Generalisation of nth_element to a range of nths

Johan Lundberg

Document #: P2375R1

Date: 2022-01-14
Project: Programming Language C++
Audience: LEWG, SG19
FEmail: lundberj@gmail.com
Contents
Revision history e 2
1 Introduction 2
1.1 Visual explanation L L Lo 3
2 Algorithm Implementation e 4
3 Tony Tables (Before/After) 5
4 Examples and Applications 6
4.1 multi_nth_element andsort 6
4.2 multi_nth_element intoslots 6
4.3 Outlier filtering e 7
4.4 Pagination and sorted subseto L oo 7
4.5 Partitioning with interpolation. Quantiles, Percentiles. 7
4.6 Histogram equalization and bin selection. Application to image equalization . 9
5 Wording and Synopsis e 11
5.1 [alg.nth.element] 11
5.2 Synopsis — <algorithm> [algorithm.syn] 11
6 Questions and ANSWeErs. e e e e e e e 13
6.1 Q: What’s the best name? o 13
6.2 Q: What about corner cases? 13
6.3 Q: Is there’s a need to require nths be sized_range? 13
6.4 Q: How should the nths be provided? 13
6.5 Q: Benefits and performance beyond Ordo. 13
7 Reference implementation and practical performance 14
Acknowledgements 15
References e 15

mailto:lundberj@gmail.com

Revision history vs RO

Added clarifications and more background, explanations, references, summarized performance study,

applications, more questions/answers. Updated and rebased wording and synopsis to C++23 draft.

1 Introduction

The paper proposes a generalisation of std: :nth_element, taking a sorted range of iterators instead

of a single nth iterator, allowing arbitrary partial sorting of any sortable range.

The use and analysis of such algorithms is widespread and mature[Alsuwaiyel2001, Panh2002,
lent1996, Shen1997] under the name multiple selection or multiselect. It is available to Python

programmers as numpy .partition[NpPart, NPImpl] since 2014.

The single-nth nth_element algorithm has been part of the C++ standard library since the
beginning[StepLee95], introduced as “. .. the element in the position pointed to by nth is the element
that would be in that position if the whole range were sorted. Also for any iterator i in the range
[first, nth) and any iterator j in the range [nth, last) it holds that !(*i > *j) or comp(*i, *j) ==
false. It is linear on the average.”

This proposal extends the usability of std: :nth_element to multiple nths. That is, the previously

stated post condition holds for all nth in nths. In other words, at each nth the range is arranged as

if sorted, and all elements after each nth are no less than the element at that location.

Just as with the current standard single-nth version of std::nth_element the purpose is faster
operation, but just as with the single-nth version, there is additional semantic clarity in performing

only the required partitioning. In this specific sense it’s in the same category as std: :partial_sort.

Possible implementations of the range-of-nths algorithm is provided (section 2, and [p2375Reflmpl]).

It translates naturally to std: :ranges versions.
Current alternatives are either at least somewhat hard to write correctly and/or less performant.

To clarify what is new, the addition is here called std: :multi_nth_element, but the proposed

wording overloads std: :nth_element.

1.1 Visual explanation

As example data, consider the permuted integers [100,126) at index [0,26) and the sorted counterpart:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

104 105 103 106 100 101 102 119 f125 121 122.123 118 § 124 } 115 J 116 ‘ 117 114 1120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

100 101 102 103 104 105 106 114 §115 1116 | 117 | 118 | 119 | 120 § 121 | 122 J123 124125

Single-nth nth_element

What the current-standard std: :nth_element does is to rearrange the data in relation to a specified
nth position, as described in the previous section. With our concrete example, with nth = begin+7,
the effect is that the element at nth is the element (in our case: 107) that would be in that position

if the whole range were sorted, and all subsequent values are no less than that value:

0 1 2 3 4 5 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

<)

103 101 100 102 104 105 106 116 | 118 | 119 117.114 115 115 120 § 121 1124

or for nth = begin+20:

