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copyable_function 

Abstract 
This paper proposes a replacement for function in the form of a copyable variant of move_only_func-

tion. 

Tony Table 
Before Proposed 

auto lambda{[&]() /*const*/ { … }}; 
 

function<void(void)> func{lambda};     
const auto & ref{func}; 
 

func();     

ref();     

auto lambda{[&]() /*const*/ { … }}; 
 

copyable_function<void(void)> func0{lambda};     
const auto & ref0{func0}; 
 

func0();     

ref0(); //operator() is NOT const!     
 
 

copyable_function<void(void) const> func1{lambda};     
const auto & ref1{func1}; 
 

func1();     

ref1(); //operator() is const!     

auto lambda{[&]() mutable { … }}; 
 

function<void(void)> func{lambda};     
const auto & ref{func}; 
 

func();     

ref(); //operator() is const!        
       //this is the infamous constness-bug 

auto lambda{[&]() mutable { … }}; 
 

copyable_function<void(void)> func{lambda};     
const auto & ref{func}; 
 

func();     

ref(); //operator() is NOT const!     
 
 

copyable_function<void(void) const> tmp{lambda};     

 

Revisions 
R0: Initial version 

R1: 

• Incorporated the changes proposed for move_only_function in [P2511R2]. 

• Added wording for conversions from copyable_function to move_only_function. 

R2: 

• Removed changes adopted from [P2511R2] as that proposal didn’t reach consensus in the 

2022-10 LEWG electronic polling. 

R3: Updates after LEWG Review on 2022-11-08: 

• Fixed requirements on callables in the design section – copy-construct-ability is sufficient. 
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• Removed open question on the deprecation of function. 

• Replaced previously proposed conversion operators to move_only_function. 

• Added section on conversions between standard library polymorphic function wrappers. 

• Added section on potential allocator support. 

R4: Updates after LEWG Review on 2022-11-11: 

• Removed mandatory optimization for conversion to move_only_function. 

R5: Updates after LEWG Review on 2023-03-07: 

• Added section on naming of this class. 

• Extended wording with recommended practice to avoid double wrapping of type-erased func-

tion wrappers. 

• Fixed some wording bugs. 

Motivation 
C++11 added function, a type-erased function wrapper that can represent any copyable callable 

matching the function signature R(Args...). Since its introduction, there have been identified several 

issues – including the infamous constness-bug – with its design (see [N4159]). 

[P0288R9] introduced move_only_function, a move-only type-erased callable wrapper. In addition to 

dropping the copyable requirement, move_only_function extends the supported signature to 

R(Args...) constop (&|&&)op noexceptop and forwards all qualifiers to its call operator, introduces 

a strong non-empty precondition for invocation instead of throwing bad_function_call and drops 

the dependency to typeid/RTTI (there is no equivalent to function’s target_type() or target()). 

Concurrently, [P0792R10] introduced function_ref, a type-erased non-owning reference to any call-

able matching a function signature in the form of R(Args...) constop noexceptop. Like 

move_only_function, it forwards the noexcept-qualifier to its call operator. As function_ref acts 

like a reference, it does not support ref-qualifiers and does not forward the const-qualifier to its call 

operator. 

As a result, function is now the only type-erased function wrapper not supporting any form of quali-

fiers in its signature. Whilst amending function with support for ref/noexcept-qualifiers would be a 

straightforward extension, the same is not true for the const-qualifier due to the long-standing con-

stness-bug. Without proper support for the const-qualifier, function would still be inconsistent with 

its closest relative. 

Therefore, this paper proposes to introduce a replacement to function in the form of copy-

able_function, a class that closely mirrors the design of move_only_function and adds copyability 

as an additional affordance. 

