (E)

Forward references: storage-class specifiers (6.7.1), structure and union specifiers (6.7.2.1).

6.5.3.3 Unary arithmetic operators
Constraints

The operand of the unary+ or- operator shall have arithmetic type; of the ~ operator, integer type;
of the - operator, scalar type.

Semantics

The result of the unary + operator is the value of its (promoted) operand. The integer promotions
are performed on the operand, and the result has the promoted type.

The result of the unary- operator is the negative of its (promoted) operand. The integer promotions
are performed on the operand, and the result has the promoted type.

The result of the ~ operator is the bitwise complement of its (promoted) operand (that is, each bit in
the result is set if and only if the corresponding bit in the converted operand is not set). The integer
promotions are performed on the operand, and the result has the promoted type. If the promoted
type is an unsigned type, the expression ~E is equivalent to the maximum value representable in
that type minus E.

The fesu%eﬂheloglcal negatlon operator 4+ ﬁ@fﬁtheﬁa}ﬂeehtseperﬂﬂéreempafem%equal%e

eq&wa}en’ﬁt&(—@EEFﬁrst Converts the operand to bool If that conversion 1e1ds true the resul
is false; otherwise, the result is true.

NOTE In the current C specification the result of logical negation operator — is not bool but int. Therefore it should not
be used directly as argument to a type-generic macro or in another context that is sensible to the type of the expression.

6.5.3.4 The sizeof and alignof operators
Constraints

The sizeof operator shall not be applied to an expression that has function type or an incomplete
type, or to the parenthesized name of such a type

-or-to-an-expression-that-designates-a-bit-field
member—The —Atignef-. The alignof operator shall not be applied to a function type or an

incomplete type.

Semantics

The sizeof operator yields the size (in bytes) of its operand, which may be an expression or the
parenthesized name of a type. The size is determined from the type of the operand. The result
is an integer. If the type of the operand is a variable length array type, the operand is evaluated;
otherwise, the operand is not evaluated and the result is an integer constant.

The —Atignef-alignof operator yields the alignment requirement of its operand type. The operand
is not evaluated and the result is an integer constant. When applied to an array type, the result is the
alignment requirement of the element type.

When sizeof is applied to an operand that has type char, unsigned char, or signed char, (or
a qualified version thereof) the result is 1. When applied to an operand that has array type, the
result is the total number of bytes in the array.’® When applied to an operand that has structure or
union type, the result is the total number of bytes in such an object, including internal and trailing
padding.

The value of the result of both operators is implementation-defined, and its type (an unsigned

integer type) is size_t ;defined-in{(and-other-headers).

EXAMPLE 1 A principal use of the sizeof operator is in communication with routines such as storage allocators and I/O
systems. A storage-allocation function might accept a size (in bytes) of an object to allocate and return a pointer to void. For
example:

extern void *alloc(size_t);

aligned for the type of object pointed to, the address of an object after the end of its lifetime, or any other indeterminate value.
159When applied to a parameter declared to have array or function type, the sizeof operator yields the size of the adjusted
(pointer) type (see 6.9.1).

Language modifications to ISO/IEC 9899:2018, § 6.5.3.4 page 89

CORE 202101 (E) § 6.5.4, working draft — January 20, 202Tmin..core3 N2644/P2309R0

\ double *dp = alloc(sizeof xdp);

The implementation of the alloc function presumably ensures that its return value is aligned suitably for conversion to a
pointer to double.

EXAMPLE 2 Another use of the sizeof operator is to compute the number of elements in an array:

sizeof array / sizeof array[0]

EXAMPLE 3 In this example, the size of a variable length array is computed and returned from a function:

——#inetude—~<stddef.h>

size_t fsize3(int n)

{
char b[n+3]; // variable length array
return sizeof b; // execution time sizeof
}
int main()
{
size_t size;
size = fsize3(10); // fsize3 returns 13
return 0;
)

Forward references: common-definitions{719),-declarations (6.7), structure and union specifiers
(6.7.2.1), type names (6.7.9), array declarators (6.7.8.2).

6.5.4 Cast operators

Syntax
cast-expression:
unary-expression
(type-name) cast-expression

Constraints

Unless the type name specifies a void type, the type name shall specify atomic, qualified, or
unqualified scalar type, and the operand shall have scalar type.

Conversions that involve pointers, other than where permitted by the constraints of 6.5.17.1, shall be
specified by means of an explicit cast.

A pointer type shall not be converted to any floating type. A floating type shall not be converted to
any pointer type.

Semantics

Preceding an expression by a parenthesized type name converts the value of the expression to the
unqualified version of the named type. This construction is called a cast.!®® A cast that specifies no
conversion has no effect on the type or value of an expression.

If the value of the expression is represented with greater range or precision than required by the type
named by the cast (6.3.1.8), then the cast specifies a conversion even if the type of the expression is
the same as the named type and removes any extra range and precision.

Forward references: equality operators (6.5.10), function declarators (6.7.8.3), simple assignment
(6.5.17.1), type names (6.7.9).

156) A cast does not yield an Ivalue.

modifications to ISO/IEC 9899:2018, § 6.5.4 page 90 Language

N2644/P2309R0 cmin..core 6.5.5, working draft — January 20, 2021 CORE 202101 (E)

6.5.5 Multiplicative operators

Syntax
1 multiplicative-expression:
cast-expression
multiplicative-expression - X_cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression
Constraints

2 Each of the operands shall have arithmetic type. The operands of the % operator shall have integer
type.
Semantics

3 The usual arithmetic conversions are performed on the operands.

4 The result of the binary *-x operator is the product of the operands.

5 The result of the / operator is the quotient from the division of the first operand by the second; the
result of the % operator is the remainder. In both operations, if the value of the second operand is
zero, the behavior is undefined.

6 When integers are divided, the result of the / operator is the algebraic quotient with any fractional
part discarded.’> If the quotient a/b is representable, the expression {a/b)+b——a%b-(a/b)xb + a
%b shall equal a; otherwise, the behavior of both a/b and a%b is undefined.

6.5.6 Additive operators

Syntax
1 additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression
Constraints

2 For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a
complete object type and the other shall have integer type. (Incrementing is equivalent to adding 1.)

3 For subtraction, one of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible complete object
types; or

— the left operand is a pointer to a complete object type and the right operand has integer type.

(Decrementing is equivalent to subtracting 1.)

Semantics
4 If both operands have arithmetic type, the usual arithmetic conversions are performed on them.
5 The result of the binary + operator is the sum of the operands.

6 The result of the binary - operator is the difference resulting from the subtraction of the second
operand from the first.

157)This is often called “truncation toward zero”.

Language modifications to ISO/IEC 9899:2018, § 6.5.6 page 91

10

11

12

13

CORE 202101 (E) § 6.5.6, working draft — January 20, 202Tmin..core3 N2644/P2309R0

For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

When an expression that has integer type is added to or subtracted from a pointer, the result has the
type of the pointer operand. If the pointer operand points to an element of an array object, and the
array is large enough, the result points to an element offset from the original element such that the
difference of the subscripts of the resulting and original array elements equals the integer expression.

expression{Q)—1-pointsto-the lastelement-of the-array-object—1f both the pointer operand and the
result point to elements of the same array object, or one past the last element of the array object, the
evaluation shall not produce an overflow; otherwise, the behavior is undefined. If the result points
one past the last element of the array object, it shall not be used as the operand of a unary * operator

that is evaluated. The result pointer has the same provenance as the pointer operand.'>®
When two pointers are subtracted, both shall be valid. If they compare equal the result is 0.

Otherwise they shall have the same provenance and point to elements of the same array object,
or one past the last element of the array object; the result is the difference of the subscripts of the

two array elements. The size of the result is implementation-defined, and its type (a signed integer
type) is ptrdiff_t defined-intheheader. If the result is not representable in an object of that type,
the behavior is undefined. In-otherwords;if-the-

NOTE 1 If the expression P points to the i-th element of an array object, the expressions (P)+N (equivalently, N+(P)) and
(P) -N (where N has the value n) point to, respectively, the i + n-th and 7 — n-th elements of the array object, provided the
exist. Moreover, if the expression P points to the last element of an array object, the expression (P)+1 points one past the
last element of the array object, and if the expression Q points one past the last element of an array object, the expression
(Q)-1 points to the last element of the array object.

NOTE 2 If the expressions P and Q point to, respectively, the i-th and j-th elements of an array object, the expression (P) - (Q)
has the value i — j provided the value fits in an object of type ptrdiff_t. Moreover, if the expression P points either to an
element of an array object or one past the last element of an array object, and the expression Q points to the last element of the
same array object, the expression ((Q)+1) - (P) has the same value as ((Q)- (P))+1 and as- ((P)-((Q)+1)) , and has the
value zero if the expression P points one past the last element of the array object, even though the expression (Q)+1 does not
point to an element of the array object.

NOTE 3 Another way to approach pointer arithmetic is first to convert the pointer(s) to character or void pointer(s): In this
scheme the integer expression added to or subtracted from the converted pointer is first multiplied by the size of the object
originally pointed to, and the resulting pointer is converted back to the original type. For pointer subtraction, the result of
the difference between the character or void pointers is similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which can overlap another object in the

rogram) just after the end of the object in order to satisfy the “one past the last element” requirements.

EXAMPLE Pointer arithmetic is well defined with pointers to variable length array types.

{

intn=4, m=3;

int a[n]l[m];

A—=—p a; /F——==71
it (sp)Im] = 3; /[p = Salo]
e R F= 15 AL R = 8all]
e FR)L2) =995 4/ 2l1)I2] = 99
=R B LN =D

}

158)[f the pointer operand P had been the result of an integer-to-pointer or scanf conversion that could have two possible

rovenances, and the integer value added or subtracted is not 0, the provenance S for the additive operation (and henceforth
other operations with P) must be such that the result lies in S (or one beyond).

modifications to ISO/IEC 9899:2018, § 6.5.6 page 92 Language

14

N2644/P2309R0 cmin..core 6.5.7, working draft — January 20, 2021 CORE 202101 (E)

If array a in the above example were declared to be an array of known constant size, and pointer p were declared to be a
pointer to an array of the same known constant size (pointing to a), the results would be the same.

Forward references: array declarators (6.7.8.2);commen-definitions{719)—,_

6.5.7 Bitwise shift operators
Syntax
shift-expression:
additive-expression
shift-expression <<- & _additive-expression
shift-expression >> &> additive-expression

Constraints
Each of the operands shall have integer type.

Semantics

The integer promotions are performed on each of the operands. The type of the result is that of the
promoted left operand. If the value of the right operand is negative or is greater than or equal to the
width of the promoted left operand, the behavior is undefined.

The result of E-—<<-E2-E1 < E2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros.
If E1 has an unsigned type, the value of the result is E1 x 282 reduced modulo one more than the
maximum value representable in the result type. If E1 has a signed type and nonnegative value, and
E1l x 282 is representable in the result type, then that is the resulting value; otherwise, the behavior is
undefined.

The result of E->>-E2E1 ®>E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type
or if E1 has a signed type and a nonnegative value, the value of the result is the integral part
of the quotient of E1/2F2. If E1 has a signed type and a negative value, the resulting value is
implementation-defined.

6.5.8 Three-way comparison operator
Syntax

compare-expression:
shift-expression
compare-expression <=> shift-expression

Constraints

The three-way comparison operator shall only be used after the <stdcompare.h> header has been
included. Additional constraints apply as specified in the correponding clause 7.31.

Description

The three-way comparison operator provides a tool to compare values of most object or function
type. For the details see the indicated clause.

6.5.9 Relational operators
Syntax
relational-expression:

shift-expression- compare-expression
relational- -expression < ~shift-expressior- compare-expression.
relational-expression > -shift-expression- compare-expression
relational-expression <=—shift-expressiorn <_compare-expression
relational-expression ->=—shift-expressiorn > _compare-expression_

Language modifications to ISO/IEC 9899:2018, § 6.5.9 page 93

CORE 202101 (E) § 6.5.10, working draft — January 20, 202dmin..core3 N2644/P2309R0

Constraints
One of the following shall hold:

— both operands have real type; or

— both operands are pointers to qualified or unqualified versions of compatible object types.

Semantics
If both of the operands have arithmetic type, the usual arithmetic conversions are performed.

For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

behawefﬁtmdef—meéthe shall both be Vahd and have the same rovenance. The result de ends
on the relative ordering of their abstract addresses.

Each of the operators < (less than), > (greater than), <=-< (less than or equal to), and >=> (greater
than or equal to) shall yield +-true if the specified relation is-true-and-0-if-itisfalseholds and false

otherwise.!™ Fheresulthastype-int—
NOTE In the current C specification the result is not bool but int. Therefore it should not be used directly as argument to
a type-generic macro or in another context that is sensible to the type of the expression.
6.5.10 Equality operators
Syntax
equality-expression:
relational-expression

equality-expression -==- = relational- expresszon
equality-expression ‘= iﬁ relational-expression

Constraints
One of the following shall hold:
— both operands have arithmetic type;
— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void; or

— one operand is a pointer and the other is a null pointer constant.

Semantics

The === _(equal to) and =+ (not equal to) operators are analogous to the relational operators
except for their lower precedence.'® None of the operands shall be indeterminate. Each of the
159)The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it means (a<b)<c; in other

words, “if a is less than b, compare 1 to c; otherwise, compare 0 to c”.
160)Because of the precedences, a<b = c<d is 1 whenever a<b and c<d have the same truth-value.

modifications to ISO/IEC 9899:2018, § 6.5.10 page 94 Language

N2644/P2309R0 cmin..core§ 6.5.11, working draft — January 20, 2021 CORE 202101 (E)

operators yields +-true if the specified relation is-true-and-0-if-it-isfalse—The result-has-type-

mmm For any pair of operands, exactly one of the relations is-trueyields
true.

If both of the operands have arithmetic type, the usual arithmetic conversions are performed. Values
of complex types are equal if and only if both their real parts are equal and also their imaginary parts
are equal. Any two values of arithmetic types from different type domains are equal if and only
if the results of their conversions to the (complex) result type determined by the usual arithmetic
conversions are equal.

If both of the operands are null pointer constants, they compare equal.

Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a null
pointer constant, the null pointer constant is converted to the type of the pointer. If one operand is a
pointer to an object type and the other is a pointer to a qualified or unqualified version of void, the
former is converted to the type of the latter.

Two-pointersIf one operand is null they compare equal if and only if both-are nullpointers,both
Wmm are pomters to the same object {including a
&mmm pomters to eﬂepasfﬂ%

first-array-object-in-the-addressspace—objects and compare equal if and only if the have the same
abstract address.

For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

NOTE In the current C specification the result is not bool but int. Therefore it should not be used directly as argument to
a type-generic macro or in another context that is sensible to the type of the expression.

6.5.11 Bitwise AND operator

Syntax
AND-expression:
equality-expression
AND-expression & N _equality-expression

Constraints
Each of the operands shall have integer type.

Semantics
The usual arithmetic conversions are performed on the operands.

The result of the binary &) operator is the bitwise AND of the operands (that is, each bit in the
result is set if and only if each of the corresponding bits in the converted operands is set).

6.5.12 Bitwise exclusive OR operator
Syntax
exclusive-OR-expression:
AND-expression
exclusive-OR-expression ~ AND-expression

Constraints
Each of the operands shall have integer type.

Language modifications to ISO/IEC 9899:2018, § 6.5.12 page 95

CORE 202101 (E) § 6.5.13, working draft — January 20, 202dmin..core3 N2644/P2309R0

Semantics
The usual arithmetic conversions are performed on the operands.

The result of the ~ operator is the bitwise exclusive OR of the operands (that is, each bit in the result
is set if and only if exactly one of the corresponding bits in the converted operands is set).

6.5.13 Bitwise inclusive OR operator

Syntax

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression U exclusive-OR-expression

Constraints
Each of the operands shall have integer type.

Semantics
The usual arithmetic conversions are performed on the operands.

The result of the +-U operator is the bitwise inclusive OR of the operands (that is, each bit in the
result is set if and only if at least one of the corresponding bits in the converted operands is set).

6.5.14 Logical AND operator

Syntax
logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && A_inclusive-OR-expression

Constraints
Each of the operands shall have scalar type.

Semantics

The &&/ operator shall yield 3-true if both of its operands eompare-unequal-to-Oyield true when
converted to bool ; otherwise, it yields 6—false. The result has type int-bool .

Unlike the bitwise binary &) operator, the &&/\ operator guarantees left-to-right evaluation; if the
second operand is evaluated, there is a sequence point between the evaluations of the first and

second operands. If the first operand eemparesequal-te-Oconverts to false, the second operand is
not evaluated.

NOTE In the current C specification the result is not bool but int. Therefore it should not be used directly as argument to
a type-generic macro or in another context that is sensible to the type of the expression.

6.5.15 Logical OR operator

Syntax
logical-OR-expression:
logical-AND-expression
logical-OR-expression -V logical-AND-expression

Constraints
Each of the operands shall have scalar type.

Semantics

The +-V operator shall yield +-true if either of its operands compare-unequal-to-Oyields true when
converted to bool ; otherwise, it yields 6—false. The result has type int-bool .

Unlike the bitwise -U operator, the +{-V operator guarantees left-to-right evaluation; if the second

modifications to ISO/IEC 9899:2018, § 6.5.15 page 96 Language

N2644/P2309R0 cmin..core§ 6.5.16, working draft — January 20, 2021 CORE 202101 (E)

operand is evaluated, there is a sequence point between the evaluations of the first and second
operands. If the first operand compares-unequal-te-Oconverts to true, the second operand is not
evaluated.

NOTE In the current C specification the result is not bool but int. Therefore it should not be used directly as argument to
a type-generic macro or in another context that is sensible to the type of the expression.

6.5.16 Conditional operator

Syntax
conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Constraints
The first operand shall have scalar type.

One of the following shall hold for the second and third operands:

— both operands have arithmetic type;
— both operands have the same structure or union type;
— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— both operands are nullptr;

— one operand is a pointer and the other is a null pointer constant; or

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void.

Semantics

The first operand is evaluated and the result is converted to bool ; there is a sequence point between
its evaluation and the evaluation of the second or third operand (whichever is evaluated). The
second operand is evaluated only if the first compares-unequal-to-Oconverts to true ; the third
operand is evaluated only if the first compares-equal-te-Oconverts to false ; the result is the value

of the second or third operand (whichever is evaluated), converted to the type described below.'®V

If both the second and third operands have arithmetic type, the result type that would be determined
by the usual arithmetic conversions, were they applied to those two operands, is the type of the
result. If both the operands have structure or union type, the result has that type. If both operands
have void type, the result has void type.

If both the second and third operands are nullptr the result has the same type and value as
nullptr. Otherwise, if either of the second or third operands is nullptr, and the other is an
integer constant expression of value 0 the behavior is undefined.'®?

If both the second and third operands are pointers or one is a null pointer constant and the other
is a pointer, the result type is a pointer to a type qualified with all the type qualifiers of the types
referenced by both operands. Furthermore, if both operands are pointers to compatible types or to
differently qualified versions of compatible types, the result type is a pointer to an appropriately
qualified version of the composite type; if one operand is a null pointer constant, the result has the
type of the other operand; otherwise, one operand is a pointer to void or a qualified version of void,
in which case the result type is a pointer to an appropriately qualified version of void.

16D A conditional expression does not yield an lvalue.

162)1f the other operand has arithmetic type but is not constant and 0, a constraint is violated.

Language modifications to ISO/IEC 9899:2018, § 6.5.16 page 97

10

CORE 202101 (E) § 6.5.17, working draft — January 20, 202dmin..core3 N2644/P2309R0

Recommended practice

C and C++ differ by the result category for this operator. Whereas for C it is a value, in C++ it may
be an Ivalue and so a conditional operator may for example form the left argument of an assignment.
Applications that target the C/C++ core should avoid a usage of the conditional operator in places
where a modifiable lvalue is required.