0 1 10 11 12 13 14 15 16 17 18 1921 22 23 24 25

2 3 4 5 6 7 8 9
105 106 104 102 101 118 115.119 116 114 120 f 123122 124125121

Multi-nth nth_element

This proposal adds support for multiple selection. That is, the possibility to provide a range of
nths, such as {begint+7, begin+20} :

O123456@89101112131415161718192122232425

103 101 100

118 115.119 116 114 120 | 123 122 124 125121

or at {begin+7, begin+12, begin+20}:

O123456@891011@131415161718192122232425

118 115.119 117 | 114 | 116 | 120 J 123 122 124125121

103 101 100 106 104 105 102

or at {begin+5, begin+6, begin+14, begin+15}:
o 1 2 3 4@@7 8 9 10111213@16171819202122232425

104 100 102 103 101 105 106 114 §115 118 §117 1251221119123 J116 124120121

2 Algorithm Implementation

Several implementations are provided[p2375Reflmpl]. The first is multi_quick_select, which can
either be described as the natural extension of quick select, or as a shallow quick sort. The second
implementation, here called bisect_nths! is in a sense simpler, and is shown below. It works by
bisecting nths, partitions the data using the single-nth nth_element, and recurses.
// multi_nth__element implemented using bisect_nths
template< class RandomAccessIterator, class RandomAccessIteratorNths >
constexpr void multi_nth_element (RandomAccessIterator first,
RandomAccessIteratorNths nth_first, RandomAccessIteratorNths nth_last,
RandomAccessIterator last){
if (last - first <= 32) { std::sort(first, last); return; }
const auto nth_dist = nth_last - nth_first;
if (nth_dist == 0 || *nth_first == last) return;
const auto nth_mid = nth_first + nth_dist / 2;
const auto at_nth _mid = *nth_mid;
nth_element (first, at_nth_mid, last);
multi_nth_element(first, nth_first, nth_mid, at_nth_mid);
if (at_nth_mid != last){
const auto nth_left = std::upper_bound(nth_mid, nth_last, at_nth_mid);
multi_nth_element(at_nth_mid + 1, nth_left, nth_last, last);

}

The complexity for both multi_quick_select and bisect_nths is O(N log m) on average, where
N = last - first and m is the number of unique elements in nths. To be compared with O(N) on

average for current std: :nth_element.

In many applications m is constant and the complexity as function of N alone is naturally linear on
average. On the other hand, in the worst case m varies with N as m = N, and the whole container is
sorted. For parallel versions (overloads taking an ExecutionPolicy) it is reasonable to leave freedom

to implementers to do a full parallel sort and allow O(N log N).

Python has numpy.partition[NpPart] as their incarnation of ntn_element. It also support multi

selection, and the implementation[NPImpl](in C++) uses Introselect[Musser1997] by specification?.
Further references on the subject are [Kaligosi2006, Panh2002].

!Analyzed in [Alsuwaiyel2001], in context of parallel versions. Builds on refs [Akl1984, AkI1989,
Shen1997].

2Interestingly, Musser only hints on single element selection as a future extension of introsort.
Further: numpy.partition do not state complexity in terms of M (the size of nths) or m (the number
of unique nths), but promises worst case O(N). It appears to be ~ N log M for reasonable M, to
become ~ N - M for large M, such as M>1e4, N=1e6.

4

3 Tony Tables (Before/After)

Existing alternatives are to sort the whole container or to figure out a series of calls to e.g. nth_-
element and partial_sort. The examples below could be the linear time partitioning of messages
to be processed into fixed sized priority buckets, keeping or dropping remaining messages. Or finding
the fastest 25, 100, and 1000 race participants in linear time. The partitions themselves form half

open ranges so it’s easy to e.g. sort and print the 100th up to the 1000th fastest runners by name.