Design space 
The main goal of this paper is consistency between the move-only and copyable type-erased function 

wrappers. Therefore, we follow the design of move_only_function very closely and only introduce 

three extensions: 

1. Adding a copy constructor 

2. Adding a copy assignment operator 

3. Requiring callables to be copy-constructible 

http://wg21.link/N4159
https://wg21.link/P0288R9
http://wg21.link/P0792R10
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Conversions between function wrappers 
Given the proliferation of proposals for polymorphic function wrappers, LEWG requested an evaluation 

of the “conversion story” of these types. Note that conversions from function_ref always follow ref-

erence semantics for obvious reasons. 

 

  To 

Fr
o

m
 

 function move_only_function copyable_function function_ref 

function                 
move_only_function               
copyable_function                 
function_ref                 

 

It is recommended that implementors do not perform additional allocations when converting from a 

copyable_function instantiation to a compatible move_only_function instantiation, but this is left 

as quality-of-implementation. 

Concerning allocator support 
After having reviewed R2, LEWG requested a statement about potential allocator support. As this pro-

posal aims for feature parity with move_only_function (apart from the extensions mentioned above) 

and considering the somewhat recent removal of allocator support from function [P0302], we refrain 

from adding allocator support to copyable_function. We welcome an independent paper introducing 

said support to both classes. 

Naming discussion 
During the review of R4, there were questions raised for the rationale for the name copyable_func-

tion, especially as it was perceived inconsistent with move_only_function. Our rationale for the 

name is as follows: copyable_function is a copyable function call wrapper that requires the target 

object to be copyable, so the copyable-prefix references both aspects. Furthermore, there isn’t actu-

ally an inconsistency with move_only_function, as the move_only-prefix only applies to the wrapper; 

the wrapper is move-only, but there is no reason to require the target object to be as well. 

Impact on the Standard 
This proposal is a pure library addition. 

Implementation Experience 
The proposed design has been implemented at https://github.com/MFHava/P2548. 

Proposed Wording 
Wording is relative to [N4928]. Additions are presented like this, removals like this and drafting notes 

like this. 

[version.syn] 
#define __cpp_lib_copyable_function YYYYMML //also in <functional> 

[DRAFTING NOTE: Adjust the placeholder value as needed to denote this proposal’s date of adoption.] 

 

  

http://wg21.link/P0302
https://github.com/MFHava/P2548
http://wg21.link/N4928
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[functional.syn] 
 22.10.2 Header <functional> synopsis [functional.syn] 
  namespace std { 

… 
  // [func.wrap.move], move only wrapper 
  template<class... S> class move_only_function; // not defined 
  template<class R, class... ArgTypes> 
    class move_only_function<R(ArgTypes...) cv ref noexcept(noex)>; // see below 
 
  // [func.wrap.copy], copyable wrapper 
  template<class... S> class copyable_function; // not defined 
  template<class R, class... ArgTypes> 
    class copyable_function<R(ArgTypes...) cv ref noexcept(noex)>; // see below 
 
  // [func.search], searchers 
  template<class ForwardIterator, class BinaryPredicate = equal_to<>> 
  class default_searcher; 
… 
} 

 

[func.wrap.general] 
 22.10.17.1 General [func.wrap.general] 

1 Subclause [func.wrap] describes polymorphic wrapper classes that encapsulate arbitrary callable objects. 
2 Recommended practice: Implementations should avoid double erasure when constructing polymorphic wrappers from one an-

other. 
[DRAFTING NOTE: It’s the intended design that moves can be elided, even if they would be observable when double wrapping: 
 
move_only_function<void(T)> f{copyable_function<void(T)>{[](T) {}}}; 
T t; 
f(t); //may move t ones (unwrapping case) or twice (wrapping case) – both are acceptable. 

] 
 22.10.17.2 Class bad_function_call [func.wrap.badcall] 

 

[func.wrap.copy] 
 [DRAFTING NOTE: Add a new section in [func.wrap]] 

22.10.17.?? Copyable wrapper [func.wrap.copy] 
22.10.17.??.1 General [func.wrap.copy.general] 

1 The header provides partial specializations of copyable_function for each combination of the possible replacements of the place-
holders cv, ref, and noex where 

(1.1) — cv is either const or empty, 
(1.2) — ref is either &, &&, or empty, and 
(1.3) — noex is either true or false. 