EXAMPLE The common type that results when the second and third operands are pointers is determined in two independent
stages. The appropriate qualifiers, for example, do not depend on whether the two pointers have compatible types.

Given the declarations

const void *c_vp;
void *vp;

const int *c_ip;
volatile int *v_ip;
int xip;

const char xc_cp;

the third column in the following table is the common type that is the result of a conditional expression in which the first two
columns are the second and third operands (in either order):

c_vp c_ip const void *

v_ip 0 volatile int =

c_ip v_ip const volatile int *
vp c_cp const void *

ip c_ip const int x

vp ip void *

6.5.17 Assignment operators

Syntax

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
=R /E R = s e et m s R O

AAAAA

Constraints
An assignment operator shall have a modifiable lvalue as its left operand.

Semantics

An assignment operator stores a value in the object designated by the left operand. If a non-null

ointer is stored by an assignment operator, either directly or within a structure or union object,

the stored pointer object has the same provenance as the original. An assignment expression has
the value of the left operand after the assignment,'®® but is not an lvalue. The type of an assignment

expression is the type the left operand would have after lvalue conversion. The side effect of
updating the stored value of the left operand is sequenced after the value computations of the left
and right operands. The evaluations of the operands are unsequenced.

Recommended practice

C and C++ differ by the result category for these operators. Whereas for C it is a value, in C++ it
may be an lvalue and so these operators may be chained from left to right such as in (a+=6) *=35.
which is a constraint violation in €. Applications that target the C/C++ core should avoid a usage
of assignment operators in places where a modifiable lvalue is required.

Implementations that conform to this specification should diagnose usages of these operators that
are erroneous in one of the two languages.

163)The implementation is permitted to read the object to determine the value but is not required to, even when the object
has volatile-qualified type.

modifications to ISO/IEC 9899:2018, § 6.5.17 page 98 Language

N2644/P2309R0 cmin..cor§%.5.17.1, working draft — January 20, 2021 CORE 202101 (E)

6.5.17.1 Simple assignment
Constraints
One of the following shall hold:1*¥

— the left operand has atomic, qualified, or unqualified arithmetic type, and the right has
arithmetic type;

— the left operand has an atomic, qualified, or unqualified version of a structure or union type
compatible with the type of the right;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after lvalue conversion) both operands are pointers to qualified
or unqualified versions of compatible types, and the type pointed to by the left has all the
qualifiers of the type pointed to by the right;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after Ivalue conversion) one operand is a pointer to an object type,
and the other is a pointer to a qualified or unqualified version of void, and the type pointed to
by the left has all the qualifiers of the type pointed to by the right;

— the left operand is an atomic, qualified, or unqualified pointer, and the right is a null pointer
constant; or

— the left operand has type atomic, qualified, or unqualified =Beet-bool, and the right is a
pointer.

Semantics
In simple assignment (=), the value of the right operand is converted to the type of the assignment
expression and replaces the value stored in the object designated by the left operand.

If the value being stored in an object is read from another object that overlaps in any way the
storage of the first object, then the overlap shall be exact and the two objects shall have qualified or
unqualified versions of a compatible type; otherwise, the behavior is undefined.

EXAMPLE 1 In the program fragment

int f(void);
char c;
/* ... %/

the int value returned by the function could be truncated when stored in the char, and then converted back to int width
prior to the comparison. In an implementation in which “plain” char has the same range of values as unsigned char (and
char is narrower than int), the result of the conversion cannot be negative, so the operands of the comparison can never
compare equal. Therefore, for full portability, the variable c would be declared as int.

EXAMPLE 2 In the fragment:

char c;
int i;
long 1;

the value of i is converted to the type of the assignment expression ¢ = i, that is, char type. The value of the expression
enclosed in parentheses is then converted to the type of the outer assignment expression, that is, Long int type.

EXAMPLE 3 Consider the fragment:

169 The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion (specified in
6.3.2.1) that changes lvalues to “the value of the expression” and thus removes any type qualifiers that were applied to the
type category of the expression (for example, it removes const but not volatile from the type int volatile * const).

Language modifications to ISO/IEC 9899:2018, § 6.5.17.1 page 99

CORE 202101 (E) § 6.5.17.2, working draft — January 20, 202inin..core3 N2644/P2309R0

const char xxcpp;
char xp;
const char c = 'A’;

cpp = &p; // constraint violation
*cpp = &c; // valid
*p = 0; // valid

The first assignment is unsafe because it would allow the following valid code to attempt to change the value of the const
object c.

6.5.17.2 Compound assignment
Constraints

For the operators+= and-= only, either the left operand shall be an atomic, qualified, or unqualified
pointer to a complete object type, and the right shall have integer type; or the left operand shall have
atomic, qualified, or unqualified arithmetic type, and the right shall have arithmetic type.

For the other operators, the left operand shall have atomic, qualified, or unqualified arithmetic type,
and (considering the type the left operand would have after Ivalue conversion) each operand shall
have arithmetic type consistent with those allowed by the corresponding binary operator.

Semantics

A compound assignment of the form E1 op= E2 is equivalent to the simple assignment expression
El = E1l op (E2), except that the lvalue E1 is evaluated only once, and with respect to an inde-
termmately—sequenced functlon call, the operatlon of a compound a551gnment is a smgle eval—
uation. v '

NOTE Where a pointer to an atomic object can be formed and E1 and E2 have integer or pointer type, this is equivalent
similar to the following code sequence where F1A1 is the type of E1 anet, C1 is the corresponding non-atomic and unqualified

JESMVHCZ is the non-atomic and unqualifid type of E2:

T1—+addr—=-&EL-
T2—~vat—=—E2}+
Tl—otd—=—raddr;
T1—new;
AL xaddr = SEL;
€2 val = (E2);
___C1 old = xaddr;
oo O nev;

do {

new = old op val;

while (!atomic_compare_exchange_weak(addr, &old, new));

A~

with new being the result of the operation. The difference is that if the combination of the values of old and val is invalid
for the operation, there will no signal raised or trap performed. In particular:

— 1f “old op val” has a signed type and produces an overflow, new is the corresponding modulo of the mathematical
result of the operation.

— I the value of val is invalid for op, the value of new is unspecified.

— 1£C2is a pointer type and the value of old is null or is indeterminate, the value of new is unspecified.

— 1£C2is a pointer type and the value of “old op val” would be indeterminate, the value of new is unspecified.

If E1 or E2 has floating type, then exceptional conditions or floating-point exceptions encountered during discarded
evaluations of new would also be discarded in order to satisfy the equivalence of E1 op= E2 and E1 = E1 op (E2). For
example, if Annex F is in effect, the floating types involved have IEC 60559 formats, and FLT_EVAL_METHOD is O, the
equivalent code would be:

[
\ #include <fenv.h>

| #pragma STDC FENV_ACCESS ON
\ /% ... x/

modifications to ISO/IEC 9899:2018, § 6.5.17.2 page 100 Language

N2644/P2309R0 cmin..core§ 6.5.18, working draft — January 20, 2021 CORE 202101 (E)

fenv_t fenv;
T1—+addr—=&EL-
T2—vat—=FE2+
T1—otd—=—+add+r+
T1—+new;
e AL xaddr = SEL;
€2 yal = E2;
.. (1 old = xaddr;
. CI new;
feholdexcept(&fenv);
for (;;) {
new = old op val;
if (atomic_compare_exchange_strong(addr, &old, new))
break;
feclearexcept (FE_ALL_EXCEPT) ;

A~ A~

}

feupdateenv(&fenv) ;

If FLT_EVAL_METHOD is not 0, then 72C2 is expected to be a type with the range and precision to which E2 is evaluated in
order to satisfy the equivalence.

6.5.18 Comma operator

Syntax
expression:

assignment-expression

expression , assignment-expression
Semantics

The left operand of a comma operator is evaluated as a void expression; there is a sequence point
between its evaluation and that of the right operand. Then the right operand is evaluated; the result
has its type and value.

Recommended practice

Cand C++ differ by the result category for this operator. Whereas for C it is a value, in C++ it may.
be an lvalue and so this operator may be chained from left to right such as in (f() ,2)=0 whichisa
constraint violation in C. Generally, the use of the comma operator is often problematic because it
can easily be mixed up with other usages of the comma punctuator, such as in function arguments,

Applications that target the C/C++ core should avoid a usage of the comma operator in places
where a modifiable lvalue is required. Implementations that conform to this specification should
diagnose usages of the comma operator that are erroneous in one of the two languages.

EXAMPLE As indicated by the syntax, the comma operator (as described in this subclause) cannot appear in contexts where
a comma is used to separate items in a list (such as arguments to functions or lists of initializers). On the other hand, it can be
used within a parenthesized expression or within the second expression of a conditional operator in such contexts. In the
function call

| f(a, (t=3, t+2), c)

the function has three arguments, the second of which has the value 5.

Forward references: initialization (6.7.12).

Language modifications to ISO/IEC 9899:2018, § 6.5.18 page 101

CORE 202101 (E) § 6.6, working draft — January 20, 2021cmin..core3 N2644/P2309R0

6.6 Constant expressions
Syntax

constant-expression:
conditional-expression

Description

A constant expression can be evaluated during translation rather than runtime, and accordingly
may be used in any place that a constant may be.

Constraints

Constant expressions shall not contain assignment, increment, decrement, function-call, or comma
operators, except when they are contained within a subexpression that is not evaluated.'®® or

if they are a constexpr function call that fulfills the corresponding constraints or are contained in

such a call.

Each constant expression shall evaluate to a constant that is in the range of representable values for
its type.

No constexpr object or function call (see below) shall be formed that has a pointer type, unless it

has a null pointer value or the value is the result of a cast of an integer constant expression to the
pointer type.

Semantics

An expression that evaluates to a constant is required in several contexts. If a floating expression
is evaluated in the translation environment, the arithmetic range and precision shall be at least as
great as if the expression were being evaluated in the execution environment.'¢®)

A _constexpr object is a such declared object, or one of the elements or members of such an
object, even recursively, such that any element or member designator only uses integer constant
expressions, if any. A constexpr function call is a call that uses a function designator or lambda
value that has the constexpr specifier and that fulfills the constraints of such a call in the context
of a constant expression.

An integer constant expression-°’) shall have integer type and shall only have operands that are integer
constants, enumeration constants, character constants, constexpr objects or function calls of integer
type, sizeof expressions whose results are integer constants, zAtignef-alignof expressions, and
floating constants that are the immediate operands of casts. Cast operators in an integer constant
expression shall only convert arithmetic types to integer types, except as part of an operand to the

sizeof or -Atignef-alignof operator.

More latitude is permitted for constant expressions in initializers. Such a constant expression shall
be, or evaluate to, one of the following:

167)

— a constexpr object or function call,

— an arithmetic constant expression,
— anull pointer constant,
— an address constant, or

— an address constant for a complete object type plus or minus an integer constant expression.

165 The operand of a typeof, sizeof or alignof operator is usually not evaluated (6.5.3.4).

160)The use of evaluation formats as characterized by FLT_EVAL_METHOD also applies to evaluation in the translation
environment.

167) An integer constant expression is required in a number of contexts such as the size-of a-bit-field-member-of a-strueture;
the-value of an enumeration constant, and the size of a non-variable length array. Further constraints that apply to the integer
constant expressions used in conditional-inclusion preprocessing directives are discussed in 6.10.1.

modifications to ISO/IEC 9899:2018, § 6.6 page 102 Language

10

11

12
13

14

15

16

N2644/P2309R0 cmin..core3§ 6.6, working draft — January 20, 2021 CORE 202101 (E)

An arithmetic constant expression shall have arithmetic type and shall only have operands that are
integer constants, floating constants, enumeration constants, character constants, constexpr objects
or function calls of arithmetic type, sizeof expressions whose results are integer constants, and

—Atignef-alignof expressions. Cast operators in an arithmetic constant expression shall only
convert arithmetic types to arithmetic types, except as part of an operand to a sizeof or —Atignef

alignof operator.

An address constant is a null pointer, a pointer to an lvalue designating an object of static storage
duration, or a pointer to a function designator; it shall be created explicitly using the unary &
operator or an integer constant cast to pointer type, or implicitly by the use of an expression of array
or function type. The array-subscript [] and member-access . and->—— operators, the address
& and indirection * unary operators, and pointer casts may be used in the creation of an address
constant, but the value of an object shall not be accessed by use of these operators.

An implementation may accept other forms of constant expressions.

The semantic rules for the evaluation of a constant expression are the same as for nonconstant
expressions.

EXAMPLE 1 In the followin

static unsigned int i = UINT MAX V. 1 / 0; // valid
tatic unsigned int j = UINT MAXU 1 / 0; // invalid

the initializer expression for i is a valid integer constant expression with value one, since only the first operand of the V
operator is evaluated. For j it is invalid because both operands are needed for a successful evaluation of the bitwise U
operator, even though any valid value for the second operand would lead to the same result.

EXAMPLE 2 constexpr objects may have aggregate or union type:

struct string32 size_t len; char str[32]; };

constexpr struct string32 capital = {
e .len = sizeof ("ABCDEFGHIJKLMNOPQRSTUVWXYZ")-1,

o 2880 = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

i

constexpr. . char encodingA = capital.strl0l; _ _________ // internal linkage
inline constexpr char encodingC = capital.str[2]; // same

static const charxconst emptyness = &capital.str[capital.len]; // valid

constexpr charx weirdness = &capital.str[capital.len]; // constraint violation

inline const charxconst uglyness = &capital.str[capital.len]; // constraint violation

Here, the initializers of encodingA, encodingB and encodingC only use member access operators with integer constant
expressions, so they are valid. As a result, they hold the representation value for the capital letters A B and C, respectively, in
the execution character set. They are themselves constexpr objects and evaluate to integer constant expressions. Therefore
they may be used in any context where such a constant is allowed.

The evaluation of capital. len leads to an integer constant expression, taking the address in the initializer of emptyness
is then valid and evaluates to the address of the terminating null character of the string. Thus the definition is valid. In
that definition, static could not be replaced by inline or constexpr because the unary & operator is not valid for the
initialization of a constexpr object with pointer value. Therefore the initialization of weirdness and uglyness are invalid
and must be diagnosed.

Forward references: array declarators (6.7.8.2), the constexpr specifier (??), initialization (6.7.12).

Language modifications to ISO/IEC 9899:2018, § 6.6 page 103

1

6

CORE 202101 (E) § 6.7, working draft — January 20, 2021cmin..core3 N2644/P2309R0

6.7 Declarations

Syntax

declaration:
declaration-specifiers init-declarator-listop; ;
attribute-specifier-sequence declaration-specifiers init-declarator-list ;
static_assert-declaration
attribute-declaration
declaration-specifiers:
declaration-specifier attribute-specifier-sequenceqpy
declaration-specifier declaration-specifiers
declaration-specifier:
storage-class-specifier
type-specifier-qualifier
Futetion-speeifier constexpr
inline
—Noreturn
init-declarator-list:
init-declarator
init-declarator-list , init-declarator
init-declarator:
declarator
declarator = initializer
attribute-declaration:
attribute-specifier-sequence ;

Constraints

A declaration other than a static_assert or attribute declaration shall declare at least a declarator
(other than the parameters of a function or the members of a structure or union), a tag, or the
members of an enumeration.

If an identifier has no linkage, there shall be no more than one declaration of the identifier (in a
declarator or type specifier) with the same scope and in the same name space, except that:

— a typedef name may be redefined to denote the same type as it currently does, provided that
type is not a variably modified type;

— tags may be redeclared as specified in 6.7.2.3.

All declarations in the same scope that refer to the same object or function shall specify compatible
types.

Semantics

A declaration specifies the interpretation and properties of a set of identifiers. A definition of an
identifier is a declaration for that identifier that:

— for an object, causes storage-a unique storage instance to be reserved for that object;
— for a function, includes the function body;!®®
— for an enumeration constant, is the (only) declaration of the identifier;

— for a typedef name, is the first (or only) declaration of the identifier.

The declaration specifiers consist of a sequence of specifiers, followed by an optional attribute
specifier sequence, that indicate the linkage, storage duration, and part of the type of the entities that

168) Function definitions have a different syntax, described in 6.9.1.

modifications to ISO/IEC 9899:2018, § 6.7 page 104 Language

10

11

12

N2644/P2309R0 cmin..core3§ 6.7, working draft — January 20, 2021 CORE 202101 (E)

the declarators denote. The init declarator list is a comma-separated sequence of declarators, each of
which may have additional type information, or an initializer, or both. The declarators contain the
identifiers (if any) being declared. The optional attribute specifier sequence appertains to each of the
entities declared by the declarators of the init declarator list.

If an identifier for an object is declared with no linkage, the type for the object shall be complete
by the end of its declarator, or by the end of its init-declarator if it has an initializer; in the case of
function parameters, it is the adjusted type (see 6.7.8.3) that is required to be complete.

The optional attribute specifier sequence terminating a sequence of declaration specifiers appertains
to the type determined by the preceding sequence of declaration specifiers. The attribute specifier
sequence affects the type only for the declaration it appears in, not other declarations involving the
same type.

Except where specified otherwise, the meaning of an attribute declaration is implementation-defined.

In some situations a stricter correspondence of types, qualifiers, attributes and array bounds of
declarations is needed than is provided by the concept of compatible types. Two declarations are
token equivalent if for the two token sequences corresponding to the declarations, after phase 4, there
is a sequence of rewrite operations, such that both declarations including array specifications,'®”
qualifications and attributes shall consist of the same token sequence, and such that all identifiers
that appear are used in the declarations shall be the same and, within their proper context, refer to
the same objects, functions, attributes or types."”” The possible rewrite operations are:

— replacement of digraphs by the token they represent
— replacement of each multiset of type specifiers by the first equivalent form listed in 6.7.2,
— renaming and eventually adding of parameter names for all parameters that occur in the

declaration to the tokens Param@,_Paraml, ..., in order,

— addition or removal of white space tokens.

EXAMPLE 1 In the declaration for an entity, attributes appertaining to that entity may appear at the start of the declaration
and after the identifier for that declaration.

0 Hvoid—fif H e “

deprecated]] void f [[deprecated (void); // valid

~~

EXAMPLE 2 Consider the following compatible declarations of a function sortIt:

/*0x/ void sortIt(size_t nmemb, size_t size, void arr[len][size],

o .__.___voidx context, int comp(void const[size], void const[size]));

/*x1x/ void sortIt(size_t nmemb, size_t size, void arr[len][size],

o .__.___voidx context, int comp(void const a[size], void const b[size ;

/*x2x/ void sortIt(size_t _Param0®, size_t _Paraml, void _Param2[_ParamO][Paraml
~—______voidx _Param3,

eeee___int _Param4(void const _Param5[_Paraml], void const _Param6[Paraml]));

/*3%/ void sortIt(size_t nmemb, size_t size, void arr[len][size],

e _.___Vvoidx context, int comp(void const|], void const[]));

/*x4x/ void sortIt(size_t _Param0®, size_t _Paraml, void _Param2[_ParamO][Paraml
o VOID®__Param3,

_.___int (x_Param4) (void const _Param5[_Paraml], void const _Param6[_Paraml]));

Here, the declarations 0 and 1 are token equivalent, because 1 only adds parameter names to the parameters of the callback
function comp; 2 is also equivalent to these two, since it renames the parameters to a standardized form and otherwise onl
has some differences in white space.

169 Thus for token equivalence the rewriting of array parameters to pointers is not applied.
170)Note that this rewriting is performed on a token level, and that therefore the spelling of types for example through
different typedef matters.

Language modifications to ISO/IEC 9899:2018, § 6.7 page 105

CORE 202101 (E) § 6.7.1, working draft — January 20, 202Tmin..core3 N2644/P2309R0

13 In contrast to that, 3 is not token equivalent to any of the previous, because it misses the sizes of the array parameters of the
call back. Also, 4 is not equivalent to any of the others because its callback parameter is rewritten to a function pointer.