Context: partitioning into a fixed number of slots

vector<decltype(v)::iterator> nths;

for(size_t slot=1; slot<16 ; ++slot){
nths.push_back(v.begin()+ min(slot*2048,N));

}

or at some other arbitrary iterators in the inclusive range [first,last].

auto nths=vector{v.begin()+25,v.begin()+100,v.begin()+1000};

After Simple and O(N)

For all examples, the Tony Tables—After case is the same:

*x After *x

multi_nth_element (v, nths, pred);

or, for the examples using a projection:

multi_nth_element (v, nths, pred, proj);

Alternative la: Hand-wired bisection for nths of known size 3. O(IN) but messy

Before

nth_element (v.begin(), nths([1], v.end(), pred);
nth_element (v.begin(), nths[0], nths[1], pred);
nth_element (nths[1]+1, nths[2], v.end(), pred);

Did we get this right? Is it correct for repeated nths or empty v? This is an attempt at manually

figuring out and hand-inlining this proposal for a know nths size equal to 3.

If we are using a projection, we must use sub-ranges or something to the same effect (and with the

same risk of corner-case bugs, eg missed +1 at the right places):

Before

ranges: :nth_element (v, nths[1], pred, proj);
ranges: :nth_element (sub_range(v.begin() ,nths[1]), nths[0], pred, proj);
ranges: :nth_element (sub_range(nths[1]+1,v.end()), nths[2], pred, proj);

Alternative 1b: Hand-wired bisection for nths of known size 5. O(N) but messy

Before

nth_element (v.begin(), nths[5/2-1], v.end(), pred);

nth_element (v.begin(), nths[(5/2)/2-1], nths[56/2-1], pred);
nth_element (nths[(5/2)/2-11+1, nths[5/2-1], v.end(), pred);
nth_element (nths[(5/2)-1]1+1, nths[(5/2)/2+5/2-1], nths[5-1]), pred);
nth_element (nths[(5/2)/2+5/2-11+1, nths[5/2-1], v.end(), pred);

Did we get this right?

Alternative 1c: Hand-wired for size 3. O(IN - M)

Hand-wired simpler alternative. Easier to figure out, but O(N - M):

Before

nth_element (v.begin(), nths[0],v.end(), pred);
nth_element (nths[0]+1, nths[1], v.end(), pred);
nth_element (nths[1]+1, nths([2], v.end(), pred);

Did we get this right?

Alternative 2: Simple but O(N log N)

Before

sort(v,pred);

4 Examples and Applications

It partitions into any number of partitions as shown in the previous section. Further examples and

applications follow.

4.1 multi_nth_element and sort

Partitioning a bunch of ponies into several age groups, then sort one group by name.

struct Pony{
double littleness;
chrono: :duration age;
string name;
};
auto end=multi_nth_element (v, nths, std::greater{}, Pony::age);
std: :sort(nths[3], nths[4], std::less{}, Pony::name);

4.2 multi_nth_element into slots

Context: partitioning into a fixed number of slots

vector<decltype(v)::iterator> nths;
for(size_t slot=1; slot<16 ; ++slot){
nths.push_back(v.begin()+ min(slot*2048,N));

or at some other arbitrary iterators in the inclusive range [first,last].

auto nths=vector{v.begin()+25,v.begin()+100,v.begin()+1000};

4.3 Outlier filtering

With two partitioning points, the lowest a, and highest b elements are excluded from a range in

constant time with a single call to the proposed extension.

4.4 Pagination and sorted subset

A small sorted windows into a large data set can be selected as if sorted by partitioning at two
points. For example, if j items fit on a display page, we can jump to page k, that is, into the range
from a=v.begin()+j*k to b=v.begin()+j* (k+1):

ranges: :multi_nth_element (v, vector{a,b});

processPage(a,b); // May also now continue and sort the small subrange with std::sort(a,b);

An option is to pre-partition into all pages, exactly as the slots example above.

4.5 Partitioning with interpolation. Quantiles, Percentiles.

multi_nth_element can be used to efficiently implement the calculation of a single or a range of

quantiles.

The current standard single-nth std: :nth_element is actually not generally enough to calculate
even a single quantile point, such as the median in the way that is often preferred: For example the
[median|(https://en.wikipedia.org/wiki/Median) of an even number of elements is typically
taken to be the mean of the two central elements. With multi_nth_element, single or multiple

quantiles can be calculated efficiently.

It’s also a common situation to calculate more than one quantile, such as min, 25%, 50% (median),
75%, max. This requires 5 to 8 partition points depending on the size of the data. With this
proposal this can be done in O(N).

