

1

Document number: P2548R5

Date: 2023-04-03

Project: Programming Language C++

Audience: LEWG, LWG

Reply-to: Michael Florian Hava1 <mfh.cpp@gmail.com>

copyable_function

Abstract
This paper proposes a replacement for function in the form of a copyable variant of move_only_func-

tion.

Tony Table
Before Proposed

auto lambda{[&]() /*const*/ { … }};

function<void(void)> func{lambda};
const auto & ref{func};

func();

ref();

auto lambda{[&]() /*const*/ { … }};

copyable_function<void(void)> func0{lambda};
const auto & ref0{func0};

func0();

ref0(); //operator() is NOT const!

copyable_function<void(void) const> func1{lambda};
const auto & ref1{func1};

func1();

ref1(); //operator() is const!

auto lambda{[&]() mutable { … }};

function<void(void)> func{lambda};
const auto & ref{func};

func();

ref(); //operator() is const!
 //this is the infamous constness-bug

auto lambda{[&]() mutable { … }};

copyable_function<void(void)> func{lambda};
const auto & ref{func};

func();

ref(); //operator() is NOT const!

copyable_function<void(void) const> tmp{lambda};

Revisions
R0: Initial version

R1:

• Incorporated the changes proposed for move_only_function in [P2511R2].

• Added wording for conversions from copyable_function to move_only_function.

R2:

• Removed changes adopted from [P2511R2] as that proposal didn’t reach consensus in the

2022-10 LEWG electronic polling.

R3: Updates after LEWG Review on 2022-11-08:

• Fixed requirements on callables in the design section – copy-construct-ability is sufficient.

1 RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria, michael.hava@risc-software.at

mailto:mfh.cpp@gmail.com
http://wg21.link/P2511R2
http://wg21.link/P2511R2
michael.hava@risc-software.at

2

• Removed open question on the deprecation of function.

• Replaced previously proposed conversion operators to move_only_function.

• Added section on conversions between standard library polymorphic function wrappers.

• Added section on potential allocator support.

R4: Updates after LEWG Review on 2022-11-11:

• Removed mandatory optimization for conversion to move_only_function.

R5: Updates after LEWG Review on 2023-03-07:

• Added section on naming of this class.

• Extended wording with recommended practice to avoid double wrapping of type-erased func-

tion wrappers.

• Fixed some wording bugs.

Motivation
C++11 added function, a type-erased function wrapper that can represent any copyable callable

matching the function signature R(Args...). Since its introduction, there have been identified several

issues – including the infamous constness-bug – with its design (see [N4159]).

[P0288R9] introduced move_only_function, a move-only type-erased callable wrapper. In addition to

dropping the copyable requirement, move_only_function extends the supported signature to

R(Args...) constop (&|&&)op noexceptop and forwards all qualifiers to its call operator, introduces

a strong non-empty precondition for invocation instead of throwing bad_function_call and drops

the dependency to typeid/RTTI (there is no equivalent to function’s target_type() or target()).

Concurrently, [P0792R10] introduced function_ref, a type-erased non-owning reference to any call-

able matching a function signature in the form of R(Args...) constop noexceptop. Like

move_only_function, it forwards the noexcept-qualifier to its call operator. As function_ref acts

like a reference, it does not support ref-qualifiers and does not forward the const-qualifier to its call

operator.

As a result, function is now the only type-erased function wrapper not supporting any form of quali-

fiers in its signature. Whilst amending function with support for ref/noexcept-qualifiers would be a

straightforward extension, the same is not true for the const-qualifier due to the long-standing con-

stness-bug. Without proper support for the const-qualifier, function would still be inconsistent with

its closest relative.

Therefore, this paper proposes to introduce a replacement to function in the form of copy-

able_function, a class that closely mirrors the design of move_only_function and adds copyability

as an additional affordance.

Design space
The main goal of this paper is consistency between the move-only and copyable type-erased function

wrappers. Therefore, we follow the design of move_only_function very closely and only introduce

three extensions:

1. Adding a copy constructor

2. Adding a copy assignment operator

3. Requiring callables to be copy-constructible

http://wg21.link/N4159
https://wg21.link/P0288R9
http://wg21.link/P0792R10

3

Conversions between function wrappers
Given the proliferation of proposals for polymorphic function wrappers, LEWG requested an evaluation

of the “conversion story” of these types. Note that conversions from function_ref always follow ref-

erence semantics for obvious reasons.

 To

Fr
o

m

 function move_only_function copyable_function function_ref

function
move_only_function
copyable_function
function_ref

It is recommended that implementors do not perform additional allocations when converting from a

copyable_function instantiation to a compatible move_only_function instantiation, but this is left

as quality-of-implementation.

Concerning allocator support
After having reviewed R2, LEWG requested a statement about potential allocator support. As this pro-

posal aims for feature parity with move_only_function (apart from the extensions mentioned above)

and considering the somewhat recent removal of allocator support from function [P0302], we refrain

from adding allocator support to copyable_function. We welcome an independent paper introducing

said support to both classes.

Naming discussion
During the review of R4, there were questions raised for the rationale for the name copyable_func-

tion, especially as it was perceived inconsistent with move_only_function. Our rationale for the

name is as follows: copyable_function is a copyable function call wrapper that requires the target

object to be copyable, so the copyable-prefix references both aspects. Furthermore, there isn’t actu-

ally an inconsistency with move_only_function, as the move_only-prefix only applies to the wrapper;

the wrapper is move-only, but there is no reason to require the target object to be as well.

Impact on the Standard
This proposal is a pure library addition.

Implementation Experience
The proposed design has been implemented at https://github.com/MFHava/P2548.