Forward references: declarators (6.7.8), enumeration specifiers (6.7.2.2), initialization (6.7.12), type
names (6.7.9), type qualifiers (6.7.3).

6.7.1 Storage-class specifiers

Syntax
storage-class-specifier:
typedef
extern
static
—Thread-tecal- thread_local
auto
register-
Constraints
Atmost-one-Only the following multisets of storage-class specifier-specifiers may be given in the
declaration specifiers in ion; = = i i

extern-the same declaration. Here each line represents a multiset for which the specifiers ma
appear in any order.

— no storage-class specifier

— auto_
— auto extern

— auto extern thread_local
— auto static_

— auto static thread_local
— auto thread_local

— extern,

— extern thread_local
— static

— static thread_local

— thread_local
— typedef ')

In the declaration of an object with block scope, if the declaration specifiers include =Thread=tecal-
thread_local, they shall also include either static or extern. If —-Thread-tecal-thread_local
appears in any declaration of an object, it shall be present in every declaration of that object.

=Thread-tocal-thread_local shall not appear in the declaration specifiers of a function decla-

ration. auto sham in the declaration specifiers of a function declaration if it is the
declaration part of a function definition or if the corresponding function has already been defined.

171)See “future language directions” (6.11.5).

modifications to ISO/IEC 9899:2018, § 6.7.1 page 106 Language

N2644/P2309R0 cmin..core 6.7.2, working draft — January 20, 2021 CORE 202101 (E)

Semantics

The typedef specifier is called a “storage-class specifier” for syntactic convenience only; it is
discussed in 6.7.10. The meanings of the various linkages and storage durations were discussed in
6.2.2 and 22—

The declaration of an identifier for a function that has block scope shall have no explicit storage-class
specifier other than extern.

If an aggregate or union object is declared with a storage-class specifier other than typedef, the
properties resulting from the storage-class specifier, except with respect to linkage, also apply to the
members of the object, and so on recursively for any aggregate or union member objects.

If auto appears with another storage-class specifier, or if it appears in a declaration at file scope it
is ignored for the purpose of determining a storage class or linkage. It then only indicates that the
declared type may be inferred from an initializer (for objects see 6.7.13), or from return statements

for functions see 6.9.1).

NOTE C++ has abandonned the register storage class, so programs targetting the C/C++ core should not use this feature
and it has been removed from this specification. To obtain similar effects (namely that taking the address of an object is a
constraint violation) they should use the core:: noalias attribute, instead.

Forward references: type definitions (6.7.10), type inference (6.7.13), function definitions (6.9.1).

6.7.2 Type specifiers
Syntax
type-specifier:

void
char
short
int
long
float
double
signed
unsigned
—=Boeol-
=Comptex- bool
atomic-type-specifier
struct-or-union-specifier
enum-specifier
typedef-name

Constraints

AtUnless stated otherwise, at least one type specifier shall be given in the declaration specifiers in
each declaration, and in the specifier-qualifier list in each member declaration and type name. Each
list of type specifiers shall be one of the following multisets (delimited by commas, when there is
more than one multiset per item); the type specifiers may occur in any order, possibly intermixed
with the other declaration specifiers.

— void
— char
— signed char

Language modifications to ISO/IEC 9899:2018, § 6.7.2 page 107

CORE 202101 (E) § 6.7.2.1, working draft — January 20, 202imin..core3 N2644/P2309R0

— unsigned char

— short, signed short, short int, or signed short int
— unsigned short, or unsigned short int

— int, signed, or signed int

— unsigned, or unsigned int

— long, signed long, long int, or signed long int

— unsigned long, or unsigned long int

— long long, signed long long, long long int, or signed long long int
— unsigned long long, or unsigned long long int

— float

— double

— long double

— atomic type specifier

— struet-orunion-struct or union specifier

— enum-enum specifier

— typedefname typedef name

— typeof specifier.

— complex_type, real_type and generic_type specifier macros.

Semantics

Specifiers for structures, unions, enumerations, and atomic types are discussed in 6.7.2.1 through
6.7.2.4. Declarations of typedef names are discussed in 6.7.10. The characteristics of the other types

are discussed in 6.2.5. Declarations for which the type specifiers are inferred from initializers are
discussed in 6.7.13.

Each of the comma-separated multisets designates the same type;except-that-for-bit-fields;itis

A declaration that contains no type specifier is said to be underspecified. Identifiers that are such
declared have incomplete type. Their type can be completed by type inference from an intialization

for objects) or from return statements in a function body (for return es of functions).

NOTE Note that complex types can be specified via the complex_type macro.

Forward references: atomic type specifiers (6.7.2.4), enumeration specifiers (6.7.2.2), structure and

union specifiers (6.7.2.1), tags (6.7.2.3), type definitions (6.7.10)-, type inference (6.7.13), predefined
macros (6.10.8).

6.7.2.1 Structure and union specifiers
Syntax

struct-or-union-specifier:
struct-or-union attribute-specifier-sequenceqp identifiero, { member-declaration-list }
struct-or-union attribute-specifier-sequenceop identifier

struct-or-union:
struct
union

modifications to ISO/IEC 9899:2018, § 6.7.2.1 page 108 Language

N2644/P2309R0 cmin..corép6.7.2.1, working draft — January 20, 2021 CORE 202101 (E)

member-declaration-list:
member-declaration
member-declaration-list member-declaration

member-declaration:
attribute-specifier-sequenceqp, specifier-qualifier-list member-declarator-listop: ;
static_assert-declaration

specifier-qualifier-list:
type-specifier-qualifier attribute-specifier-sequenceopt

type-specifier-qualifier specifier-qualifier-list

type-specifier-qualifier:
type-specifier
type-qualifier
alignment-specifier

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:

declarator

bit-field
bit-field:

declaratoropy = constant-expression
Constraints

A member declaration that does not declare an anonymous structure or anonymous union shall
contain a member declarator list.

A structure or union shall not contain a member with incomplete or function type (hence, a structure
shall not contain an instance of itself, but may contain a pointer to an instance of itself), except that
the last member of a structure with more than one named member may have incomplete array type;
such a structure (and any union containing, possibly recursively, a member that is such a structure)
shall not be a member of a structure or an element of an array.

The-expression-thatspecifies-the-width-of-a-A member declarator that is a bit-field shall not appear
in a member declarator list, unless the type specifier is bool, signed or unsigned, and there shall
be no ali nment s ec1f1er the constant ex ression, the width of the bit- f1e1d shall be an mteger

M that is not negative, and be

less than or e ual to INT_| BITFIELD_MAX 5. 2 4 2.1). If the t e is bool, M shall be 0 or 1.
WW%M%MHMWMMW

Language modifications to ISO/IEC 9899:2018, § 6.7.2.1 page 109

CORE 202101 (E) § 6.7.2.1, working draft — January 20, 202imin..core3 N2644/P2309R0

no bit of the representation shall be reserved for the bit-field.'”? Otherwise, a bit-field declarator
name:M with qualifier list CV e attributes TA, declaration attributes DA, and type specifier T
one of bool, signed or unsigned shall be as if the member name had been declared as

____llcorezalias]] [[DA]| CV_Su [[TA]] name;_
L

where Sj; is the type s ec1f1er bool 1ntw1dth(M) or

(M) (7201),
1v.173)

res ectrvel and the constraints corres ondm to members with a core:: alias attribute a .

5 An attribute specifier sequence shall not appear in a struct-or-union specifier without a member
declaration list, except in a declaration of the form:

struct-or-union attribute-specifier-sequence identifier ;

The attributes in the attribute specifier sequence, if any, are thereafter considered attributes of the
struct or union whenever it is named.

Semantics

6 Asdiscussed in 6.2.5, a structure is a type consisting of a sequence of members, whose storage is
allocated in an ordered sequence, and a union is a type consisting of a sequence of members whose
storage overlap.

7 Structure and union specifiers have the same form. The keywords struct and union indicate that
the type being specified is, respectively, a structure type or a union type.

8 The optional attribute specifier sequence in a struct-or-union specifier appertains to the structure
or union type being declared. The optional attribute specifier sequence in a member declaration
appertains to each of the members declared by the member declarator list; it shall not appear if the
optional member declarator list is omitted. The optional attribute specifier sequence in a specifier
qualifier list appertains to the type denoted by the preceding type specifier qualifiers. The attribute
specifier sequence affects the type only for the member declaration or type name it appears in, not
other types or declarations involving the same type.

9 The presence of a member declaration list in a struct-or-union specifier declares a new type, within
a translation unit. The member declaration list is a sequence of declarations for the members of
the structure or union. If the member declaration list does not contain any named members, either
directly or via an anonymous structure or anonymous union, the behavior is undefined. The type is
incomplete until immediately after the } that terminates the list, and complete thereafter.

10 A member of a structure or union may have any complete object type other than a Varlably modlfled

172)The only effect of such a member is that it separates a sequence of bit-fields into different packs, see 6.7.15.3.2 for

definitions and examples.

"7IBoth C and C++ have bit-fields that are “objects” on a scale below a storage unit or that may cross boundaries of storage
units. Unfortunately both disagree on their interpretation in terms of types and possible bounds to the number of bits: for
example in C an int bit-field may be unsigned, or in C++ M is unrestricted but may contain padding. The specification
here i5 2 possible intersection between the two languages.

te umon cannot

ontam a member w1th a varlabl modlﬁed t e because member names are not ordmar 1dent1f1ers as defined in 6.2.3.As

modifications to ISO/IEC 9899:2018, § 6.7.2.1 page 110 Language

11

12

13

14

15
16

17

18

19

N2644/P2309R0 cmin..corép6.7.2.1, working draft — January 20, 2021 CORE 202101 (E)

An unnamed member whose type specifier is a structure specifier with no tag is called an anonymous
structure; an unnamed member whose type specifier is a union specifier with no tag is called an
anonymous union. The members of an anonymous structure or union are considered to be members
of the containing structure or union, keeping their structure or union layout. This applies recursively
if the containing structure or union is also anonymous.

Each non-bit-field member of a structure or union object is aligned in an implementation-defined
manner appropriate to its type.

Within a structure object, the non-bit-field members and the-unitsin-which-bit-fieldsreside-packs
have addresses that increase in the order in which they are declared. A pointer to a structure object,
suitably converted, points to its initial member (or-if-thatmember-is-a-bit-field;thento-the-unitin
whieh-itresides)or pack , and vice versa. There may be unnamed padding within a structure object,
but not at its beginning.

The size of a union is sufficient to contain the largest of its members. The value of at most one of the
members can be stored in a union object at any time. A pointer to a union object, suitably converted,

points to each of its members (or-if-a-member-is-a-bit-fieldthento-the unitin-whieh-itresides)or

packs, and vice versa.
There may be unnamed padding at the end of a structure or union.

As a special case, the last member of a structure with more than one named member may have an
incomplete array type; this is called a flexible array member. In most situations, the flexible array
member is ignored. In particular, the size of the structure is as if the flexible array member were
omitted except that it may have more trailing padding than the omission would imply. However,
when a . (or->——) operator has a left operand that is (a pointer to) a structure with a flexible array
member and the right operand names that member, it behaves as if that member were replaced with
the longest array (with the same element type) that would not make the structure larger than the
objeet-storage instance being accessed; the offset of the array shall remain that of the flexible array
member, even if this would differ from that of the replacement array. If this array would have no
elements, it behaves as if it had one element but the behavior is undefined if any attempt is made to
access that element or to generate a pointer one past it.

NOTE C and C++ diverge for anonymous structure or union members. In C++, only anonymous union members are
allowed, they cannot be be qualified or nested. Applications that target the common C/C++ core should therefore only use
ungqualified, anonymous union members; implementations should diagnose a use that is not valid for the other language.

es (7.20.1.2).

EXAMPLE 1 The following declarations illustrate the behavior when an attribute is written on a tag declaration:

Forward references: the core::alias attribute (6.7.15.3.2), exact-width integer t

_.___struct [[deprecated]| S; // valid deprecated]| appertains to struct S
___void f(struct S xs); // valid, the struct S type has the [[deprecated

// attribute
- Lid s . f H .
___Struct S // valid, struct S inherits the [[deprecated]|] attribute
int a; // from the previous declaration
}i
; £ H-S ; . u
___void g(struct [[deprecated]] S s); // invalid

EXAMPLE 2 The following illustrates anonymous structures and unions:

struct v {
union { // anonymous union
struct { int i, j; }; // anonymous structure
struct { long k, 1; } w;

Language modifications to ISO/IEC 9899:2018, § 6.7.2.1 page 111

20

21

22

23

24

CORE 202101 (E) § 6.7.2.1, working draft — January 20, 202imin..core3 N2644/P2309R0

o |
\ vi.i =2; // valid \
\ vl.k = 3; // invalid: inner structure is not anonymous

\ vl.w.k = 5; // valid \
L |

EXAMPLE 3 After the declaration:

struct s { int n; double d[]; };

the structure struct s has a flexible array member d. A typical way to use this is:

int m = /x some value */;
struct s *p = malloc(sizeof (struct s) + sizeof (double [m]));

and assuming that the call to malloc succeeds, the object pointed to by p behaves, for most purposes, as if p had been
declared as:

\ struct { int n; double d[m]l; } *p; ‘

(there are circumstances in which this equivalence is broken; in particular, the offsets of member d might not be the same).

Following the above declaration:

struct s t1 = { 0 }; // valid

struct s t2 = {1, { 4.2 }}; // invalid

tl.n = 4; // valid

t1.d[0] = 4.2; // might be undefined behavior

The initialization of t2 is invalid (and violates a constraint) because struct s is treated as if it did not contain member d.
The assignment to t1.d[0] is probably undefined behavior, but it is possible that

——sizeof{struct—s)>=—offsetof{struct s;—d)+sizeof {(doubte)

in which case the assignment would be legitimate. Nevertheless, it cannot appear in strictly conforming code.

After the further declaration:

struct ss { int n; };

the expressions:

. : . ‘

___Sizeof (struct s) > sizeof (struct ss
___sizeof (struct s) > offsetof(struct s, d)

are always equal to 1.

If sizeof (double) is 8, then after the following code is executed:

struct s *sl;
struct s xs2;
sl = malloc(sizeof (struct s) + 64);
s2 = malloc(sizeof (struct s) + 46);

and assuming that the calls to malloc succeed, the objects pointed to by s1 and s2 behave, for most purposes, as if the
identifiers had been declared as:

[|
\ struct { int n; double d[8]; } *s1; \
\ struct { int n; double d[5]; } *s2; \

Following the further successful assignments:

modifications to ISO/IEC 9899:2018, § 6.7.2.1 page 112 Language

25

26

N2644/P2309R0 cmin..corép6.7.2.2, working draft — January 20, 2021 CORE 202101 (E)

sl
s2

malloc(sizeof (struct s) + 10);
malloc(sizeof (struct s) + 6);

they then behave as if the declarations were:

[|
struct { int n; double d[1]; } *sl1, *s2;

and:

double xdp;
——dp—="st—>d{8)—F++valid

__.d & sl—)d 01); // valid
*dp // valid

—dﬁ—&(—%>d+9&+—FF= : valid
___dp = &(s2—d[0]); // valid
*dp = 42; // undefined behavior

The assignment:

[|
*S1 = *52;
L |

only copies the member n; if any of the array elements are within the first sizeof (struct s) bytes of the structure, they
might be copied or simply overwritten with indeterminate values.

EXAMPLE 4 Because members of anonymous structures and unions are considered to be members of the containing
structure or union, struct s in the following example has more than one named member and thus the use of a flexible array
member is valid:

struct s {
struct { int i; };
int al];

i

Forward references: declarators (6.7.8), tags (6.7.2.3).

6.7.2.2 Enumeration specifiers

Syntax

enum-specifier:
enum attribute-specifier-sequenceop: identifierop: { enumerator-list }
enum attribute-specifier-sequenceop identifieropr { enumerator-list , }
enum identifier

enumerator-list:

enumerator

enumerator-list , enumerator
enumerator:

enumeration-constant attribute-specifier-sequenceqpy

enumeration-constant attribute-specifier-sequenceopy = constant-expression
Constraints

The expression that defines the value of an enumeration constant shall be an integer constant
expression that has a value representable as an int.

Semantics

The optional attribute specifier sequence in the enum specifier appertains to the enumeration; the
attributes in that attribute specifier sequence are thereafter considered attributes of the enumeration
whenever it is named. The optional attribute specifier sequence in the enumerator appertains to that
enumerator.

The identifiers in an enumerator list are declared as constants that have type int and may appear

Language modifications to ISO/IEC 9899:2018, § 6.7.2.2 page 113

CORE 202101 (E) § 6.7.2.3, working draft — January 20, 202imin..core3 N2644/P2309R0

wherever such are permitted.!”” An enumerator with = defines its enumeration constant as the
value of the constant expression. If the first enumerator has no =, the value of its enumeration
constant is 0. Each subsequent enumerator with no = defines its enumeration constant as the value
of the constant expression obtained by adding 1 to the value of the previous enumeration constant.
(The use of enumerators with = may produce enumeration constants with values that duplicate
other values in the same enumeration.) The enumerators of an enumeration are also known as its
members.

Each enumerated type shall be compatible with char, a signed integer type, or an unsigned integer
type. The choice of type is implementation-defined,'”® but shall be capable of representing the
values of all the members of the enumeration. The enumerated type is incomplete until immediately
after the } that terminates the list of enumerator declarations, and complete thereafter.

EXAMPLE The following fragment:

enum hue { chartreuse, burgundy, claret=20, winedark };
enum hue col, xcp;
col = claret;
cp = &col;
——3fF—{+ep—t=—burgundy)
o if (xcp # burgundy)
/* ... %/

makes hue the tag of an enumeration, and then declares col as an object that has that type and cp as a pointer to an object
that has that type. The enumerated values are in the set {0, 1,20, 21}.

Forward references: tags (6.7.2.3).

6.7.2.3 Tags
Constraints

A specific type shall have its content defined at most once.

Where two declarations that use the same tag declare the same type, they shall both use the same
choice of struct, union, or enum.

A type specifier of the form

enum identifier
without an enumerator list shall only appear after the type it specifies is complete.
A type specifier of the form

struct-or-union attribute-specifier-sequence,p: identifier

shall not contain an attribute specifier sequence.'””

Semantics

All declarations of structure, union, or enumerated types that have the same scope and use the same
tag declare the same type. Irrespective of whether there is a tag or what other declarations of the
type are in the same translation unit, the type is incomplete!”® until immediately after the closing
brace of the list defining the content, and complete thereafter.

Two declarations of structure, union, or enumerated types which are in different scopes or use
different tags declare distinct types. Each declaration of a structure, union, or enumerated type
which does not include a tag declares a distinct type.

A type specifier of the form

179 Thus, the identifiers of enumeration constants declared in the same scope are all required to be distinct from each other
and from other identifiers declared in ordinary declarators.

176) An implementation can delay the choice of which integer type until all enumeration constants have been seen.

177) As specified in 6.7.2.1 above, the type specifier may be followed by a ; or a member declaration list.

178) An incomplete type can only be used when the size of an object of that type is not needed. It is not needed, for example,
when a typedef name is declared to be a specifier for a structure or union, or when a pointer to or a function returning a
structure or union is being declared. (See incomplete types in 6.2.5.) The specification has to be complete before such a
function is called or defined.

modifications to ISO/IEC 9899:2018, § 6.7.2.3 page 114 Language

10

11

12

13

N2644/P2309R0 cmin..corép6.7.2.3, working draft — January 20, 2021 CORE 202101 (E)

struct-or-union attribute-specifier-sequenceqp identifierope { member-declaration-list }
or

enum attribute-specifier-sequenceqp identifierop, { enumerator-list }
or

enum attribute-specifier-sequenceop: identifierops { enumerator-list , }

declares a structure, union, or enumerated type. The list defines the structure content, union content,
or enumeration content. If an identifier is provided,'” the type specifier also declares the identifier to
be the tag of that type. The optional attribute specifier sequence appertains to the structure, union,
or enumeration type being declared; the attributes in that attribute specifier sequence are thereafter
considered attributes of the structure, union, or enumeration type whenever it is named.