Also note wikipedia on [Percentiles|(https://en.wikipedia.org/wiki/Percentile), and [Es-
timating quantiles from a sample|(https://en.wikipedia.org/wiki/Quantile#Estimating_ -

quantiles_from_a_sample).

To do interpolation around each requested quantile (such as the median of even N or a percentile
that does not divide N) one may directly partition at two iterators at each requested quantile point.
For example, partitioning N elements at a single quantile specified as a divisor d (where d=2 would
be median and d=100 would mark the first percentile).

auto n = N == 070:N-1;

auto [q,r] = div(n, d);

auto nths=vector{first+q, first+q+(r>0)};

auto last = multi_nth_element(v, nths, std::less{}, Pony::littleness);

if (nths[0]'!=last){

cout << nths[0]->name << " " << nths[1]->name ;

auto intrp_littleness = lerp(nths[0]->littleness, nths[1]->littleness, r*1.0/d);
}

https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Percentile

In the above we did floating point based interpolation, but one may stay in integer arithmetic?® for
example when working with chrono durations, iterators and indices. Any type the user knows how
to interpolate.

auto last = multi_nth_element(v, nths, std::less{}, Pony::age);

if (nths[0]!=last){

auto intrp_dur = i_lerp(nths[0]->age, nths[1]->age, r, d);
}

In Python, numpy.quantile® takes a range of floating point quantile points in [0.0,1.0] and uses

the previously mentioned multi-nth version of numpy.partition

3i_lerp(auto a,auto b,auto r,auto d){return a+(r*(b-a))/d;}. Yes, there are other

ways to express this depending on type, e.g. extra work to avoid overflow.

Tt defaults to the above division by N-1 to do linear interpolation but there’s a plethora of
variations (nine different modes supported by many statistical libraries and tools) on which indices
to use, rounding and interpolation/selection and handling of edge cases. A good overview is found
in P2119R0 commenting on the paper P1708R4 “Simple Statistical Functions” which proposes
user-facing median and quantile similar to numpy . partition, returning by value (not via iterators).

8

4.6 Histogram equalization and bin selection. Application to image equalization

Image equalization, or data equalization in general is a data processing technique used to enhanced
contrast.” Equalization makes use of the Cumulative distribution function, CDF® of the image
(or data in general). The cumulative distribution can be estimated by taking the cumulant of a
histogram of the data. Finding good bins is itself done by histogram equalization, which itself relies
on an estimated CDF.

An interesting alternative to cumulant-of-histogram, is to obtain the CDF from ordering the data
directly. If this is done with a full sort, and exact descriptive CDF is obtained, resulting in a loss-less

equalization (modulo floating point and image format aspects).”

As a performance optimization we can avoid a full sort, and instead use multi_nth_element and
ensure exact results at specific cuamulant values (partition points) in the CDF, such as at 0.25, 0.5,
0.75. That is, we use a multiselection (aka multi_nth_element) approximate the full sorted data.
Worked through examples are found at [p2375Reflmpl]. In summary, consider the following image

of Tannforsen (Sweden’s greatest waterfall), with three different equalization methods.

Original: Equalized using full sort

’The subject is described for example at https://en.wikipedia.org/wiki/Histogram_
equalization and https://www.tutorialspoint.com/dip/histogram_equalization.htm

SCDF: https://en.wikipedia.org/wiki/Cumulative_distribution_function

"A more detailed description of sort-based image equalization: Image enhancement using sorted
histogram specification and POCS postprocessing - IlI-Lyong Jung and Chang-Su Kim, 2007 IEEE
International Conference on Image Processing, ICIP 2007 Proceedings.

https://en.wikipedia.org/wiki/Histogram_equalization
https://en.wikipedia.org/wiki/Histogram_equalization
https://www.tutorialspoint.com/dip/histogram_equalization.htm
https://en.wikipedia.org/wiki/Cumulative_distribution_function

forsen

@
(=}
a

P

pixel value / (27°16-1)
o
ul
1

00l||||||||
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09 1.0

index / (N-1)

Above, the exact CDF (using sort) of the original image is shown in gray, along with approximations
using multi_nth__element. At m=2, the equalization algorithm is equivalent to mapping the image

min,max to grayscale values zero and 1.