2 For each of the possible combinations of the placeholders mentioned above, there is a placeholder inv-quals defined as follows: 
(2.1) — If ref is empty, let inv-quals be cv&, 
(2.2) — otherwise, let inv-quals be cv ref. 

 
 22.10.17.??.2 Class template copyable_function [func.wrap.copy.class] 
  namespace std { 

  template<class... S> class copyable_function; // not defined 
 
  template<class R, class... ArgTypes> 
  class copyable_function<R(ArgTypes...) cv ref noexcept(noex)> { 
  public: 
    using result_type = R; 
 
    // [func.wrap.copy.ctor], constructors, assignments, and destructors 
    copyable_function() noexcept; 
    copyable_function(nullptr_t) noexcept; 
    copyable_function(const copyable_function&); 
    copyable_function(copyable_function&&) noexcept; 
    template<class F> copyable_function(F&&); 
    template<class T, class... Args> 
      explicit copyable_function(in_place_type_t<T>, Args&&...); 
    template<class T, class U, class... Args> 
      explicit copyable_function(in_place_type_t<T>, initializer_list<U>, Args&&...); 
 
    copyable_function& operator=(const copyable_function&); 
    copyable_function& operator=(copyable_function&&); 
    copyable_function& operator=(nullptr_t) noexcept; 
    template<class F> copyable_function& operator=(F&&); 
 
    ~copyable_function(); 
 
    // [func.wrap.copy.inv], invocation 
    explicit operator bool() const noexcept; 
    R operator()(ArgTypes...) cv ref noexcept(noex); 
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    // [func.wrap.copy.util], utility 
    void swap(copyable_function&) noexcept; 
    friend void swap(copyable_function&, copyable_function&) noexcept; 
    friend bool operator==(const copyable_function&, nullptr_t) noexcept; 
 
  private: 
    template<class VT> 
      static constexpr bool is-callable-from = see below;       //exposition only 
  }; 
} 

1 The copyable_function class template provides polymorphic wrappers that generalize the notion of a callable object ([func.def]). 
These wrappers can store, copy, move, and call arbitrary callable objects, given a call signature. Within this subclause, call-args 
is an argument pack with elements that have types ArgTypes&&... respectively. 

2 Recommended practice: Implementations should avoid the use of dynamically allocated memory for a small contained value. 
[Note 1: Such small-object optimization can only be applied to a type T for which is_nothrow_constructible_v<T> is true. — end note] 

 
 22.10.17.??.3 Constructors, assignment, and destructor [func.wrap.copy.ctor] 
 template<class VT> 

  static constexpr bool is-callable-from = see below; 
1  If noex is true, is-callable-from<VT> is equal to: 

    is_nothrow_invocable_r_v<R, VT cv ref, ArgTypes...> && 
    is_nothrow_invocable_r_v<R, VT inv-quals, ArgTypes...> 

Otherwise, is-callable-from<VT> is equal to: 
    is_invocable_r_v<R, VT cv ref, ArgTypes...> && 
    is_invocable_r_v<R, VT inv-quals, ArgTypes...> 

 
 copyable_function() noexcept; 

copyable_function(nullptr_t) noexcept; 
2  Postconditions: *this has no target object. 

 
 copyable_function(const copyable_function& f) 

3  Postconditions: *this has no target object if f had no target object. 
Otherwise, the target object of *this is a copy of the target object of f. 

4  Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc. 
 

 copyable_function(copyable_function&& f) noexcept; 
5  Postconditions: The target object of *this is the target object f had before construction, and f is in a valid state with an 

unspecified value. 
 

 template<class F> copyable_function(F&& f); 
6  Let VT be decay_t<F>. 
7  Constraints: 

(7.1)  — remove_cvref_t<F> is not the same as copyable_function, and 
(7.2)  — remove_cvref_t<F> is not a specialization of in_place_type_t, and 
(7.3)  — is-callable-from<VT> is true. 