A declaration of the form
struct-or-union attribute-specifier-sequencepy identifier ;

specifies a structure or union type and declares the identifier as a tag of that type.!? The optional
attribute specifier sequence appertains to the structure or union type being declared; the attributes
in that attribute specifier sequence are thereafter considered attributes of the structure or union type
whenever it is named.

If a type specifier of the form
struct-or-union attribute-specifier-sequencep, identifier

occurs other than as part of one of the above forms, and no other declaration of the identifier as a
tag is visible, then it declares an incomplete structure or union type, and declares the identifier as
the tag of that type.!8”

If a type specifier of the form

struct-or-union attribute-specifier-sequencep, identifier
or

enum identifier

occurs other than as part of one of the above forms, and a declaration of the identifier as a tag is
visible, then it specifies the same type as that other declaration, and does not redeclare the tag.

Recommended practice

The fact that tag names are in a different name space than identifiers can lead to portability issues
between C and C++, see 6.7.9 below. To avoid incompatibilities, it is recommended to place
appropriate typedef before (for struct or union) or after (for enum) a tag declaration or definition:

typedef struct S S;

_struct § {
___double data;_

o 2X Next;

933

Such a practice ensures that a tag name cannot be reused later as an identifier for a different purpose
and that the semantics when seen by a C or C++ translator agree.

It is recommended that applications otherwise restrain from using tag names as identifiers
whenever possible.

NOTE C and C++ differ in the ways a tag name may later be used. In particular, a tag name that is not otherwise declared
as an identifier can be used as if a typedef for that name had been declared. Unfortunately this rule could not be extended

179)1f there is no identifier, the type can, within the translation unit, only be referred to by the declaration of which it is a part.
Of course, when the declaration is of a typedef name, subsequent declarations can make use of that typedef name to declare
objects having the specified structure, union, or enumerated type.

180) A similar construction with enum does not exist.

Language modifications to ISO/IEC 9899:2018, § 6.7.2.3 page 115

14

15

16

CORE 202101 (E) § 6.7.2.4, working draft — January 20, 202imin..core3 N2644/P2309R0

to C, because there is a major example in POSIX that would conflict with such a mechanism.

EXAMPLE 1 This mechanism allows declaration of a self-referential structure.

i struct tnode {

\ int count;

\ struct tnode xleft, *right;
1 ¥

specifies a structure that contains an integer and two pointers to objects of the same type. Once this declaration has been
given, the declaration

struct tnode s, x*sp;

declares s to be an object of the given type and sp to be a pointer to an object of the given type. With these declarations,
the expression sp—>teft-sp — left refers to the left struct tnode pointer of the object to which sp points; the expression
s—right-—>ecounts.right — count designates the count member of the right struct tnode pointed to from s.

The following alternative formulation uses the typedef mechanism:

typedef struct tnode TNODE;
struct tnode {

int count;

TNODE xleft, *right;
+
TNODE s, *sp;

EXAMPLE 2 To illustrate the use of prior declaration of a tag to specify a pair of mutually referential structures, the
declarations

struct sl { struct s2 xs2p; /*x ... x/ }; // D1
struct s2 { struct sl xslp; /* ... %/ }; // D2

specify a pair of structures that contain pointers to each other. Note, however, that if s2 were already declared as a tag in an
enclosing scope, the declaration D1 would refer to it, not to the tag s2 declared in D2. To eliminate this context sensitivity, the
declaration

\ struct s2;

can be inserted ahead of D1. This declares a new tag s2 in the inner scope; the declaration D2 then completes the specification
of the new type.

Forward references: declarators (6.7.8), type definitions (6.7.10).
6.7.2.4 Atomic type specifiers
Syntax

atomic-type-specifier:

—Atemic- atomic_type (type-name)

Constraints

The type name in an atomic type specifier shall not refer to an array type, a function type, an atomic
type, an opaque type or a qualified type.

Semantics

The atomic type specifier construct is implemented as a mandatory macro (see 6.10.8.1).

The propertles assoc1ated w1th atormc types are meanmgful only for expressmns that are Ivalues.

NOTE C and C++ have no reconcilable syntax for specifying an atomic derivation: C has a keyword _Atomic that is
applied as a specifier (similar to here) and as a qualifier, C++ has a class template atomic<type-name>. Since the C syntax

modifications to ISO/IEC 9899:2018, § 6.7.2.4 page 116 Language

N2644/P2309R0 cmin..core 6.7.3, working draft — January 20, 2021 CORE 202101 (E)

even has ambiguities sticking to the C syntax was not an option. The specification as given here has straight forward
implementations in the old syntax for both languages.

6.7.3 Type qualifiers

Syntax
type-qualifier:
const
‘restrict
——velatilte-

———————Atomic volatile

Semantics

The properties associated with qualified types are meaningful only for expressions that are Ivalues.'8!)

If the same qualifier appears more than once in the same specifier-qualifier list or as declaration
specifiers, either directly or via one or more typedefs, the behavior is the same as if it appeared
only once. ifi ith-the mi ifi estlting is-the
lified . '

If an attempt is made to modify an object defined with a const-qualified type through use of an
lvalue with non-const-qualified type, the behavior is undefined. If an attempt is made to refer to an
object defined with a volatile-qualified type through use of an lvalue with non-volatile-qualified
type, the behavior is undefined.!s?

An object that has volatile-qualified type may be modified in ways unknown to the implementation
or have other unknown side effects. Therefore any expression referring to such an object shall be
evaluated strictly according to the rules of the abstract machine, as described in 5.1.2.3. Furthermore,
at every sequence point the value last stored in the object shall agree with that prescribed by the
abstract machine, except as modified by the unknown factors mentioned previously.'®® What
constitutes an access to an object that has volatile-qualified type is implementation-defined.

For two qualified types to be compatible, both shall have the identically qualified version of a
compatible type; the order of type qualifiers within a list of specifiers or qualifiers does not affect the

18)The implementation can place a const object that is not volatile in a read-only storage instance. Moreover, a storage
instance for such an object need not be addressable if its address is never used.

182)This applies to those objects that behave as if they were defined with qualified types, even if they are never actually
defined as objects in the program (such as an object at a memory-mapped input/output address).

183) A volatile declaration can be used to describe an object corresponding to a memory-mapped input/output port or an
object accessed by an asynchronously interrupting function. Actions on objects so declared are not allowed to be “optimized
out” by an implementation or reordered except as permitted by the rules for evaluating expressions.

Language modifications to ISO/IEC 9899:2018, § 6.7.3 page 117

CORE 202101 (E) § 6.7.3, working draft — January 20, 202tmin..core3 N2644/P2309R0

specified type.

NOTE Calso has the restrict and _Atomic qualifiers. These have never been integrated to C++, so they should not be
used by applications that target the C/C++ core. For the first, this specification proposes the use of the core:: noalias
attribute in the form when it is applied to pointer declarators, To avoid certain ambiguities, the possible syntax is a bit more
restricted than the use as a qualifier. Instead of an _Atomic qualification, an atomic_type specification may be used.

EXAMPLE 1 An object declared

[
\ extern const volatile int real_time_clock;

might be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

EXAMPLE 2 The following declarations and expressions illustrate the behavior when type qualifiers modify an aggregate
type:

const struct s { int mem; } cs = { 1 };

struct s ncs; // the object ncs is modifiable

typedef int A[2][3];

const A a = {{4, 5, 6}, {7, 8, 9}}; // array of array of const int
int *pi;

const int *pci;

ncs = cs; // valid
CS = ncs; // violates modifiable lvalue constraint for =
pi = &ncs.mem; // valid

pi = &cs.mem; // violates type constraints for =
pci = &cs.mem; // valid
pi = al0]; // invalid: al[@] has type “const int x”

modifications to ISO/IEC 9899:2018, § 6.7.3 page 118 Language

N2644/P2309R0 cmin..core 6.7.4, working draft — January 20, 2021 CORE 202101 (E)

6.7.4 The constexpr specifier

Constraints

If the constexpr specifier appears in a declaration, it shall appear in all declarations of the same
object or function; it shall only appear in a declaration in file or block scope, and it shall not appear
together with a storage class specifier other than auto. If the identifier has linkage and if the inline
specifier is applied as well, the linkage is external; otherwise it is internal.

If the constexpr specifier appears in a declaration of an object, the object has static storage duration,
it shall not be volatile qualified, a const qualification shall be implied and the declaration serves as
a definition. All lvalue conversions of such an object shall result in the initializer value as determined
during translation. If the object has external linkage the definition is an inline definition and if in
the whole program no other access than an lvalue conversion is made to the object, no external
definition is needed. The constraints for the initialization of objects with static storage duration
apply, with the additional constraints that none of the following constructs shall occur:

— an implicit or explicit pointer-to-pointer or array-to-pointer conversion,
— an implicit initialization of a pointer object or member other than by a null pointer,

— an explicit initialization of a pointer object or member other than by a null pointer constant or
by the result of an integer-to-pointer cast.!8%

189 Thus, if the object has pointer type or is an agregate or union type with a pointer element or member, an explicit initializer
for it (or the element or member) shall only be a null pointer constant or a pointer value that is formed by a cast from an

Language modifications to ISO/IEC 9899:2018, § 6.7.4 page 119

CORE 202101 (E) § 6.7.4, working draft — January 20, 2021 N2644/P2309R0

If the constexpr specifier appears in a declaration of a function, the core:: concurrent attribute is
implied and the corresponding constraints apply. For function declarations and lambda expressions
that have the constexpr specifier and that have a pointer return type with no core:: alias attribute
that links it to one of its parameters, the core:: noalias attribute is implied and the corresponding
constraints apply.’®® For a lambda expresssion, the constexpr specifier is implied if it has the

core:: concurrent attribute and the above requirements on a possible pointer return value apply.

A function call of a function designator or lambda value with a constexpr specifier can be used in a
context that requires a constant expression if the following contraints are fulfilled.

— If it is a function, the function definition shall be visible or the function shall belong to an
implementation-defined set of functions that are usable for this purpose. This set of functions
shall contain at least those C library functions that are specified with constexpr.

— All arguments to the call shall be constant expressions that are not address constants.

— If the return type is a pointer type, the return value shall be a null pointer or the result of an
integer-to-pointer cast of an integer constant expression.

— In addition to the parameters, captures, and locally defined or allocated objects, the execution
shall only access objects that are declared with constexpr, that are otherwise permitted in a
constant expression or those identifiers in the core:: evaluates or core::modifies attributes
that have thread local storage duration.

— Pointer values shall only refer to objects that do not have static storage duration; when they
are subject to the unary * operator, the provenance of the referred object shall be visible and
the effect shall be as if the object definition (if it has any) had directly been used for the lvalue
expression; if such an object has no definition, a definition with its effective type is assumed.

— No lvalue conversion shall be formed for an object with an indeterminate value.

— The execution of the function or lambda with the specified parameters shall only exhibit
constructs that have defined behavior for the specified values.

— No operation shall be formed for which the result is unspecified.
— No implementation-defined limits as specified in 5.2.4 shall be exceeded.
— The the errno and fenv channels shall not be modified.

— For any function call the arguments and captured objects that are not pointer values are
considered as if they were constant expressions. The present constraints for such function calls
are then recursively applied were possible. Additionally:

e Pointer values as above may be arguments or captured variables of such constexpr
function calls.

e The storage management functions from <stdlib.h> (7.22.4) may be called, provided
that all allocations are deallocated before the end of the call. An implementation-defined
limit may be imposed on the maximum size and number of allocations that can be effected
during such a call.

e If a pointer value that is not a null pointer or converted integer constant expression is
the return value of such a call it shall be the return value of an allocation function or the
value of one of the arguments to the particular call. In the first case, the called function
shall have a core:: noalias attribute; in the second it shall have a core:: alias attribute
with the corresponding parameter name.

integer constant expression, and no indirect initialization through another member shall result in a value that is different
from null.

185 The two aliasing attributes are not exclusive; if both are given this indicates that a function or lambda conditionally
returns the pointer to a newly allocated storage instance or one of its parameter values.

modifications to ISO/IEC 9899:2018, § 6.7.4 page 120 Language

10

11

12

N2644/P2309R0 § 6.7.4, working draft — January 20, 2021 CORE 202101 (E)

If a function call of a function designator or lambda value with a constexpr specifier fulfills the
above constraints it shall be considered a constant expression; if does not and the function call is
valid in the context where it appears, the function call is effected in that context whenever it is met
during execution and a different set of constraints may apply in consequence.!?)

Semantics

The constexpr specifier indicates that the identifier or lambda value may be used in a context where
a constant expression is required. If a function designator or lambda is used in such a context the
contraints ensure that a call that would be erroneous during program execution can be identified
during translation and that a diagnostic is issued.

If such a call would be successful during program execution, it is executed during translation as-if
by a separate thread of execution. During such an execution all full expressions are evaluated
in sequence as the control flow implies and the result of each such an evaluation is considered a
constant expression. The determined return value is used as a constant of the corresponding type in
the calling context.!®”)

Recommended practice

If a function designator or lambda value is used in a context that requires a constant expression and
the contraints are violated it is recommended that the translator does not produce an executable
program image.

NOTE1 The constexpr specifier heavily relies on the properties of the core:: concurrent attribute and the other attributes
that it implies, namely the core::stateless, core::noleak, core:: state_invariant, and core::state_conserving
attributes. In all, these imply that no pointer value is leaked, exposed or synthesized by a function call, that the only state
dependencies come from well identified input channels, and that a complete data flow and aliasing analysis can be performed
at compile time. The requirements for the use within constant expressions then further narrow the field to dependencies
from other values that are already known to be constant expressions, and whose properties do not depend on linkage but on
translation only.

NOTE 2 The result of a call to a constexpr function or lambda in the context of a constant expression is fully independent
of general or specific properties of the address space. In particular, no pointer-to-integer casts and no pointer comparisons,
even equality, between pointers with different provenance may be performed. The feature allows the dependency of the
computation from some tread local state, but since it is executed as-if taking place in a separate thread, changing this state
has no impact on other calls within the evaluation of constant expressions. Thus, such changes to thread local state are not
observable by any execution and the only effect of such a call is its return value, which then can be recorded at translation
time.

NOTE 3 The constraints for calls within constant expressions enforce that all possible undefined or unspecified behavior can
be detected at compile time. This includes out-of-bound access of arrays, Ivalue conversion of uninitialized variables, arith-
metic overflow, domain errors, null pointer dereference, comparison of unrelated pointer values, leaks and the unsequenced
modification of objects.

EXAMPLE As examples for constexpr objects and functions that are evaluated during translation consider the following:

struct pair { double val[2]; };
constexpr struct pair diff(struct pair A, struct pair B) {
struct pair ret = {
val = {
[0] = B.val[O] - A.val[0],
[1] = B.val[l] - A.val[l],
Iy
i
return ret;
}
constexpr struct pair inter(double &, struct pair aa, struct pair bb) {
struct pair dd = diff(aa, bb);
double slope dd.val[l]/dd.val[0]; // erroneous if dd.val[0] is zero
struct pair ret = {
.val = {
[0] = aa.val[0] + &,

180S0 in particular a call that serves to determine an array length is considered, if possible, to be a constant expression and
the array then is not a VLA. On the other hand, if it does not fulfill the constraints but still is valid, the array is a VLA and the
corresponding constraints, for example concerning initialization, apply.

187)This means in particular that during such an execution no variably modified type (VM) will be formed.

Language modifications to ISO/IEC 9899:2018, § 6.7.4 page 121

13

14

CORE 202101 (E) § 6.7.5, working draft — January 20, 202Tmin..core3 N2644/P2309R0

[1] = aa.val[l] + € x slope;
Fo
}i
return ret;

}

constexpr double 6 = 0.25;

constexpr struct pair a = { .val = { [0] = -5, [1] = sin(-¢6), }, };

constexpr struct pair b = { .val = { [0] = +§, [1] = sin(+d), }, };

constexpr struct pair o = { .val = { [0] = -5, [1] = asin(-6), }, };

constexpr struct pair 8 = { .val = { [0] = +6, [1] = asin(+6), }, };

constexpr struct pair ¢» = { .val = { [0] = +2, [1] = asin(+2), }, }; // error
constexpr struct pair c = inter(0.1, a, b);

constexpr struct pair v = inter(0.1, «, f);

constexpr struct pair y = inter(0.1, b, B8); // erroneous, b.val[0] = (.val[0]

constexpr long double 7 = 4xatan(1.0L);
struct strType { char string[strlen(w, 16)+1]; };

constexpr strType nwStr = [](long double x){
strType ret = {};
totext(sizeof ret.string, ret.string, x, 16);
return ret;

Hm);

static char constxconst nStrp = nStr.string;

First, observe that § is a named constant of type double, and that, although double is a basic type, such a constant cannot
otherwise be formed other than by the equivalent inline static const specifiers and qualification, see below. The objects a,
b, aand 5 all are constants of type struct pair; the initializers are valid because sin and asin are C library functions with

constexpr and the argument values are within the valid ranges. In contrast to that, the argument for the initializer of v is
outside the valid range of asin, and therefore an error must be diagnosed.

The initializers for the objects c and use the constexpr functions inter and, indirectly, diff. Both are valid, because the
arguments are valid and no arithmetic exception occurs. The initializer of x is invalid because the val[0] element for both
parameters are the same, and thus their difference is zero. The computation for slope then has a division by zero error, and
therefore the whole value computation is invalid and must be diagnosed.

Similar reason as above show that the initialization of 7 is a valid constant expression of type long double. The call

strlen(mw, 16) is then a valid integer constant expression that provides the length of the textual representation of 7 in
hexadecimal, and thus this expression can be used for the declaration of the type strType. Now the lambda expression only
uses the totext type-generic macro, which for the given arguments has the constexpr specifier, and behaves therefore as if
it were itself specified with constexpr. As a consequence the lambda can be used to initialize 7Str, and the address of the

string member can be used to initialize a static variable.

Forward references: the inline specifier (??), the core:: concurrent attribute (??), environmental
limits (5.2.4), errors <errno.h> (7.5), floating-point environment <fenv.h> (7.6), mathematics
<math.h> (7.12), the totext type-generic macro (7.22.2.1), the strlen type-generic macro (7.24.6.4).

6.7.5 The inline specifier
SyntaxConstraints
o "

L
—— X Nereturn-

An inline specifier shall only appear in a declaration at file scope.
Constraints

specifier appears in any declaration of an identifier with external linkage, it shall also appear in the
file scope declaration that is met first.

modifications to ISO/IEC 9899:2018, § 6.7.5 page 122 Language

10

N2644/P2309R0 cmin..core 6.7.5, working draft — January 20, 2021 CORE 202101 (E)

An inline definition of a function with external linkage shall not contain a definition of a modifiable
object with static or thread storage duration, and shall not contain a reference to an identifier with
internal linkage.

In a hosted environment, no funetion-specifier{s)inline specifier shall appear in a declaration of
main.

If the declaration declares an object that is const but not volatile qualified, a constexpr specifier
is implied and all constraints apply.

Semantics
Afunetion-An inline specifier may appear more than once; the behavior is the same as if it appeared

only once. If in any translation unit an identifier with external linkage is declared inline, it shall be
declared inline in any of them.