10

5 Wording and Synopsis

5.1

[alg.nth.element]

Underlined green text marks additions with respect to C++23 draft (2021-12-27).

Let comp be less{} and proj be identity{} for the overloads with no parameters by those

names.

Preconditions: [first, nth) and [nth, last) are valid ranges. For the overloads in
namespace std, RandomAccessIterator meets the Cppl7ValueSwappable requirements
ref:swappable.requirements, and the type of *first meets the Cpp17MoveConstructible (
ref:cpp17.moveconstructible) and Cppl7MoveAssignable (ref:cppl7.moveassignable) require-

ments. For the overloads taking a range [nths first,nths last), RandomAccesslteratorNths

is a Cppl7RandomAccess iterator, and *nths first is convertible to RandomAccesslterator.

For every iterator i and j in the range [nths first,nths last), it holds that if i<j then !(*j<*i).

Effects: After nth_element the element in the position pointed to by nth is the element that
would be in that position if the whole range were sorted with respect to comp and proj, unless
nth == last. Also for every iterator i in the range [first, nth) and every iterator j in the
range [nth, last) it holds that: bool(invoke(comp, invoke(proj, *j), invoke(proj,

*1))) is false. For the overloads taking a range of nths, this holds for all nth in nths.

Returns: last for the overload in namespace ranges.

Complexity: For the overloads with no ExecutionPolicy, linear on average. For the overloads
with an ExecutionPolicy, &(N) applications of the predicate, and &' (N log N) swaps, where
N = last - first. For overloads taking a range of nths but no ExecutionPolicy, (NN log m)

on average, where m is the number of unique elements in nths. For overloads taking a range

of nths and an ExecutionPolicy, approximately (N log N).

5.2 Synopsis — <algorithm> [algorithm.syn]

Added signatures to std: :

template<class RandomAccessIterator, class RandomAccessIteratorNths>

constexpr void nth_element (RandomAccessIterator first,

RandomAccessIteratorNths nths_first, RandomAccessIteratorNths nths_last,

RandomAccessIterator last);

template<class RandomAccessIterator, class RandomAccessIteratorNths, class Compare>

constexpr void nth_element(RandomAccessIterator first,

RandomAccessIteratorNths nths_first, RandomAccessIteratorNths nths_last,

RandomAccessIterator last, Compare comp);

11

template<class ExecutionPolicy, class RandomAccessIterator, class RandomAccessIteratorNths>
void nth_element (ExecutionPolicy&& exec, RandomAccessIterator first,
RandomAccessIteratorNths nths first, RandomAccessIteratorNths nths_last,

RandomAccessIterator last);

template<class ExecutionPolicy, class RandomAccessIterator,

class RandomAccessIteratorNths, class Compare>

void nth_element (ExecutionPolicy&& exec, RandomAccessIterator first,
RandomAccessIteratorNths nths_first, RandomAccessIteratorNths nths_last,

RandomAccessIterator last, Compare comp);

Added signatures to std: :ranges::

namespace ranges {
template<random_access_iterator I, sentinel_for<I> S,
random_access_range Nths, class Comp = ranges::less, class Proj = identity>
requires sortable<I, Comp, Proj>
&& convertible_to<iter_reference_t<iterator_t<Nths>>, I>
constexpr I nth_element(I first, Nths&& nths, S last, Comp comp = {}, Proj proj = {});

template<random_access_range R,

random_access_range Nths, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>

&& convertible_to<iter_reference_t<iterator_t<Nths>>, iterator_t<R>>
constexpr borrowed_iterator_t<R>

nth_element (R&& r, Nths&& nths, Comp comp = {}, Proj proj = {});

12

6 Questions and Answers

6.1 Q: What’s the best name?

A: T suggest to reuse nth_element for discoverability but it could as well be a separate name.
The name std::nth_element is established since pre-standard STL times (~19947). In the
literature[Alsuwaiyel2001, Kaligosi2006, Panh2002, lent1996, Shen1997], it is known as select(ion),

and the proposed algorithm is known as multiselect(ion).