8  Mandates: 
(8.1)  — is_constructible_v<VT, F> is true, and 
(8.2)  — is_copy_constructible_v<VT> is true. 

9  Preconditions: VT meets the Cpp17Destructible and Cpp17CopyConstructible requirements. 
10  Postconditions: *this has no target object if any of the following hold: 

(10.1)  — f is a null function pointer value, or 
(10.2)  — f is a null member function pointer value, or 
(10.3)  — remove_cvref_t<F> is a specialization of the copyable_function class template, and f has no target object. 

Otherwise, *this has a target object of type VT direct-non-list-initialized with std::forward<F>(f). 
11  Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless VT is a function pointer 

or a specialization of reference_wrapper. 
 

 template<class T, class... Args> 
  explicit copyable_function(in_place_type_t<T>, Args&&... args); 

12  Let VT be decay_t<T>. 
13  Constraints: 

(13.1)  — is_constructible_v<VT, Args...> is true, and 
(13.2)  — is-callable-from<VT> is true. 

14  Mandates: 
(14.1)  — VT is the same type as T, and 
(14.2)  — is_copy_constructible_v<VT> is true. 

15  Preconditions: VT meets the Cpp17Destructible and Cpp17CopyConstructible requirements. 
16  Postconditions: *this has a target object d of type VT direct-non-list-initialized with std::forward<Args>(args).... 
17  Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless VT is a pointer or a spe-

cialization of reference_wrapper. 
 

 template<class T, class U, class... Args> 
  explicit copyable_function(in_place_type_t<T>, initializer_list<U> ilist, Args&&... args); 

18  Let VT be decay_t<T>. 
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19  Constraints: 
(19.1)  — is_constructible_v<VT, initializer_list<U>&, Args...> is true, and 
(19.2)  — is-callable-from<VT> is true. 

20  Mandates: 
(20.1)  — VT is the same type as T, and 
(20.2)  — is_copy_constructible_v<VT> is true. 

21  Preconditions: VT meets the Cpp17Destructible and Cpp17CopyConstructible requirements. 
22  Postconditions: *this has a target object d of type VT direct-non-list-initialized with ilist, std::forward<Args>(args).... 
23  Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless VT is a pointer or a spe-

cialization of reference_wrapper. 
 

 copyable_function& operator=(const copyable_function& f); 
24  Effects: Equivalent to: copyable_function(f).swap(*this); 
25  Returns: *this. 

 
 copyable_function& operator=(copyable_function&& f); 

26  Effects: Equivalent to: copyable_function(std::move(f)).swap(*this); 
27  Returns: *this. 

 
 copyable_function& operator=(nullptr_t) noexcept; 

28  Effects: Destroys the target object of *this, if any. 
29  Returns: *this. 

 
 template<class F> copyable_function& operator=(F&& f); 

30  Effects: Equivalent to: copyable_function(std::forward<F>(f)).swap(*this); 
31  Returns: *this. 

 
 ~copyable_function(); 

32  Effects: Destroys the target object of *this, if any. 
 

 22.10.17.??.4 Invocation [func.wrap.copy.inv] 
 explicit operator bool() const noexcept; 

1  Returns: true if *this has a target object, otherwise false. 
 

 R operator()(ArgTypes... args) cv ref noexcept(noex); 
2  Preconditions: *this has a target object. 
3  Effects: Equivalent to: 

    return INVOKE<R>(static_cast<F inv-quals>(f), std::forward<ArgTypes>(args)...); 

where f is an lvalue designating the target object of *this and F is the type of f. 
 

 22.10.17.??.5 Utility [func.wrap.copy.util] 
 void swap(copyable_function& other) noexcept; 

1  Effects: Exchanges the target objects of *this and other. 
 

 friend void swap(copyable_function& f1, copyable_function& f2) noexcept; 
2  Effects: Equivalent to f1.swap(f2). 

 
 friend bool operator==(const copyable_function& f, nullptr_t) noexcept; 

3  Returns: true if f has no target object, otherwise false. 
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