A function declared with an inline funetion-specifier is an inline function. Making a function an
inline function suggests that calls to the function be as fast as possible.!®®) The extent to which such
suggestions are effective is implementation-defined.!%”)

Any function with internal linkage can be an inline function. For a function with external linkage,
the following restrictions apply: If a function is declared with an inline function specifier, then it
shall also be defined in the same translation unit. If all of the file scope declarations for a function in
a translation unit include the inline function specifier without extern, then the definition in that
translation unit is an inline definition. An inline definition does not provide an external definition
for the function, and does not forbid an external definition in another translation unit. An inline
definition provides an alternative to an external definition, which a translator may use to implement
any call to the function in the same translation unit. It is unspecified whether a call to the function
uses the inline definition or the external definition.!*?

= i ifi i —All inline and
the external definition of a function, if any, shall behave the same such that an observation of the
return value and of side effects would not be able to distinguish between them.”" It is unspecified
if an object definition of a const-qualified type and of static storage duration within the body of

an inline function refers to a single object or to distinct objects for each of the definitions of the
function.

An object declared with an inline specifier is an inline object; any object with internal linkage can
be an inline object. For an object with external linkage the following restrictions apply: If a file

scope declaration for such an object in a translation unit includes the inline specifier without
extern, then this declaration shall be a definition with an initializer; if no other declaration occurs

in file scope, this is an inline definition. An inline definition does not provide an external definition
for the object, and does not forbid an external definition in another translation unit.

All initializers of an inline object shall not evaluate the object and shall evaluate to the same

constant value. All evaluations that refer to an inline object other than by an lvalue conversion

shall refer to the external definition."”

188)By using, for example, an alternative to the usual function call mechanism, such as “inline substitution”. Inline

substitution is not textual substitution, nor does it create a new function. Therefore, for example, the expansion of a macro
used within the body of the function uses the definition it had at the point the function body appears, and not where the
function is called; and identifiers refer to the declarations in scope where the body occurs. Likewise, the function has a single
address, regardless of the number of inline definitions that occur in addition to the external definition.

189)For example, an implementation might never perform inline substitution, or might only perform inline substitutions to
calls in the scope of an inline declaration.

190)Since an inline definition is distinct from the corresponding external definition and from any other corresponding inline
definitions in other translation units, all corresponding objects with static storage duration are also distinct in each of the
definitions.

1?That means, no observable difference in side effects such as for the change of the value of an objects of static or
thread-local storage shall occur, regardless if an inline or extern definition is choosen for a particular execution and function
call. Nevertheless, differences in access to outside resources such as a clock, an input/output device, or scheduling resources
of the underlying operation system may occur if the execution times of different definitions differ.

"*IThis includes the case that an inline object, const-qualified or not, appears as operand of the unary & operator.

Language modifications to ISO/IEC 9899:2018, § 6.7.5 page 123

11

12

13

14

15

16

17

18

CORE 202101 (E) § 6.7.5, working draft — January 20, 202Tmin..core3 N2644/P2309R0

Recommended practice

:
inline definitions in separate translation units constitute different definitions, and because the
one possible external definition may add yet another definition, the static declaration of a
const-qualified object within an inline function, may effectively refer to several objects with the
same content. This is for example the case for the __func__ predefined identifier, that, for the
is guaranteed that such objects are only represented once.

It is recommended that applications that target the common C/C++ core do not make assumptions
about the representation of these objects and that they are made robust for the possibility that such
an object has one or several representations. Applications that need to ensure that a unique address
is used should move the definition of the object to file scope and make it inline.

When possible, it is recommended that implementations diagnose the usage of the address of such
an object that could result in a difference in behavior between implementations that represent one

or several objects. In particular, it is recommended to diagnose the escape of such an address from

NOTE1 C and C++ differ slightly in their handling of inline functions. Whereas C enforces the use of an external definition
in certain situations, in particular if the address of an inline function is used other than in a function call, C++ always
uarantees that an external definition (called an instantiation) is emitted if there is need for it. This choice for C is deliberate,
because traditionally C is often used in contexts that have severe constraints on the memory size for the program image. So.
a systematic generation of unused function definitions in all translation units is avoided.

NOTE 2 This specification follows C++ (and extends C) by requiring that the effective semantics of inline and external
definitions have to agree. It follows C (and extends C++) by requiring that no non-const qualified objects with internal
linkage may be accessed by inline functions.

NOTE 3 C currently has no inline objects, so this specification imposes an extension of the C language. The definitions
resented here not only serve the purpose of programming invariantly in C and C++, but also to provide a tool to specif
compile time constants of any object type.

NOTE 4 For both, functions and objects, the choice has been made to follow mostly the C model for instantiation, that is,
to require that an external definition must be presented explicitly for functions or objects that use the address or that form a
modifiable Ivalue. So this part of the specification extends the C++ language by imposing more constraints on well-formed
programs. The special case for inline constants, see 6.6, allows to avoid the need for instantiations, if the address of the
object is never used,

EXAMPLE 1 The declaration of an inline function with external linkage can result in either an external definition, or a

definition available for use only within the translation unit. A file scope declaration with extern creates an external definition.
The following example shows an entire translation unit.

inline double fahr(double t)
{

o TETUID (9.0 X 1) / 5.0 + 32.0;
}

inline double cels(double t)
{
————returA {5 0——+—32-601)—+9-6+

__return (5.0 x (t - 32.0)) / 9.0

——extern—doubte—fahr{double)s——/—creates an external definition
__.___extern double fahr(double); // forces the definition to be external

double convert(int is_fahr, double temp)

{
/* A translator may perform inline substitutions x/
return is_fahr ? cels(temp): fahr(temp);

19 Note that the definition of fahr is an external definition because fahr is also declared with extern, but the definition of cels

modifications to ISO/IEC 9899:2018, § 6.7.5 page 124 Language

20

21

22

23

24

N2644/P2309R0 cmin..core 6.7.6, working draft — January 20, 2021 CORE 202101 (E)

is an inline definition. Because cels has external linkage and is referenced, an external definition has to appear in another
translation unit (see 6.9); the inline definition and the external definition are distinct and either can be used for the call.

EXAMPLE 2 The declaration of an inline object with external linkage may or may not result in an external definition. A file
scope declaration with extern creates an external definition. The following example shows an entire translation unit.

—— Neretura—void—F——f
—— abert{}—+F0k
.. inline const voidxconst self = &self; __// invalid

. inline const size t aware = sizeof aware; // valid, not evaluated

_____inline const double 7 = 3.14159265358979323846;_

~

q q 2 _ .
. inline const double 7° = 7 X ;

Ar~

______extern const double n°; // forces the definition to be external

... static const double 77;

__.___const doublexconst power[3] =

___const doublex g(void) {
return_&r;

A A A A

= i i i // causes undefined behavior if—i—<=-#8
—_.___double f(void) {

The inline definition of self is invalid because the identifier self is evaluated and because the initializer expression is
neither a null pointer constant nor a converted integer constant expression. If the inline specifier were omitted, the
definition would be valid, but usually the concrete address to which the object would be initialized only manifests when

several translation units are linked to form the final program image. Thus that address can not be used without knowin
the external definition.

For aware such restrictions do not apply because the type information is present at the point of initialization in an

Note that the definition of 7 is an external definition because it is also declared with extern, but that the definition of 7 is.

an inline definition. So in the definition of power, w° and 72 refer to objects in the same translation unit, but 7 has to refer
to an external definition of another one (see 6.9).

Within the body of function f, the evaluation of 7 uses the constant value of the initializer. The evaluation of g () returns the
address of the external definition of 7, so *g() forms an lvalue conversion of an external definition in another translation
unit. Whether or not this results in a memory load operation of that external definition or a usage of the constant, is
unspecified.

Forward references: function definitions (6.9.1).

6.7.6 Alignment specifier
Syntax
alignment-specifier:

—Atignas- alignas (type-name)
—Atignas- alignas (constant-expression)

Constraints

An alignment specifier shall appear only in the declaration specifiers of a declaration, or in the
specifier-qualifier list of a member declaration, or in the type name of a compound literal. An
alignment specifier shall not be used in conjunction with either-of-the storage-class specifiers

Language modifications to ISO/IEC 9899:2018, § 6.7.6 page 125

CORE 202101 (E) § 6.7.7, working draft — January 20, 202Tmin..core3 N2644/P2309R0

typedef or-register, nor in a declaration of a function or bit-fieldif a core:: noalias attribute is
applied, including bit-fields.

3 The constant expression shall be an integer constant expression. It shall evaluate to a valid funda-
mental alignment, or to a valid extended alignment supported by the implementation for an object
of the storage duration (if any) being declared, or to zero.

4 An object shall not be declared with an over-aligned type with an extended alignment requirement
not supported by the implementation for an object of that storage duration.

5 The combined effect of all alignment specifiers in a declaration shall not specify an alignment that is
less strict than the alignment that would otherwise be required for the type of the object or member
being declared.

Semantics
6 The first form is equivalent to zAtignas{=Atignof{-alignas (alignof (type-name)).

7 The alignment requirement of the declared object or member is taken to be the specified alignment.
An alignment specification of zero has no effect.'”® When multiple alignment specifiers occur in a
declaration, the effective alighment requirement is the strictest specified alignment.

8 If the definition of an object has an alignment specifier, any other declaration of that object shall
either specify equivalent alignment or have no alignment specifier. If the definition of an object does
not have an alignment specifier, any other declaration of that object shall also have no alignment
specifier. If declarations of an object in different translation units have different alignment specifiers,
the behavior is undefined.

6.7.7 The _Noreturn specifier

Constraints_

1 The _Noreturn specifier shall be used only in the declaration of an identifier for a function.
2 Inahosted environment, no _Noreturn specifier shall appear in a declaration of main .

Semantics

3 The _Noreturn specifier may appear more than once; the behavior is the same as if it appeared
only once.

4 A function declared with a _Noreturn specifier shall not return to its caller.
Recommended practice

5 The implementation should produce a diagnostic message for a function declared with a
_Noreturn specifier that appears to be capable of returning to its caller.
6 EXAMPLE

. Noreturn void f () {
e abort(); // ok

A~ A~

—.__=Noreturn void g (int i) { // causes undefined behavior if i < 0
e ML 2 B BOITEOE

A~ A~

Forward references: function definitions (6.9.1).
6.7.8 Declarators

Syntax

1 declarator:
pointerop direct-declarator

193) An alignment specification of zero also does not affect other alignment specifications in the same declaration.

modifications to ISO/IEC 9899:2018, § 6.7.8 page 126 Language

N2644/P2309R0 cmin..core 6.7.8, working draft — January 20, 2021 CORE 202101 (E)

direct-declarator:

identifier attribute-specifier-sequenceopt

(declarator)

array-declarator attribute-specifier-sequenceqpt
function-declarator attribute-specifier-sequenceqpt

Semantics

Each declarator declares one identifier, and asserts that when an operand of the same form as
the declarator appears in an expression, it designates a function or object with the scope, storage
duration, and type indicated by the declaration specifiers.

A full declarator is a declarator that is not part of another declarator. If, in the nested sequence of
declarators in a full declarator, there is a declarator specifying a variable length array type, the type
specified by the full declarator is said to be variably modified. Furthermore, any type derived by
declarator type derivation from a variably modified type is itself variably modified.

In the following subclauses, consider a declaration
TD1

where T contains the declaration specifiers that specify a type T (such as int) and D1 is a declarator
that contains an identifier ident. The type specified for the identifier ident in the various forms of
declarator is described inductively using this notation.

If, in the declaration “T D1”, D1 has the form
identifier attribute-specifier-sequenceopt
then the type specified for ident is T and the optional attribute specifier sequence appertains to
bI-the entity as it is declared.
If, in the declaration “T D1”, D1 has the form
(D)

then ident has the type specified by the declaration “T D”. Thus, a declarator in parentheses is
identical to the unparenthesized declarator, but the binding of complicated declarators may be
altered by parentheses.

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of pointer, array, and function
declarators that modify an arithmetic, structure, union, or void type, either directly or via one or
more typedef s.

Language modifications to ISO/IEC 9899:2018, § 6.7.8 page 127

CORE 202101 (E) § 6.7.8.1, working draft — January 20, 202imin..core3 N2644/P2309R0

Forward references: array declarators (6.7.8.2), type definitions (6.7.10)-, type inference (6.7.13).

6.7.8.1 Pointer declarators

Syntax
ointer:
*_attribute-specifier-sequenceqy; type-qualifier-list
* attribute-specifier-sequenceqp: type-qualifier-list ointer
Semantics

If, in the declaration “T D1”, D1 has the form
* attribute-specifier-sequencep type-qualifier-listop: D

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the
type specified for ident is “derived-declarator-type-list type-qualifier-list pointer to T”. For each type
qualifier in the list, ident is a so-qualified pointer. The optional attribute specifier sequence appertains
to the pointer and not the object pointed to.

For two pointer types to be compatible, both shall be identically qualified and both shall be pointers
to compatible types.

’

EXAMPLE The following pair of declarations demonstrates the difference between a “variable pointer to a constant value”
and a “constant pointer to a variable value”.

const int *ptr_to_constant;
int xconst constant_ptr;

The contents of any object pointed to by ptr_to_constant cannot be modified through that pointer, but ptr_to_constant
itself can be changed to point to another object. Similarly, the contents of the int pointed to by constant_ptr can be
modified, but constant_ptr itself always points to the same location.

The declaration of the constant pointer constant_ptr can be clarified by including a definition for the type “pointer to int”.

typedef int xint_ptr;
const int_ptr constant_ptr;

declares constant_ptr as an object that has type “const-qualified pointer to int”.

6.7.8.2 Array declarators
Syntax

direct-declarator [type-qualifier-list,.: assignment-expression
direct-declarator static type-qualifier-list,, assignment-expression
direct-declarator type-qualifier-list static assignment-expression

Constraints

In addition to optional type qualifiers and the keyword static, the [and] may delimit an

expression-or+-assignment expression. If they delimit an expressien{whichspecifies-the size-of
an-array)the-expression-assignment expression, it shall have an integer type. If the assignment

expression is a constant expression, it shall have a value greater than zero. The element type shall not
be an incomplete or function type. The optional type qualifiers and the keyword static shall appear
only in a declaration of a function parameter with an array type, and then only in the outermost
array type derivation.

If an identifier is declared as having a variably modified type, it shall be an ordinary identifier (as
defined in 6.2.3), have no linkage, and have either block scope or function prototype scope-; if the

implementation defines the macro __CORE_NO_VLA__ a definition that has a variable length arra
type shall have function prototype scope.'”® If an identifier is declared to be an object with static or

194)

A parameter definition as a VLA, is, as all array parameters, rewritten to a pointer type.

modifications to ISO/IEC 9899:2018, § 6.7.8.2 page 128 Language

10

11

12

N2644/P2309R0 cmin..corép6.7.8.2, working draft — January 20, 2021 CORE 202101 (E)

thread storage duration, it shall not have a variable length array type.

If two declarations of the same array type are visible, both shall have compatible element types,

and if both assignment expressions are present, and are integer constant expressions, then both
shall have the same constant value,

Semantics
If, in the declaration “T D1”, D1 has one of the forms:

D [type-qualifier-listop, assignment-expressionqp: 1 attribute-specifier-sequenceopt

D [static type-qualifier-listop: assignment-expression 1 attribute-specifier-sequenceopy

D [type-qualifier-list static assignment-expression] attribute-specifier-sequenceopt

fer-tistor . . -

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the
type specified for ident is “derived-declarator-type-list array of T”.'> The optional attribute specifier
sequence appertains to the array. (See 6.7.8.3 for the meaning of the optional type qualifiers and the
keyword static.)

}Pth&ﬁzeﬁﬁae%pfeseﬂt—theﬂrraytypeﬁs—aﬂﬁﬁeeiﬁp}ete%ypefThe value of the assignment
Wme ggvthvevarg% If the size is *msteael»efebemg—aerexpress&eﬁrpvtvpregev& the

, . W If the size
is an 1r1teger constant expression and the element type has a known constant size, the array type is

not a variable length array type, otherw1se, the array type is a variable length army type éVafraJo}e

If the size is an expression that is not an integer constant expression: if it occurs in a declaration at
funetion-prototypescopethat is not a definition, it is treatectas-if itwerereplaced-by-+not evaluated;
otherwise, each time it is evaluated it shall have a value greater than zero. The size of each instance
of a variable length array type does not change during its lifetime. Where a size expression is part of
the operand of a sizeof operator and changing the value of the size expression would not affect the
result of the operator, it is unspecified whether or not the size expression is evaluated. Where a size
expression is part of the operand of an =Atignef-alignof operator, that expression is not evaluated.

For two array types to be compatible, both shall have compatible element types, and if both size
specifiers are present, and are integer constant expressions, then both size-specifiers shall have
the same constant Value If the two array types are used in a context which requires them to be
compatible, i i

specifiers shall evaluate to the same size.

NOTE Traditionally, C and C++ differ in some of the aspects of array declarations. C has VM types since 99, but
made them optional with a feature macro __STDC_NO VLA__ in C11. This possibility not withstanding, there is no known
implementation that would conform to C17 that defines that feature macro. C++ has no VM types. VM types, with the
possibility to forbid definitions of VLA in block scope are nevertheless proposed for this core specification, because they
provide a convenient tool to enforce propagation of array sizes. In particular such an enforcement is possible from the
caller of a function with array parameters into the function body, without changing function ABIs and without jeopardizing
performance or safety.

EXAMPLE 1

\ float fa[ll], xafp[17];

declares an array of float numbers and an array of pointers to float numbers.

EXAMPLE 2 Note the distinction between the declarations

extern int xx;
extern int y[];

The first declares x to be a pointer to int; the second declares y to be an array of int of unspecified size (an incomplete type),
the storage instance for which is defined elsewhere.

EXAMPLE 3 The following declarations demonstrate the compatibility rules for variably modified types.

19)When several “array of” specifications are adjacent, a multidimensional array is declared.

Language modifications to ISO/IEC 9899:2018, § 6.7.8.2 page 129

13

CORE 202101 (E) § 6.7.8.3, working draft — January 20, 202imin..core3 N2644/P2309R0

extern int n;
extern int m;
void fcompat(void)
{
int a[n]l[6][m];
int (xp)[4]1[n+1];
int c[n][nl[6][m];
int (xr)[n][n][n+1];
=20 // invalid: not compatible because 4—t=—+6
eeo__.P.=a; __.__// invalid: not compatible because 4 # 6
r=c; // compatible, but defined behavior only if
// A—==—6 and m—==—"n+1
mmmmmmm __// n.=6and m = n+l
}

EXAMPLE 4 All declarations of variably modified (VM) types have to be at either block scope or function prototype scope.
Array objects declared with the —Thread-teeat-thread_local, static, or extern storage-class specifier cannot have a
variable length array (VLA) type. However, an object declared with the static storage-class specifier can have a VM type
(that is, a pointer to a VLA type), unless the implementation define __CORE_NO_VLA__ . Finally, all identifiers declared with
a VM type have to be ordinary identifiers and cannot, therefore, be members of structures or unions.

extern int n;

int A[n]; // invalid: file scope VLA
extern int (xp2)[n]; // invalid: file scope VM
int B[100]; // valid: file scope but not VM
void fvla(int m, int C[m][m]); // valid: VLA with prototype scope
void fvla(int m, int C[m][m]) // valid: adjusted to auto pointer to VLA
{
typedef int VLA[m][m]; // valid: block scope typedef VLA

struct tag {

int (xy)[n]; // invalid: 'y not ordinary identifier
int z[n]; // invalid: z not ordinary identifier
}i
. #ifndef __CORE_NO_VLA__
int D[m]; // valid: auto VLA
o int G[m] = {}; ___// invalid: attempt to initialize VLA
_____#endif
static int E[m]; // invalid: static block scope VLA
extern int F[m]; // invalid: F has linkage and is VLA
int (*s)[m]; // valid: auto pointer to VLA
extern int (xr)[m]; // invalid: r has linkage and points to VLA
static int (xq)[m] = &B; // valid: q is a static block pointer to VLA

Forward references: function declarators (6.7.8.3), function definitions (6.9.1), initialization (6.7.12).