As an alternative to overloading std: :nth_element, I find it quite reasonable (and not too creative)

to follow the same pattern, with the name std: :multi_nth_element.

Numpy overloads the name “partition” for both select and multiselect.

6.2 Q: What about corner cases?

Q: What if nths or [first,last) is empty? A: multi_nth_element does nothing.
Q: What if some elements of nths are equal to last. A: As with nth_element, not a problem.

Q: What if some elements of nths are equal to each other A: By specification, not a problem.

6.3 Q: Is there’s a need to require nths be sized_range?

A: Not sure, I don’t think so. The example implementation does not use .size().

6.4 Q: How should the nths be provided?

The current-standard single-nth version uses a single iterator nth to designate the location in the
range. A range of iterators seems to me the most natural way to designate multiple arbitrary

locations in a range.

This seem least-surprise and offers flexibility as well as natural combination with other operations
(such as seen in the examples here and in the proposal). Python uses indices rather than iterators
to express locations in lists and arrays, and its incarnation of the proposed algorithm uses range-of-

indices (or a single value) to specify the partition point(s)[NpPart].

6.5 Q: Benefits and performance beyond Ordo.

A: The comment is appreciated. Expanded the paper introduction and Examples and Application

section. Added performance study, section 7.

An interesting discussion of std::sort vs single-nth std::nth_element and std::partial_-
sort is found at [CppCon 2018: Fred Tingaud "A Little Order: Delving into the STL sorting
algorithms'](https://www.youtube.com/watch?v=-0t03Eni2uo)

13

https://www.youtube.com/watch?v=-0tO3Eni2uo

7 Reference implementation and practical performance

Several reference implementations and a performance study, including the code, is found at

[p2375Reflmpl] and is summarized here.

Time vs std: :sort for equidistant partitioning points

equidistant partition points

E —— m=1
njitrs
10§

97+ i

] m=50

m=100

speed factor vs std::sort
(o))

103 104 10° 106 107
N

The above image shows the execution speed of a multi_quick_select implementation compared to
std: :sort for various vector sizes N. Each data point is the mean of many repetitions, excluding
outliers. Error bars show the spread of all repetitions and is influenced by the randomness of the
test data. Individual data points do fluctuate between initial random seeds of the example, but the

overall trends are very stable.

The bisect_nths algorithm (similar to [Alsuwaiyel2001]) shown in section 2 is about 10% slower
for m > 5, and about 20% slower for m > 50 but has the same asymptotic complexity. The data
to sort here consists of randomly shuffled doubles, and multi_nth_element was given different
numbers m of evenly spaced partitioning points in the vector. Dotted lines show lines k; - log(N)

fitted to pass though each curve at N = 3e6.

The image shows that the speed curves approximately follow the expected log(N) shape, with

different factors for different m.

The following table shows a few speedup factors for a number of unique partitioning points m and

vector sizes N.

14

m | speedup factor at N
1 11 N = 3e7
5 5.7 N = 3e7
10 4.7 N = 3e7
500 2.3 N = 3e7
1000 2.2 N = 3e7
10 3.6 N = 3¢5
50 2.5 N = 3e5
5 2.6 N = 3e3

Clearly, the benefit compared to std: :sort is the greatest for smaller m. In these tests of multi_-
quick_select, the performance are still not worse than std: :sort even for m ~ N. The benefit
over sort grows with N as logN. Further slices and ways to plot the same performance data is
found at [p2375Reflmpl]. It also shows the study repeated for uniformly random (unique) partition

points with very similar conclusion, but slightly better performance.

Acknowledgements

Many thanks to undisclosed proofreaders and to Albin Fredriksson and Marco Rubini for helpful

discussions. Many thanks to all who gave comments and feedback.