6.7.8.3 Function declarators
Syntax

unction-declarator:
direct-declarator arameter-type-list)

type-gualifier-list:

type-qualifier-list type-qualifier

arameter-type-list:
o paTameter-list

modifications to ISO/IEC 9899:2018, § 6.7.8.3 page 130 Language

10

11

12

13

14

N2644/P2309R0 cmin..corép6.7.8.3, working draft — January 20, 2021 CORE 202101 (E)

o aTAIELET-deClaration
e AttribUEe-SPeCifier-sequenceop, declaration-specifiers _abstract-declaratorop,

Constraints
A function declarator shall not specify a return type that is a function type or an array type.

The only storage-class specifier that shall occur in a parameter declaration is register-auto.

A parameter declaration without type specifier shall not be formed, unless it includes the storage
class specifier auto and unless it appears in the parameter list of a lambda expression.

After adjustment, the parameters in a parameter type list in a function declarator that is part of a
definition of that function shall not have incomplete type.

Semantics
If, in the declaration “T D1”, D1 has the form

D (parameter-type-listop:) attribute-specifier-sequenceop,
and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the
type specified for ident is “derived-declarator-type-list function returning the unqualified version of T”.
The optional attribute specifier sequence appertains to the function type.

A parameter type list specifies the types of, and may declare identifiers for, the parameters of the
function.

A-After the declared types of all parameters have been determined in order of declaration, an
declaration of a parameter as “array of type” shall be adjusted to “qualified or unqualified pointer

to type”, where the type qualifiers (if any) are those specified within the [and] of the array type
derivation. If the keyword static also appears within the [and] of the array type derivation, then
for each call to the function, the value of the corresponding actual argument shall provide access to
the first element of an array with at least as many elements as specified by the size expression.

A declaration of a parameter as “function returning fype” shall be adjusted to “pointer to function
returning type”, as in 6.3.2.1.

If the list terminates with an ellipsis (=, ...), no information about the number or types of the
parameters after the comma is supplied.!®

The special case of an unnamed parameter of type void as the only item in the list specifies that the
function has no parameters.

If, in a parameter declaration, an identifier can be treated either as a typedef name or as a parameter
name, it shall be taken as a typedef name.

If the function declarator is not part of a definition of that function, parameters may have incomplete
types , . . - o . .
length-array-types.
The storage class specifier in the declaration specifiers for a parameter declaration, if present, is
ignored unless the declared parameter is one of the members of the parameter type list for a function
definition. The optional attribute specifier sequence in a parameter declaration appertains to the
parameter.

For a function declarator without a parameter type list: if it is part of a definition of that function
the function has no parameters and the effect is as if it were declared with a parameter type list
consisting of the keyword void; otherwise it specifies that no information about the number or types

19)The macros defined in the <stdarg. h> header (7.16) can be used to access arguments that correspond to the ellipsis.

Language modifications to ISO/IEC 9899:2018, § 6.7.8.3 page 131

15

16

17

18

19

20

21

CORE 202101 (E) § 6.7.8.3, working draft — January 20, 202imin..core3 N2644/P2309R0

of the parameters is supplied.!”” A function declarator provides a prototype for the function if it
includes a parameter type list.'¥) Otherwise, a function declaration is said to have no prototype.

For two function types to be compatible, both shall specify compatible return types. Moreover,
the parameter type lists, if both are present, shall agree in the number of parameters and in use
of the ellipsis terminator; corresponding parameters shall have compatible types. If one type has
a parameter type list and the other type has none and is not part of a function definition, the
parameter list shall not have an ellipsis terminator. In the determination of type compatibility and
of a composite type, each parameter declared with function or array type is taken as having the
adjusted type and each parameter declared with qualified type is taken as having the unqualified
version of its declared type.

NOTE Cand C++ have different rules for the visibilty of function parameters: for C a parameter is visible starting at the
end of its declaration, whereas for C++ it is only visible starting in the function body, if the declaration also happens to be
a definition. This specification opted for the C variant, because this rule implies that one parameter can be used for the
declaration of the type of another. That possibility is important wherever there is a need to ensure consistency between
types or array lengths.

EXAMPLE 1 The declaration

| int f(void), *fip(), (+pfi)();

declares a function f with no parameters returning an int, a function fip with no parameter specification returning a pointer
to an int, and a pointer pfi to a function with no parameter specification returning an int. It is especially useful to compare
the last two. The binding of *fip() is*(fip()), so that the declaration suggests, and the same construction in an expression
requires, the calling of a function fip, and then using indirection through the pointer result to yield an int. In the declarator
(xpfi) (), the extra parentheses are necessary to indicate that indirection through a pointer to a function yields a function
designator, which is then used to call the function; it returns an int.

If the declaration occurs outside of any function, the identifiers have file scope and external linkage. If the declaration
occurs inside a function, the identifiers of the functions f and fip have block scope and either internal or external linkage
(depending on what file scope declarations for these identifiers are visible), and the identifier of the pointer pfi has block
scope and no linkage.

EXAMPLE 2 The declaration

| int (xapfil[3]) (int *x, int *y);

declares an array apfi of three pointers to functions returning int. Each of these functions has two parameters that are
pointers to int. The identifiers x and y are declared for descriptive purposes only and go out of scope at the end of the
declaration of apfi.

EXAMPLE 3 The declaration

7 7

___int (xfpfi(int (x)(long), int))(int, ...);

declares a function fpfi that returns a pointer to a function returning an int. The function fpfi has two parameters: a
pointer to a function returning an int (with one parameter of type long int), and an int. The pointer returned by fpfi
points to a function that has one int parameter and accepts zero or more additional arguments of any type.

EXAMPLE 4 The following prototype has a variably modified parameter.

void addscalar(int n, int m,
double a[n][n*m+300], double x);

int main()

{
double b[4][308];
addscalar(4, 2, b, 2.17);
return 0;

)

void addscalar(int n, int m,

197)See “future language directions” (6.11.6).

198)This implies that a function definition without a parameter list provides a prototype, and that subsequent calls to that
function in the same translation unit are constrained not to provide any argument to the function call. Thus a definition of a
function without parameter list and one that has such a list consisting of the keyword void are fully equivalent.

modifications to ISO/IEC 9899:2018, § 6.7.8.3 page 132 Language

22

1

N2644/P2309R0 cmin..core 6.7.9, working draft — January 20, 2021 CORE 202101 (E)

double a[n][nxm+300], double Xx)
{
for (int 1 = 0; i < n; i++)
for (int j = 0, k = n¥xm+300; j < k; j++)
// a 1s a pointer to a VLA with nxm+300 elements
alillj]l += x;
}

EXAMPLE 5 The following are all-compatible function prototype declarators.

double maximum(int n, int m, double a[n][m]);

7 y ’

double maximum(int n, int m, double a[][m]);

_____void f(double (x a)[51);

__.___void f(double a[][5]);
_____void f(double a[3]1(5]);

_.___void f(double a[static 3]1[5]);

(Note that the last declaration also specifies that the argument corresponding to a in any call to f can be expected to be a
non-null pointer to the first of at least three arrays of 5 doubles, which the others do not.)

Forward references: function definitions (6.9.1), type names (6.7.9).

6.7.9 Type names
Syntax
type-name:
specifier-qualifier-list abstract-declaratorop;
abstract-declarator:
pointer
pointerqp direct-abstract-declarator
direct-abstract-declarator:
(abstract-declarator)
array-abstract-declarator attribute-specifier-sequenceqpt
function-abstract-declarator attribute-specifier-sequencept
array-abstract-declarator:
direct-abstract-declaratorope [type-qualifier-listop: assignment-expressionept 1
direct-abstract-declaratorop: [static type-qualifier-listop assignment-expression]

direct-abstract-declaratorop, [type-qualifier-list static assignment-expression]
direct-abstract-declaratorop; [*]

function-abstract-declarator:
direct-abstract-declaratorop, (parameter-type-listop;)

Semantics

In several contexts, it is necessary to specify a type. This is accomplished using a type name, which is
syntactically a declaration for a function or an object of that type that omits the identifier.!”” The
optional attribute specifier sequence in a direct abstract declarator appertains to the preceding array

199) As indicated by the syntax, empty parentheses in a type name are interpreted as “function with no parameter specifica-

tion”, rather than redundant parentheses around the omitted identifier.

Language modifications to ISO/IEC 9899:2018, § 6.7.9 page 133

3

CORE 202101 (E) § 6.7.10, working draft — January 20, 202dmin..core3 N2644/P2309R0

or function type. The attribute specifier sequence affects the type only for the declaration it appears
in, not other declarations involving the same type.

EXAMPLE The constructions

(a) int

(b) int x

(c) int x[3]

(d) int (*)[3]

(e) —t—et

(f) int *()

(9) int (*)(void)

(h) —int—treonst—{H-(unrsighed—int,——)
U 1)) int_(xconst_[1) (unsigned int, ...).

name respectively the types (a) int, (b) pointer to int, (c) array of three pointers to int, (d) pointer to an array of three
int s, (e)}pointerto-a-variable length-array-of anunspecifiednumber-of-intsf) function with no parameter specification
returning a pointer to int, (g) pointer to function with no parameters returning an int, and (h) array of an unspecified
number of constant pointers to functions, each with one parameter that has type unsigned int and an unspecified number
of other parameters, returning an int.

6.7.10 Type definitions
Syntax

typedef-name:
identifier

Constraints
If a typedef name specifies a variably modified type then it shall have block scope. A typedef name

shall not be identical to a tag name that has a visible declaration, unless it refers to the type with
that same tag.

Semantics

In a declaration whose storage-class specifier is typedef, each declarator defines an identifier to
be a typedef name that denotes the type specified for the identifier in the way described in 6.7.8.
Any array size expressions associated with variable length array declarators are evaluated each time
the declaration of the typedef name is reached in the order of execution. A typedef declaration
does not introduce a new type, only a synonym for the type so specified. That is, in the following
declarations:

typedef T type_ident;
type_ident D;

type_ident is defined as a typedef name with the type specified by the declaration specifiers in T
(known as T), and the identifier in D has the type “derived-declarator-type-list T” where the derived-
declarator-type-list is specified by the declarators of D. A typedef name shares the same name space
as other identifiers declared in ordinary declarators.

NOTE C and C++ have subtle differences for the rules which identifiers are allowed as e names. The constraint that
forbids the reuse of a tag name for another type originates from C++ and we repeat it here, since otherwise programs would
not be portable in the common C/C++ core.

EXAMPLE 1 After

typedef int MILES, KLICKSP();
typedef struct { double hi, lo; } range;

the constructions

MILES distance;
extern KLICKSP xmetricp;

modifications to ISO/IEC 9899:2018, § 6.7.10 page 134 Language

N2644/P2309R0 cmin..core§ 6.7.10, working draft — January 20, 2021 CORE 202101 (E)

\ range Xx;
\ range z, *zp;

are all valid declarations. The type of distance is int, that of metricp is “pointer to function with no parameter specification
returning int”, and that of x and z is the specified structure; zp is a pointer to such a structure. The object distance has a
type compatible with any other int object.

EXAMPLE 2 After the declarations

typedef struct sl { int x; } tl1, xtpl;
typedef struct s2 { int x; } t2, *tp2;

type t1 and the type pointed to by tp1 are compatible. Type t1 is also compatible with type struct s1, but not compatible
with the types struct s2, t2, the type pointed to by tp2, or int.

EXAMPLE 3 The following obscure constructions

typedef signed int t;
typedef int plain;
struct tag {

oo Unsigned t;

const t s;

A~ A A A

A A A A

declare a typedef name t with type signed int, a typedef name plain with type int, and a structure with three bit-field
members, one named t thateontains-valuesin-the range-{0;15},an-unnamed-, an const-qualified btt-ﬁeld—whieh—ﬁf—kt—eeﬂ}d

two bﬁ-ﬁe}d—declarahons d1ffer in that un51gned isa type spec1f1er (which forces t to be the name of a structure member)
while const is a type qualifier (which modifies t which is still visible as a typedef name). If these declarations are followed
in an inner scope by

t f(t (t));
long t;

then a function f is declared with type “function returning signed int with one unnamed parameter with type pointer
to function returning signed int with one unnamed parameter with type signed int”, and an identifier t with type
long int.

EXAMPLE 4 On the other hand, typedef names can be used to improve code readability. All three of the following
declarations of the signal function specify exactly the same type, the first without making use of any typedef names.

typedef void fv(int), (xpfv)(int);

void (xsignal(int, void (x)(int))) (int);
fv *xsignal(int, fv x);
pfv signal(int, pfv);

EXAMPLE 5 If a typedef name denotes a variable length array type, the length of the array is fixed at the time the typedef
name is defined, not each time it is used:

void copyt(int n)

{
typedef int B[n]; // B is n ints, n evaluated now
n+=1;
B a; // a is n ints, n without += 1
int b[n]; // a and b are different sizes
for (int i = 1; i < n; i++)

afi-1] = b[i];
}

Language modifications to ISO/IEC 9899:2018, § 6.7.10 page 135

CORE 202101 (E) § 6.7.11, working draft — January 20, 202dmin..core3 N2644/P2309R0

6.7.11 typeof specifier
Syntax

typeof-specifier:
typeof (type-name)
typeof (expression)

Constraints_

The type name or expression shall be valid and have a function or object type, but not a lambda
type. No new type declaration shall be formed by the type name or expression themselves.20?

Semantics

A typeof specifier can be used in places where other type specifiers are used to declare or define
objects, members or functions. It stands in for the unmodified type of the type name or expression,
even where the expression cannot be used for type inference of its type (opaque types, function

types, array types), where a type-qualification should not be dropped, or where an identifier ma
only be accessed for its type without evaluating it (within lambda expressions).

If it does not have a variably modified (VM) type, the type name or expression is not evaluated. For
VM types, the same rules for evaluation as for sizeof expressions apply. Analogous to typedef,
a typeof specifier does not introduce a new type, it only acts as a placeholder for the type so
specified.

NOTE This construct is currently proposed for inclusion in C. C++ has a similar feature decltype but which varies for
some important cases, in particular in presence of an lvalue expression.

EXAMPLE

void f(int);

typeof (f(5)) g(double x) { ___ _ // 9 has type ' void (double)’’
_printf(“value %g\n”, x);

b
typeof(Q@)x h; /L h has type " void (x)(double)’’
typeof(true 7 g : nullptr) ki [/ k has type " void (*)(double)’’

void ell(double A[5], typeof(A)* B); // ell has type " “void (doublex, doublexx)’’

extern typeof(double[]) D; ~~____// D has an incomplete type
typeof(D) C =£0.7, 99, }; ________// C has type double[2]

typeof(D) D= { 5, 8.9, 0.1, 99, }; // D is completed to double[4]
typeof (D) E; // E has type double[4]

For the definition of g, the expression f(5) has type void, and so this becomes the return type, For h, g stands in for a
function type specifier and the result type for h is a pointer to function. For k, again the expression derivation is used. Here
the type is the type of a ternary operator, thus the type of g after function to function pointer conversion. As the result, the

For ell the parameter type adjustment takes place before typeof specifier is met. Therefore typeof (A) refers to the type
doublex and not to double[3].

The extern declaration of D uses the type name derivation. The type name or expression to which a typeof specifier refers
has not necessarily to be complete. Here, C first inherits that incomplete type but is then completed by the initializer to

h/a\y\g\gzgg double[2]. The specification typeof (D) can then even be used in the definition of D itself to complete its e to
double[4].

200)

This could for example happen if the expression contained the forward declaration of a tag type, such as in
(struct newStructx)0 where struct newStruct has not yet been declared, or if it uses a compound literal that declares
a new structure or union type in its type-name component.

modifications to ISO/IEC 9899:2018, § 6.7.11 page 136 Language

1

10

N2644/P2309R0 cmin..core§ 6.7.12, working draft — January 20, 2021 CORE 202101 (E)

6.7.12 Initialization

Syntax

initializer:
assignment-expression
{ initializer-listp }
{ initializer-list , }

initializer-list:
designationep initializer

initializer-list , designationqp initializer

designation:
designator-list =

designator-list:

designator

designator-list designator
designator:

[constant-expression 1]

. identifier
Constraints

No initializer shall attempt to provide a value for an object not contained within the entity being

initialized. If the e of the object that is initialized is opaque, the initializer shall be omitted or of

the form{} .

The type of the entity to be initialized shall be an array of unknown size or a complete object type
that is not a variable length array type.

All the expressions in an initializer for an object that has static or thread storage duration shall be
constant expressions or string literals.

If the declaration of an identifier has block scope, and the identifier has external or internal linkage,
the declaration shall have no initializer for the identifier.

If a designator has the form
[constant-expression 1

then the current object (defined below) shall have array type and the expression shall be an integer
constant expression. If the array is of unknown size, any nonnegative value is valid.

If a designator has the form
. identifier
then the current object (defined below) shall have structure or union type and the identifier shall be
the name of a member of that type.
Semantics

An-For non-opaque object types, an initializer specifies the initial value stored in an object. Unless

specified otherwise, for opaque object types an initializer guarantees a valid initial state by settin
all bits of the representation to zero.

Except where explicitly stated otherwise, for the purposes of this subclause unnamed members
of objects of structure and union type do not participate in initialization. Unnamed members of
structure objects have indeterminate value even after initialization.

If an object that has automatic storage duration is not initialized explicitly, its value is indeterminate.
If an object that has static or thread storage duration is not initialized explicitly, then:

— if it has pointer type, it is initialized to a null pointer;

Language modifications to ISO/IEC 9899:2018, § 6.7.12 page 137

11

12
13

14

15

16

17

18

19

20

CORE 202101 (E) § 6.7.12, working draft — January 20, 202dmin..core3 N2644/P2309R0

— if it has arithmetic type, it is initialized to (positive or unsigned) zero;

— if it is an aggregate, every member is initialized (recursively) according to these rules, and any
padding is initialized to zero bits;

— if it is a union, the first named member is initialized (recursively) according to these rules, and
any padding is initialized to zero bits;

The initializer for a scalar shall be a single expression, optionally enclosed in braces. The initial value
of the object is that of the expression (after conversion); the same type constraints and conversions
as for simple assignment apply, taking the type of the scalar to be the unqualified version of its
declared type.

The rest of this subclause deals with initializers for objects that have aggregate or union type.

The initializer for a structure or union object that has automatic storage duration shall be either
an initializer list as described below, or a single expression that has compatible structure or union
type. In the latter case, the initial value of the object, including unnamed members, is that of the
expression.

An array of character type may be initialized by a character string literal er-UTF-8-string-literal;

optionally enclosed in braces. Similarly, an array of char8_t may be initialized by an UTF-S8 strin
literal.”®V Successive bytes of the string literal (including the terminating null character if there is

room or if the array is of unknown size) initialize the elements of the array.

An array with element type compatible with a qualified or unqualified version of wchar_t, char16_t,
or char32_t may be initialized by a wide string literal with the corresponding encoding prefix (L,
u, or U, respectively), optionally enclosed in braces. Successive wide characters of the wide string
literal (including the terminating null wide character if there is room or if the array is of unknown
size) initialize the elements of the array.

Otherwise, the initializer for an object that has aggregate or union type shall be a brace-enclosed list
of initializers for the elements or named members, which may be empty.

Each brace-enclosed initializer list has an associated current object. When no designations are present,
subobjects of the current object are initialized in order according to the type of the current object:
array elements in increasing subscript order, structure members in declaration order, and the first
named member of a union.?” In contrast, a designation causes the following initializer to begin
initialization of the subobject described by the designator. Initialization then continues forward in
order, beginning with the next subobject after that described by the designator.2*®)

Each designator list begins its description with the current object associated with the closest sur-
rounding brace pair. Each item in the designator list (in order) specifies a particular member of its
current object and changes the current object for the next designator (if any) to be that member.?*¥
The current object that results at the end of the designator list is the subobject to be initialized by the
following initializer.

The initialization shall occur in initializer list order, each initializer provided for a particular subobject
overriding any previously listed initializer for the same subobject;?” all subobjects that are not

initialized explicitly shall be initialized implicitly the same as objects that have static storage duration.

If the aggregate or union contains elements or members that are aggregates or unions, these rules
apply recursively to the subaggregates or contained unions. If the initializer of a subaggregate or

2"DFor C char8_t is a character type and so there may be no difference in the initialization between the two types of string
literals. But the distinction is important for the compatibility to C++.

202)1f the initializer list for a subaggregate or contained union does not begin with a left brace, its subobjects are initialized as
usual, but the subaggregate or contained union does not become the current object: current objects are associated only with
brace-enclosed initializer lists.

203) After a union member is initialized, the next object is not the next member of the union; instead, it is the next subobject of
an object containing the union.

209Thus, a designator can only specify a strict subobject of the aggregate or union that is associated with the surrounding
brace pair. Note, too, that each separate designator list is independent.

205 Any initializer for the subobject which is overridden and so not used to initialize that subobject might not be evaluated at
all.

modifications to ISO/IEC 9899:2018, § 6.7.12 page 138 Language

21

22

23

24

25

26

27

28

29

N2644/P2309R0 cmin..core§ 6.7.12, working draft — January 20, 2021 CORE 202101 (E)

contained union begins with a left brace, the initializers enclosed by that brace and its matching right
brace initialize the elements or members of the subaggregate or the contained union. Otherwise, only
enough initializers from the list are taken to account for the elements or members of the subaggregate
or the first member of the contained union; any remaining initializers are left to initialize the next
element or member of the aggregate of which the current subaggregate or contained union is a part.

If there are fewer initializers in a brace-enclosed list than there are elements or members of an
aggregate, or fewer characters in a string literal used to initialize an array of known size than there
are elements in the array, the remainder of the aggregate shall be initialized implicitly the same as
objects that have static storage duration.?®

If an array of unknown size is initialized, its size is determined by the largest indexed element with
an explicit initializer. The array type is completed at the end of its initializer list.

The evaluations of the initialization list expressions are indeterminately sequenced with respect to
one another and thus the order in which any side effects occur is unspecified.?"”)

NOTE 1 The C language currently does not allow the initializer list to be empty. To ease portability in the C/C++ core,
implementations are encouraged to accept such initializers as an extension.

NOTE 2 C and C++ differ on an important aspect concerning initializers. Where for C the expressions in an initializer are
unsequenced, C++ imposes specification of the initializers in declaration order and sequences them according to that order
[del.init.list] pd). Asa consequence

— providing designated initializers in an order that is different from declaration order is a constraint violation in C++,

— in C, using expressions that must be sequenced to be valid (such as multiple occurence of the same increment
operation) leads to undefined behavior.

It is recommended that applications that target the common C/C++ core list initializers in declaration order. Further it
is recommended that implementations that target that core diagnose situations that would be problematic for the other
language, such as initializers not appearing in declaration order or initializer expressions that require sequencing.

EXAMPLE 1 Provided that <complex.h> has been #included, the declarations

int i = 3.5;
—deubte—eomptex—e=5+3—+1;

.. double complex ¢ =5 + 3 x I;

define and initialize i with the value 3 and c with the value 5.0 + 43.0.

EXAMPLE 2 The declaration

‘ int x[] = {1, 3, 5 };

defines and initializes x as a one-dimensional array object that has three elements, as no size was specified and there are three
initializers.

EXAMPLE 3 The declaration

is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row of y (the array object y[0]), namely
y[01[0],y[0][1],and y[0][2]. Likewise the next two lines initialize y[1] and y[2]. The initializer ends early, so y[3] is
initialized with zeros. Precisely the same effect could have been achieved by

int y[4][3] = {
1, 3, 5,2, 4,6, 3,5, 7
b8

The initializer for y[0] does not begin with a left brace, so three items from the list are used. Likewise the next three are
taken successively for y[1] and y[2].

2001 particular, if the initializer list is em all members are initialized implicitly.

207)In particular, the evaluation order need not be the same as the order of subobject initialization.

Language modifications to ISO/IEC 9899:2018, § 6.7.12 page 139

30

31

32

33
34

CORE 202101 (E) § 6.7.12, working draft — January 20, 2021 N2644/P2309R0

EXAMPLE 4 The declaration

int z[4]1[3] = {
{1}, {2} {313} {4}

};

initializes the first column of z as specified and initializes the rest with zeros.

EXAMPLE 5 The declaration

| struct { int a[3], b; }w[l = { {1}, 2 }; |

is a definition with an inconsistently bracketed initialization. It defines an array with two element structures: w[0] .a[0] is 1
andw[1].a[0] is 2; all the other elements are zero.

EXAMPLE 6 The declaration

short q[4][3][2] = {
{1},
{2, 31},
{4, 5, 61}

};

contains an incompletely but consistently bracketed initialization. It defines a three-dimensional array object: q[0]1[0] [0]
is1,q[11[0]1[0]is2, q[1][0]1[1] is 3, and 4, 5, and 6 initialize q[2]1[0][0], q[2][0]1[1], and q[2][1][0], respectively;
all the rest are zero. The initializer for q[0][0] does not begin with a left brace, so up to six items from the current list
could be used. There is only one, so the values for the remaining five elements are initialized with zero. Likewise, the
initializers for q[1]1[0] and q[2][0] do not begin with a left brace, so each uses up to six items, initializing their respective
two-dimensional subaggregates. If there had been more than six items in any of the lists, a diagnostic message would have
been issued. The same initialization result could have been achieved by:

short q[4][3][2] = {
1, 0, 0, 0, 0, O,
2, 3, 6, 0, 0, 0,
4, 5, 6
b
or by:
short q[4][3][2] = {
{
{1},
b
{
{2,31,
b
{
{4,51,
{61},
}

}

in a fully bracketed form.
Note that the fully bracketed and minimally bracketed forms of initialization are, in general, less likely to cause confusion.

EXAMPLE 7 One form of initialization that completes array types involves typedef names. Given the declaration

[
typedef int A[]; // OK - declared with block scope

the declaration

‘ Aa={1,2%} b={3,4,5}%;

is identical to

modifications to ISO/IEC 9899:2018, § 6.7.12 page 140 Language

35

36

37

38

39

40

N2644/P2309R0 § 6.7.12, working draft — January 20, 2021 CORE 202101 (E)

‘ int a[] = {1, 2}, b[l={3,4,5}; |

due to the rules for incomplete types.

EXAMPLE 8 The declaration

char s[] = "abc", t[3] "abc";

defines “plain” char array objects s and t whose elements are initialized with character string literals. This declaration is
identical to

char s[] = { 'a’, 'b’, 'c’, '\0" },
t[] ={ IaI' Ibl, lcl };

The contents of the arrays are modifiable. On the other hand, the declaration

[]
char xp = "abc";

defines p with type “pointer to char” and initializes it to point to an object with type “array of char” with length 4 whose
elements are initialized with a character string literal. If an attempt is made to use p to modify the contents of the array, the
behavior is undefined.

EXAMPLE 9 Arrays can be initialized to correspond to the elements of an enumeration by using designators:

enum { member_one, member_two };
const char xnm[] = {
[member_two] = "member two",
[member_one] = "member one",

b8

EXAMPLE 10 Structure members can be initialized to nonzero values without depending on their order:

[|
div_t answer = {.quot = 2, .rem = -1 };

EXAMPLE 11 Designators can be used to provide explicit initialization when unadorned initializer lists might be misunder-
stood:

struct { int a[3], b; } w[] =
{ [06].a = {1}, [1].a[0] =2 };

EXAMPLE 12
struct T {
int k;
int 1;
b
struct S {
int i;
struct T t;
i

struct T x = {.1 = 43, .k =42, };

void f(void)

{
struct S 1 ={1, .t =x, .t.1 =41, };

}

The value of 1. t.kis 42, because implicit initialization does not override explicit initialization.

EXAMPLE 13 Space can be “allocated” from both ends of an array by using a single designator:

| int a[MAX] = { |

Language modifications to ISO/IEC 9899:2018, § 6.7.12 page 141

41

42

CORE 202101 (E) § 6.7.13, working draft — January 20, 202dmin..core3 N2644/P2309R0

\ 1, 3, 5,7, 9, [MAX-5] =8, 6, 4, 2, 0 \
| b |

In the above, if MAX is greater than ten, there will be some zero-valued elements in the middle; if it is less than ten, some of
the values provided by the first five initializers will be overridden by the second five.

EXAMPLE 14 Any member of a union can be initialized:

i union { /x ... %/ } u = {.any_member = 42 }; ‘

Jefinitions(7.19
6.7.13 Type inference

Constraints_

An underspecified declaration shall contain the storage class specifier auto.

For an underspecified declaration of a function that is also a definition, the return type shall be

completed as of 6.9.1. For an underspecified declaration of a function that is not a definition a prior
definition of the declared function shall be visible.

An underspecified declaration of an object that is also a definition and that is not the declaration of
a parameter shall be of one of the forms

declarator = assignment-expression
declarator = { assignment-expression
declarator = { assignment-expression

such that the declarator does not declare an array.

For an underspecified declaration such that the assignment expression does not have lambda type
there shall be a type specifier type that can be inserted in the declaration immediately after the last
storage class specifier that makes the adjusted declaration a valid declaration and such that the
assignment expression, after possible lvalue, array-to-pointer or function-to-pointer conversion,
has the non-atomic, unqualified type of the declared object*®if the assignment expression has
lambda type, the lambda type shall be complete and the declarator shall only consist of storage
class specifiers, qualifiers and the identifier that is to be declared. A function declaration that is not

a definition shall have a type that is compatible with the type of the corresponding definition.
Description

Although there is no syntax derivation to form declarators of lambda type, values of lambda type
can be used as assignment expression and the inferred type is that lambda type, possibly qualified.
Otherwise, provided the constraints above are respected, in an underspecified declaration the type
of the declared identifiers is the type after the declaration has been adjusted by fype. The type of
each identifier that declares an object is incomplete until the end of the assignment expression that

NOTE The scope of the identifier for which the type is inferred only starts after the end of the initializer (6.2.1), so the
assignment expression cannot use the identifier to refer to the object or function that is declared, for example to take its
address. Any use of the identifier in the initializer is invalid, even if an entity with the same name exists in an outer scope.

~odouble a = 7;
~double b = 9;
SIS §

double b = b x b; __// error, RHS uses uninitialized variable

rintf("%sg\n", a); // valid, uses "a" from outer scope, prints 7
weoo____ autoa =a*a; /[error, "a" from outer scope is already shadowed
2)For most assignment expressions of integer or floating point type, there are several types type that would make such

a declaration valid. The second part of the constraint ensures that among these a unique type is determined that does not
need further conversion to be a valid initializer for the object.

modifications to ISO/IEC 9899:2018, § 6.7.13 page 142 Language

10

N2644/P2309R0 cmin..core§ 6.7.13, working draft — January 20, 2021 CORE 202101 (E)

auto b =

eoo____autob =axa; // valid, uses "a" from outer scope
o ______autoa =Db; // valid, shadows "a" from outer scope

rintf("sg\n", a); // valid, uses "a" from inner scope, prints 49

]

EXAMPLE 1 Consider the following definitions:

auto x p = &a;_

They are interpreted as if they had been written as:

auto double x p = &a;

which again is equivalent to

double =* = &a;

So effectively a is a double and p is a doublex.

EXAMPLE 2 In the following, pA is valid because the type of A after array-to-pointer conversion is a pointer type, and gA is
valid because it does not declare an array but a pointer to an array.

double A[3] = { 0 };
auto const * pA = A;
auto const (xqgA)[3] = &A;

EXAMPLE 3 Type inference can be used to capture the type of a call to a type-generic function and can be used to ensure
that the same type as the argument x is used.

#include <math.h>

auto y = cos(x);.

If instead the type of y is explicitly specified to a different type than x, a diagnosis of the mismatch is not enforced.

EXAMPLE 4 An implementation of the div type-generic macro (7.22.7.2) based on the obsolescent functions div, ldiv and
1ldiv and based on the assumption that there is no extended integer type that would be wider than long long can be given

and used as follows.

#define div
(auto a, auto b)
_.feturn generic_type(atb,
int: div,
long: ldiv,
long long: 1ldiv,

unsigned: eneric_type(0L+0U

/* long can hold unsigned x/
long: ldiv

default: generic_type(OLL+0U,

/* _long long can hold unsi nEEA;7A::i
o long long: _ lldiv,

Jx f3llback for small unsigned &7\
default: div)),

w

~ -

15

Language modifications to ISO/IEC 9899:2018, § 6.7.13 page 143

CORE 202101 (E) § 6.7.14, working draft — January 20, 202dmin..core3 N2644/P2309R0

....unsigned long: _____generic type(OLLreul, ...\
e Nong Tong: Wdiv, N
default: Wdiv), oo\

(a, b); \
kb

auto = z.quot;

~

Here, a set of implementation specific choices determine which of the functions is chosen within the lambda to compute x/y.
and x%y. But regardless, as the type is inferred, the variable 7 has the correct return type. In consequence the variables g and
r have signed integer types as formulated in the description of the div type-generic macro that can hold the mathematical
results of the operation, whenever that is possible for the given implementation.

6.7.14 Static assertions

Syntax

static_assert-declaration:
—Static—assert static_assert (constant-expression , string-literal) ;
—Static—assert static_assert (constant-expression) ;

Constraints
The constant expression shall compare unequal to 0.

Semantics

The constant expression shall be an integer constant expression. If the value of the constant expres-
sion compares unequal to 0, the declaration has no effect. Otherwise, the constraint is violated and
the implementation shall produce a diagnostic message that includes the text of the string literal, if
present, except that characters not in the basic source character set are not required to appear in the
message.

Forward references: diagnostics (7.2).

6.7.15 Attributes

Attributes specify additional information for various source constructs such as types, variables,
identifiers, or blocks. They are identified by an attribute token, which can either be a attribute prefixed
token (for implementation-specific attributes) or a standard attribute specified by an identifier (for
attributes specified in this document).

Support for any of the standard attributes specified in this document is implementation-defined
and optional. For an attribute token (including an attribute prefixed token) not specified in this
document, the behavior is implementation-defined. Any attribute token that is not supported by the
implementation is ignored.

Attributes are said to appertain to some source construct, identified by the syntactic context where
they appear, and for each individual attribute, the corresponding clause constrains the syntactic
context in which this appertainance is valid. The attribute specifier sequence appertaining to some
source construct shall contain only attributes that are allowed to apply to that source construct.

In all aspects of the language, a standard attribute specified by this document as an identifier attr
and an identifier of the form __attr__ shall behave the same when used as an attribute token,
except for the spelling.?%)

29)Thus, the attributes Hhediseard}-[nodiscard] and {f—nodiseard—1}[_nodiscard__] can be freely interchanged.

Implementations are encouraged to behave similarly for attribute tokens (including attribute prefixed tokens) they provide.

modifications to ISO/IEC 9899:2018, § 6.7.15 page 144 Language

1

N2644/P2309R0 cmin..cor§®.7.15.1, working draft — January 20, 2021 CORE 202101 (E)

Recommended practice
It is recommended that implementations support all standard attributes as defined in this document.

6.7.15.1 General
Syntax

attribute-specifier-sequence:

attribute-specifier-sequenceop: attribute-specifier
attribute-specifier:
attribute-list:

attributeopy

attribute-list , attributeyp
attribute:

attribute-token attribute-argument-clauseopt
attribute-token:

standard-attribute

attribute-prefixed-token
standard-attribute:

identifier

attribute-prefixed-token:

attribute-prefix ———identifier- :: _attribute-suffix

identifier

attribute-prefix:

attribute-suffix:

core-attribute:

core :: identifier

attribute-arqument-clause:
(' balanced-token-sequenceqp:)
balanced-token-sequence:
balanced-token
balanced-token-sequence balanced-token
balanced-token:
(balanced-token-sequenceopt)
[balunced—token—sequenceopt]
{ balanced-token-sequenceop }
any token other than a parenthesis, a bracket, or a brace

Constraints
The identifier in a standard attribute shall be one of:

deprecated fallthrough maybe_unused nodiscard

The identifier in a core attribute shall be one of:

address_independent free realloc state_transparent
. idempotent reentrant stateless
evaluates noleak state_invariant_

Language modifications to ISO/IEC 9899:2018, § 6.7.15.1 page 145

CORE 202101 (E) § 6.7.15.1, working draft — January 20, 202inin..core3 N2644/P2309R0

Semantics

An attribute specifier that contains no attributes has no effect. The order in which attribute tokens
appear in an attribute list is not significant. If a keyword (6.4.1) that satisfies the syntactic require-
ments of an identifier (6.4.2) is contained in an attribute token, it is considered an identifier. A strictly
conforming program using a standard attribute remains strictly conforming in the absence of that
attribute.?!?

Additionally, this specification defines attributes for the C/C++ core that have the form of an
attribute prefixed token, where the attribute prefix are core or __core__, and where the identifier
is one of the above or the same with prefix and postfix of __. Those forms are equivalent besides
their spelling, They are specified in 6.7.15.4 and following.

NOTE For each standard or core attribute, the form of the balanced token sequence, if any, will be specified.

Recommended Practice

Each implementation should choose a distinctive name for the attribute prefix in an attribute
prefixed token. Implementations should not define attributes without an attribute prefix unless it is
a standard attribute as specified in this document.

EXAMPLE 1 Suppose that an implementation chooses the attribute prefix hal and provides specific attributes named daisy
and rosie.

deprecated, hal::dais double ninel000(double);
deprecated hal::dais double ninel000(double);
deprecated double ninel000 [[hal::dais double);

Then all the following declarations should be equivalent aside from the spelling:

These use the alternate spelling that is required for all standard attributes and recommended for prefixed attributes. These
may be better-suited for use in header files, where the use of the alternate spelling avoids naming conflicts with user-provided
macros.

EXAMPLE 2 For the same implementation, the following two declarations are equivalent, because the ordering inside
attribute lists is not important.

7

hal::dais hal::rosie double nine999(double);

hal::rosie, hal::daisy || double nine999(double);

On the other hand the following two declarations are not equivalent, because the ordering of different attribute specifiers
may affect the semantics.

hal::dais hal::rosie]] double nine999(double);

hal::rosie hal::dais double nine999(double); // may have different semantics

210Standard attributes specified by this document can be parsed but ignored by an implementation without changing the
semantics of a correct program; the same is not true for attributes not specified by this document.

modifications to ISO/IEC 9899:2018, § 6.7.15.1 page 146 Language

N2644/P2309R0 cmin..cor§®.7.15.2, working draft — January 20, 2021 CORE 202101 (E)

6.7.15.2 Standard attributes
6.7.15.2.1 The nodiscard attribute
Constraint

The nodiscard attribute shall be applied to the identifier in a function deelarator-declaration or
to the definition of a structure, union, or enumeration type. It shall appear at most once in each
attribute list and no attribute argument clause shall be present.

Semantics

A name or entity declared without the nodiscard attribute can later be redeclared with the attribute
and vice versa. An entity is considered marked after the first declaration that marks it.

Recommended Practice

A nodiscard call is a function call expression that calls a function previously declared with attribute
nodiscard, or whose return type is a structure, union, or enumeration type marked with attribute
nodiscard. Evaluation of a nodiscard call as a void expression (6.8.3) is discouraged unless explicitly
cast to void. Implementations are encouraged to issue a diagnostic in such cases. This is typically
because immediately discarding the return value of a nodiscard call has surprising consequences.

EXAMPLE 1

——struet—{roedisecardH—error—info—{F A+
struct error_info enable_missile_safety_mode(void);
void launch_missiles(void);
void test_missiles(void) {

enable_missile_safety_mode();
launch_missiles();

}

A diagnostic for the call to enable_missile_safety_mode is encouraged.