References

[StepLee95] Alexander Stepanov and Meng Lee: The Standard Template Library.
HP Laboratories Technical Report 95-11(R.1), November 14, 1995
http://stepanovpapers.com/STL/DOC.PDF

[Alsuwaiyel2001] Muhammad H. Alsuwaiyel: An optimal parallel algorithm for the multiselection
problem. Parallel Computing Volume 27, Issue 6, May 2001, Pages 861-865
https://doi.org/10.1016/50167-8191(00)00095-8

[Kaligosi2006] Towards Optimal Multiple Selection
Kanela Kaligos,Kurt Mehlhorn, J. Ian Munro, Peter Sanders — July 2005 Lecture Notes in
Computer Science 3580:103-114 — DOI:10.1007/11523468_9

[Akl11984] S. G. Akl, Optimal parallel algorithms for computing convex hulls and for sorting,
Computing, 33 (1984), 1-11.

[AkI1989] S. G. Akl, The Design and Analysis of Parallel Algorithms (PrenticeHall, Englewood
Cliffs, New Jersey, 1989).

[Shen1997] H. Shen, Optimal parallel multiselection on EREW PRAM, Parallel Computing,
23(1997), 1987-1992.

[NpPart] Python numpy.partition
https://numpy.org/doc/stable/reference/generated/numpy.partition.html

15

http://stepanovpapers.com/STL/DOC.PDF
https://doi.org/10.1016/S0167-8191(00)00095-8
https://numpy.org/doc/stable/reference/generated/numpy.partition.html

[NPImpl] The implementation of partition (multiple and single nth version) is found
at https://github.com/numpy/numpy/blob/v1.20.2/numpy/core/src/multiarray/item_
selection.c#L1023

[Musser1997] David R. Musser, Introspective Sorting and Selection Algorithms
Software—Practice and Experience, (8): 983-993 (1997))
https://www.cs.rpi.edu/~musser/gp/algorithms.html

[Panh2002] Alois Panholzer — Analysis of multiple quickselect variants
Theoretical Computer Science Volume 302, Issues 1-3, 13 June 2003, Pages 45-91
https://doi.org/10.1016/50304-3975(02)00729-6

[lent1996] Janice Lent, Hosam M.Mahmoud
Average-case analysis of multiple Quickselect: An algorithm for finding order statistics
Statistics & Probability Letters
Volume 28, Issue 4, August 1996, Pages 299-310 https://doi.org/10.1016/0167-7152(95)
00139-5

[p2375Reflmpl] Reference Implementation, Performance study and usage examples on this proposal.

https://github.com/jmlundberg/nth_element_material

[p2375src] Document source and status page for this proposal.
https://github.com/jmlundberg/p2375

16

https://github.com/numpy/numpy/blob/v1.20.2/numpy/core/src/multiarray/item_selection.c#L1023
https://github.com/numpy/numpy/blob/v1.20.2/numpy/core/src/multiarray/item_selection.c#L1023
https://www.cs.rpi.edu/~musser/gp/algorithms.html
https://doi.org/10.1016/S0304-3975(02)00729-6
https://doi.org/10.1016/0167-7152(95)00139-5
https://doi.org/10.1016/0167-7152(95)00139-5
https://github.com/jmlundberg/nth_element_material
https://github.com/jmlundberg/p2375

	Revision history
	1 Introduction
	1.1 Visual explanation

	2 Algorithm Implementation
	3 Tony Tables (Before/After)
	4 Examples and Applications
	4.1 multi_nth_element and sort
	4.2 multi_nth_element into slots
	4.3 Outlier filtering
	4.4 Pagination and sorted subset
	4.5 Partitioning with interpolation. Quantiles, Percentiles.
	4.6 Histogram equalization and bin selection. Application to image equalization

	5 Wording and Synopsis
	5.1 [alg.nth.element]
	5.2 Synopsis – <algorithm> [algorithm.syn]

	6 Questions and Answers
	6.1 Q: What's the best name?
	6.2 Q: What about corner cases?
	6.3 Q: Is there's a need to require nths be sized_range?
	6.4 Q: How should the nths be provided?
	6.5 Q: Benefits and performance beyond Ordo.

	7 Reference implementation and practical performance
	Acknowledgements
	References