EXAMPLE 2

——tHnodiscardH—int—important=Ftunctvoid);
nodiscard int important_func(void);
void call(void) {
int i = important_func();

A~

}

No diagnostic for the call to important_func is encouraged despite the value of i not being used.

6.7.15.2.2 The maybe_unused attribute
Constraint

The maybe_unused attribute shall be applied to the declaration of a structure, a union, a typedef
name, a variable, a structure or union member, a function, an enumeration, or an enumerator. It
shall appear at most once in each attribute list and no attribute argument clause shall be present.

Semantics

The maybe_unused attribute indicates that a name or entity is possibly intentionally unused. A name
or entity declared without the maybe_unused attribute can later be redeclared with the attribute and
vice versa. An entity is considered marked with the attribute after the first declaration that marks it.

Recommended Practice

For an entity marked maybe_unused, implementations are encouraged not to emit a diagnostic that
the entity is unused, or that the entity is used despite the presence of the attribute.

EXAMPLE

maybe_unused void f maybe_unused int i) {

Language modifications to ISO/IEC 9899:2018, § 6.7.15.2.2 page 147

CORE 202101 (E) § 6.7.15.2.3, working draft — January 20, 2@2din..core3 N2644/P2309R0

maybe_unused]] int j = i + 100;
assert(j);

}

‘Mmm
L

Implementations are encouraged not to diagnose that j is unused, whether or not NDEBUG is defined.

6.7.15.2.3 The deprecated attribute
Constraint

The deprecated attribute shall be applied to the declaration of a structure, a union, a typedef name,
a variable, a structure or union member, a function, an enumeration, or an enumerator. It shall
appear at most once in each attribute list.

If an attribute argument clause is present, it shall have the form:

(string-literal)

Semantics

The deprecated attribute can be used to mark names and entities whose use is still allowed, but is
discouraged for some reason.?!!)

A name or entity declared without the deprecated attribute can later be redeclared with the attribute
and vice versa. An entity is considered marked with the attribute after the first declaration that
marks it.

Recommended Practice

Implementations should use the deprecated attribute to produce a diagnostic message in case the
program refers to a name or entity other than to declare it, after a declaration that specifies the
attribute, when the reference to the name or entity is not within the context of a related deprecated
entity. The diagnostic message may include text provided by the string literal within the attribute
argument clause of any deprecated attribute applied to the name or entity.

EXAMPLE

——struet{{deprecated S+
struct deprecated S {

int a;

A~

}i

—enum—f{deprecated £+
__.___enum [[deprecated]| E1 {

one

};

enum E2 {

n ’ ["
r

e _two || deprecated("use 'three’ instead") ||,

three

—_.___ldeprecated]| typedef int Foo;

void fl(struct S s) { // Diagnose use of S
int i = one; // Diagnose use of E1
int j = two; // Diagnose use of two: "use ’'three’ instead"
int k = three;
Foo f; // Diagnose use of Foo

2I0n particular, deprecated is appropriate for names and entities that are obsolescent, insecure, unsafe, or otherwise unfit
for purpose.

modifications to ISO/IEC 9899:2018, § 6.7.15.2.3 page 148 Language

N2644/P2309R0 cmin..co§e8.7.15.2.4, working draft — January 20, 2021 CORE 202101 (E)

—HHdeprecatedH—void—F2A{struet—S—sr—
. deprecated || void f2(struct S s
int i = one;
int j = two;
int k = three;
Foo f;
}
——struet{{deprecatedH—TF+
. struct_[[deprecated]] T {
Foo f;
struct S s;
}

Implementations are encouraged to diagnose the use of deprecated entities within a context which is not itself deprecated, as
indicated for function f1, but not to diagnose within function f2 and struct T, as they are themselves deprecated.

6.7.15.2.4 The fallthrough attribute
Constraint

The attribute token fallthrough shall only appear in an attribute declaration (6.7); such a declara-
tion is a fallthrough declaration. The attribute token fallthrough shall appear at most once in each
attribute list and no attribute argument clause shall be present. A fallthrough declaration may only
appear within an enclosing switch statement (6.8.4.2). The next statement-that-would-be-exectited
block item (6.8.2) after a fallthrough declaration shall be a labeled statement whose label is a case
label or default label for the same switch statement.

Recommended Practice

The use of a fallthrough declaration is intended to suppress a diagnostic that an implementation
might otherwise issue for a case or default label that is reachable from another case or default
label along some path of execution. Implementations are encouraged to issue a diagnostic if a
fallthrough declaration is not dynamically reachable.

EXAMPLE

void f(int n) {
void g(void), h(void), i(void);
switch (n) {
case 1: /x diagnostic on fallthrough discouraged x*/
case 2:
g();
————————f{fattthroughtls
e fallthrough|] ;
case 3: /x diagnostic on fallthrough discouraged x*/
h();
case 4: /x fallthrough diagnostic encouraged */
i();
FEfatd H- : oLt
Y fallthrough]|] ; /* constraint violation x/

6.7.15.3 Core storage attributes
Syntax

core-storage-attribute:
core :: identifier attribute-arqument-clause, ot

Constraints

The identifier in a core storage attribute shall be one of

Language modifications to ISO/IEC 9899:2018, § 6.7.15.3 page 149

CORE 202101 (E) § 6.7.15.3.1, working draft — January 20, 2@2din..core3 N2644/P2309R0

alias noatias writethrough
free realloc

Unless specified otherwise, the core storage attributes shall only be applied to an object or function

declaration, to a member declaration, to an identifier in a direct declarator, to a function declarator,

to a lambda expression, to a pointer declarator, or, in a type specifier qualifier list.

If they are applied in a type specifier qualifier list, they shall follow a typedef name or a typeof
specifier that stands in for a pointer type. If they are applied to a function declarator or a lambda
expression, the return type, which is possibly inferred, shall be a pointer type.

If they are applied to a object or function declaration, the effect shall be as if they are applied to the
corresponding identifier. If they are applied to an identifier, that identifier shall be a function or
object. If they are applied to a union or structure member or to an identifier that has an object type,
the type shall not be opaque or atomic nor an array with such a base type.

Description

The intended use of the core storage attributes is to promote optimization, and deleting all instances
of the attributes from all preprocessing translation units composing a conforming program does not
change its meaning (i.e., observable behavior),*'? with the notable exception for the case that the
core:: noalias attribute is used for an identifier with external linkage.

In the following a function or lambda is said to be an allocator function if has has a pointer return
value that has an implicit or explicit core:: noalias attribute; it is said to be a deallocator if it has

a core:free or a core::realloc parameter. A function or lambda is said to allocate a_storage
instance if it calls an allocator, and said to deallocate a storage instance if it calls a deallocator.

6.7.15.3.1 The core::noalias attribute
Constraints_

Additional constraints to the above apply. The attribute argument list shall be omitted or of the

form

expression)

where the expression has integer e. For the evaluation of the expression, the same rules as for
the evaluation of array sizes apply.

If the core:: noalias attribute is applied to an identifier additional constraints apply. If it is applied

to an identifier in a declaration, it shall be applied to all declarations (including a definition) in the

If it is a function, the unary & operator shall not be applied and an implicit function to pointer
conversion shall only be formed if it is used as the left operand of a function call operator.

If it is an object, the unary & operator shall not be applied to the object or any of its elements or
members, even recursively, and an implicit array to pointer conversion shall only be formed if
it is implied by an array subscript operator for which the size expression is an integer constant
expression.

If the core:: noalias attribute is applied to the declaration of a union or structure member name of
union or structure S, the rules for objects apply to all member access designations that use an lvalue
s of type S (s.name) or a pointer ps to S (ps — name), and then recursively to all their elements or

members.

Description

If an attribute argument list is provided, the expression (called the size of the attribute) shall be
strictly positive. In cases where the attribute is applied to an identifier or to the declaration of a

union or structure member, the size shall be omitted.

212)

Two translation units where one has been translated by ignoring the attribute and the other by taking it into account
can be linked into one executable. In particular, applying these attributes to declarations of structure members may change
the layout.

modifications to ISO/IEC 9899:2018, § 6.7.15.3.1 page 150 Language

10

11

12

13

14

15

N2644/P2309R0 cmin..co§e8.7.15.3.1, working draft — January 20, 2021 CORE 202101 (E)

In the case the core::noalias attribute is applied to the declarator of a pointer type T*, a size n
indicates that the pointer will be used to access an array of type T[n]. If it is omitted the attribute
is said to have unknown size and the pointer gives access to an incomplete array of type T[]._

If the core::noalias attribute is applied to an identifier or declaration, it specifies that the address
of the object or function will never be taken. Additionally, for any definition of an identifier to
which the core:: noalias attribute is applied the following properties hold:

— Ifitis an object definition, that object will never alias with any other object.
— If it is an object with automatic storage duration, it will never escape its defining scope.

— If it is an object or function with internal linkage, it will never escape the translation unit in
which it is defined.

If it is an inline constant or function, no external definition shall be required.

If the core::noalias attribute is applied to a declaration of a member of a union or structure,
it specifies that for any object with that union or structure type, the address of the member will
never be taken. The alignment restrictions for such a member may be looser than the alignment
restrictions for other objects of the same type as the member, but they shall be the same for all such
members of the same type that have the core:: noalias attribute . Such a member will never alias
with any other object of the same type as the member, unless both are members of objects of the
same union or structure type, and these containing objects alias. The start address of the member,

213)

however obtained, shall not be converted to a pointer to the type of the member.

If a core:: noalias attribute is applied to an identifier or declaration of a function parameter that
is specified in array notation with an array size expression E, the attribute is applied twice, to the
identifier of the parameter, if any, with no attribute argument list and to the pointer type that results
from the array parameter rewrite, propagating the size expression £ to the attribute. In that case £
shall evaluate to a value that is greater than 0.

If it is applied to a function declarator or a lambda expression, the effect is as if the pointer return
type has the core::noalias attribute with the same size*'¥ If it is applied to the pointer return
type of a function or lambda it indicates that a non-null pointer value that is returned by any call
to that function refers to the first element of an array object (of type T[n] or T[1) as above, that has

not been encountered before and that will thus not alias with any known object?!?)

If the core:: noalias attribute is applied to a declarator of pointer type, it reflects a specific property.
of a pointer value that is accessible through the declaration. An object that is accessed through a
noalias pointer has a special association with that pointer. This association, defined below, requires
that all accesses to that object use, directly or indirectly, the value of that particular pointer.*'®

Let D be a declaration of an ordinary identifier that provides a means of designating an object P as
a pointer to type T having the core:: noalias attribute with unknown size._

If D appears inside a block and does not have storage class extern, let B denote the block. If D
appears in the list of parameter declarations of a function definition, let B denote the associated
block. Otherwise, let B denote the block of main (or the block of whatever function is called at
program startup in a freestanding environment).

In what follows, a pointer expression E is said to be based on object P if (at some sequence point in
the execution of B prior to the evaluation of E) modifying P to point to a copy of the array object
into which it formerly pointed would change the value of E.2'”) Note that “based” is defined onl

213)
214)

These relaxed alignment properties allow implementations to pack such members with less padding.

This allows to effectively associate a core :: noalias attribute to a pointer return value by using a size expression that
uses the names of parameters.

219)This typically indicates that the function behaves similar to the library function malloc.

#19For example, a statement that assigns a value returned by malloc to a single pointer establishes this association between
the allocated object and the pointer.

*7In other words, E depends on the value of P itself rather than on the value of an object referenced indirectly through P.

For example, if identifier p has e (int *x [[core:: noalias]]), then the pointer expressions p and p+1 are based on the

noalias pointer object designated by p, but the pointer expressions *xp and p[1] are not.

Language modifications to ISO/IEC 9899:2018, § 6.7.15.3.1 page 151

16

17

18

19

20

21

22

23

24

CORE 202101 (E) § 6.7.15.3.1, working draft — January 20, 2@2din..core3 N2644/P2309R0

for expressions with pointer types.

During each execution of B, let L be any lvalue that has &L based on P. If L is used to access the
value of the object X that it designates, and X is also modified (by any means), then the following
requirements apply: T shall not be const-qualified. Every other lvalue used to access the value of
X shall also have its address based on P. Every access that modifies X shall be considered also to
modify P, for the purposes of this subclause. If P is assigned the value of a pointer expression E that
is based on another noalias pointer object P2, associated with block B2, then either the execution of
B2 shall begin before the execution of B, or the execution of B2 shall end prior to the assignment. If
these requirements are not met, then the behavior is undefined.

Here an execution of B means that portion of the execution of the program that would correspond
to the lifetime of an object with scalar type and automatic storage duration associated with B.

If P is as above, but the attribute provides a size n, additional restrictions apply. Any expression
E that is based on P shall only access bytes in the array of type T[n] that is associated to P. If Q is
another pointer of type S with a core:: noalias attribute of size m, and that is associated with the
same block B, then the two arrays to which P and an Q refer (of type T[n] or S[m], respectively)
shall share no representation byte.

Recommended Practice

It is recommended that applications that use the core:: noalias attribute for a pointer return value
also assert the core:: noleak attribute, see below.

EXAMPLE 1 Suppose that double has an alignment requirement of 8 and consider the following structures:

struct S {

char indicator;
S I3
ooostruct T {
core::noalias double champs;
N I3

Then S would necessarily have offsetof (S, field) as 8 or more, and sizeof(S) as 16 or more. For T the implementation
could chose differently, for example an alienment of 4. Then, offsetof (T, champs) can be 4, and sizeof (T) can be 12.

Such an alignment then cannot lead to pointer misalienment, because the unary & cannot be applied to the member champs.
On the other hand, there may be a tradeoff for the gain in size because load or store operations to the champs member ma
be more expensive.

EXAMPLE 2 The following shows a declaration with parameters in array notation and its equivalent rewrite.

__.___void add([[core::noalias || double a[3][4

core::noalias double (xb)[4]);

A A A

_.___Vvoid add(double (x[[core:noalias(3 a [[core:noalias ||) [4],

___double (x b|[core:noalias 41);

EXAMPLE 3 The example function date_alloc from above returns a pointer to a string that has been freshly allocated. So
a core::noalias attribute can be added indicating that the returned array will not alias and also to provide information
about the array size.

o~ Hinclude <time.h>
o~ H#include sstdlib.h>

—_.___Char constx date_alloc(void core:noalias(26) || {
.. Charx || core:noalias(26 ret = malloc(26);
L _if (ret) ctime_r(time(nullptr ret);

return_ret;

A A A A

EXAMPLE 4 The file scope declarations

modifications to ISO/IEC 9899:2018, § 6.7.15.3.1 page 152 Language

N2644/P2309R0 cmin..co§e8.7.15.3.1, working draft — January 20, 2021 CORE 202101 (E)

intx [[core::noalias a;
intx [[core:noalias b;

assert that if an object is accessed using one of a, b, or ¢, and that object is modified anywhere in the program, then it is
never accessed using either of the other two. Because no sizes are indicated, the extent of the access through the pointers
cannot be verified by the translator, and the programmer has to ensure the necessary assertions by other means.

25 EXAMPLE 5 The function parameter declarations in the following example

void f(int n, intx [[core::noalias

{

_____vwhile (n-- > 0)
e o o s XRE = XQEES
}

core::noalias

assert that, during each execution of the function, if an object is accessed through one of the pointer parameters, then it is
not also accessed through the other. The translator can make this no-aliasing inference based on the parameter declarations
alone, without analyzing the function body.

26 It cannot, though, assert that the function body conforms to these guarantees. This can be achieved by providing more
information directly or indirectly to the attributes. There are two possibilities, to provide the size information. The first is to
simply add the size to the attribute:

intx

[
\void fo(int n, core::noalias(n
L

Even better would be to use the array size where it is “natural” and have the whole function definition as

void fl(int n, core::noalias

{

_____vhile (n:-_> 0)
A AR AR ARy R A ARG
¥

This is a short form of overall four attributes when the parameter declarations are rewritten to

void fl(int n, intx[[core:noalias(n core::noalias

.___kintx [[core:noalias(n) core::noalias|]);

27 The benefit of the core:: noalias attributes is that they enable a translator to make an effective dependence analysis of
those calls to ensure that they have defined behavior, For example, the second call of f in g has undefined behavior because
each of d[1] through d[49] is accessed through both p and g..

void g(void)
{
. .&xtern int d[100];

___f(50, d + 50, d); // valid

o f(50, d + 1, d); // undefined behavior

t

28 Providing sizes to the attributes improves on that situation, by making many of such invalid calls diagnosable. For example,
the second call of f0 in g0 has the same undefined behavior as the second call of f above, but the translator may perform
data flow analysis and detect that arrays provided by the second and third argument overlap.

void g0 (void).
{
. __.extern int d[100];

. 10(50, d + 50, d); // valid
__.___fo(50, d + 1, d); // undefined behavior, diagnosed

t

29 EXAMPLE 6 The function parameter declarations

Language modifications to ISO/IEC 9899:2018, § 6.7.15.3.1 page 153

30

31

32

33

CORE 202101 (E) § 6.7.15.3.1, working draft — January 20, 2@2din..core3 N2644/P2309R0

void h(int n core::noalias core::noalias core::noalias
1

o for (1=0; i < n; it+)

o plil = g[i] + rlil;

i3

illustrate how an unmodified object can be aliased through two noalias pointers. In particular, if a and b are disjoint arrays,
a call of the form h(100, a, b, b) has defined behavior, because array b is not modified within function h.

Nevertheless, a declaration (and definition

void h(int n core::noalias int p[n int const const n], int const r[const n])
1
for (1 =0; i < n; i++)
TRl calil e il
i3

would be better suited to reflect the requirements to the function and also for its callers. For the calling side and the
translation of the function body itself, it can be concluded that p cannot alias neither g nor r, and that g and r may refer to
arrays that totally or partially overlap with each other.

EXAMPLE 7 The rule limiting assienments between noalias pointers does not distinguish between a function call and an
equivalent nested block. With one exception, only “outer-to-inner” assignments between noalias pointers declared in nested

blocks have defined behavior.

{
_.___lintx [[core:noalias 1;

0 .___Pl =aql; // undefined behavior

et

o .__.___intx [core:noalias 2 = pl; // valid
e intx [[core:noalias || 92 = ql; // valid

pl=92; /[l undefined behavior
2=092; . ______// undefined behavior

The one exception allows the value of a noalias pointer to be carried out of the block in which it (or, more precisely,

the ordinary identifier used to designate it) is declared when that block finishes execution. For example, this permits
new_vector toreturnavector.

typedef struct int n; floatx [[core::noalias v; } vector;

vector new_vector(int n)

{
vector t = {
s =1,
ey = malloc(sizeof (float[n
e R

o _return t;

b3
EXAMPLE 8 Suppose that a programmer knows that references of the form p[i] and g[j] are never aliases in the body of

'void f(int n, int xp, int xq) { /* ... */ }

but that not more information about the array sizes that are accessed is available. There are several ways that
this information could be conveyed to a translator using the core::noalias attribute without using a_size.
Example 6.7.15.3.1 ex. 5 shows the most effective way in that situation, attributing all pointer parameters, and can
be used provided that neither p nor g becomes based on the other in the function body. A potentially effective alternative

s

modifications to ISO/IEC 9899:2018, § 6.7.15.3.1 page 154 Language

34

35

N2644/P2309R0 cmin..co§e8.7.15.3.2, working draft — January 20, 2021 CORE 202101 (E)

I 1
'void f(int n, intx[[core:noalias int * const q) { /* ... %/} \

Again it is possible for a translator to make the no-aliasing inference based on the parameter declarations alone, though now
it must use subtler reasoning: that the const-qualification of q precludes it becoming based on p. There is also a requirement
that g is not modified, so this alternative cannot be used for the function in Example 6.7.15.3.1 ex. 5, as written.

EXAMPLE 9 Another potentially effective alternative is:
[|

'void f(int n, int *p, int constx [[core:noalias) L/* oo %