Proposed Wording
Wording is relative to [N4928]. Additions are presented like this, removals like this and drafting notes

like this.

[version.syn]
#define __cpp_lib_copyable_function YYYYMML //also in <functional>

[DRAFTING NOTE: Adjust the placeholder value as needed to denote this proposal’s date of adoption.]

http://wg21.link/P0302
https://github.com/MFHava/P2548
http://wg21.link/N4928

4

[functional.syn]
 22.10.2 Header <functional> synopsis [functional.syn]
 namespace std {

…
 // [func.wrap.move], move only wrapper
 template<class... S> class move_only_function; // not defined
 template<class R, class... ArgTypes>
 class move_only_function<R(ArgTypes...) cv ref noexcept(noex)>; // see below

 // [func.wrap.copy], copyable wrapper
 template<class... S> class copyable_function; // not defined
 template<class R, class... ArgTypes>
 class copyable_function<R(ArgTypes...) cv ref noexcept(noex)>; // see below

 // [func.search], searchers
 template<class ForwardIterator, class BinaryPredicate = equal_to<>>
 class default_searcher;
…
}

[func.wrap.general]
 22.10.17.1 General [func.wrap.general]

1 Subclause [func.wrap] describes polymorphic wrapper classes that encapsulate arbitrary callable objects.
2 Recommended practice: Implementations should avoid double erasure when constructing polymorphic wrappers from one an-

other.
[DRAFTING NOTE: It’s the intended design that moves can be elided, even if they would be observable when double wrapping:

move_only_function<void(T)> f{copyable_function<void(T)>{[](T) {}}};
T t;
f(t); //may move t ones (unwrapping case) or twice (wrapping case) – both are acceptable.

]
 22.10.17.2 Class bad_function_call [func.wrap.badcall]

[func.wrap.copy]
 [DRAFTING NOTE: Add a new section in [func.wrap]]

22.10.17.?? Copyable wrapper [func.wrap.copy]
22.10.17.??.1 General [func.wrap.copy.general]

1 The header provides partial specializations of copyable_function for each combination of the possible replacements of the place-
holders cv, ref, and noex where

(1.1) — cv is either const or empty,
(1.2) — ref is either &, &&, or empty, and
(1.3) — noex is either true or false.

2 For each of the possible combinations of the placeholders mentioned above, there is a placeholder inv-quals defined as follows:
(2.1) — If ref is empty, let inv-quals be cv&,
(2.2) — otherwise, let inv-quals be cv ref.

 22.10.17.??.2 Class template copyable_function [func.wrap.copy.class]
 namespace std {

 template<class... S> class copyable_function; // not defined

 template<class R, class... ArgTypes>
 class copyable_function<R(ArgTypes...) cv ref noexcept(noex)> {
 public:
 using result_type = R;

 // [func.wrap.copy.ctor], constructors, assignments, and destructors
 copyable_function() noexcept;
 copyable_function(nullptr_t) noexcept;
 copyable_function(const copyable_function&);
 copyable_function(copyable_function&&) noexcept;
 template<class F> copyable_function(F&&);
 template<class T, class... Args>
 explicit copyable_function(in_place_type_t<T>, Args&&...);
 template<class T, class U, class... Args>
 explicit copyable_function(in_place_type_t<T>, initializer_list<U>, Args&&...);

 copyable_function& operator=(const copyable_function&);
 copyable_function& operator=(copyable_function&&);
 copyable_function& operator=(nullptr_t) noexcept;
 template<class F> copyable_function& operator=(F&&);

 ~copyable_function();

 // [func.wrap.copy.inv], invocation
 explicit operator bool() const noexcept;
 R operator()(ArgTypes...) cv ref noexcept(noex);

5

 // [func.wrap.copy.util], utility
 void swap(copyable_function&) noexcept;
 friend void swap(copyable_function&, copyable_function&) noexcept;
 friend bool operator==(const copyable_function&, nullptr_t) noexcept;

 private:
 template<class VT>
 static constexpr bool is-callable-from = see below; //exposition only
 };
}

1 The copyable_function class template provides polymorphic wrappers that generalize the notion of a callable object ([func.def]).
These wrappers can store, copy, move, and call arbitrary callable objects, given a call signature. Within this subclause, call-args
is an argument pack with elements that have types ArgTypes&&... respectively.

2 Recommended practice: Implementations should avoid the use of dynamically allocated memory for a small contained value.
[Note 1: Such small-object optimization can only be applied to a type T for which is_nothrow_constructible_v<T> is true. — end note]

 22.10.17.??.3 Constructors, assignment, and destructor [func.wrap.copy.ctor]
 template<class VT>

 static constexpr bool is-callable-from = see below;
1 If noex is true, is-callable-from<VT> is equal to:

 is_nothrow_invocable_r_v<R, VT cv ref, ArgTypes...> &&
 is_nothrow_invocable_r_v<R, VT inv-quals, ArgTypes...>

Otherwise, is-callable-from<VT> is equal to:
 is_invocable_r_v<R, VT cv ref, ArgTypes...> &&
 is_invocable_r_v<R, VT inv-quals, ArgTypes...>

 copyable_function() noexcept;

copyable_function(nullptr_t) noexcept;
2 Postconditions: *this has no target object.

 copyable_function(const copyable_function& f)

3 Postconditions: *this has no target object if f had no target object.
Otherwise, the target object of *this is a copy of the target object of f.

4 Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc.

 copyable_function(copyable_function&& f) noexcept;
5 Postconditions: The target object of *this is the target object f had before construction, and f is in a valid state with an

unspecified value.

 template<class F> copyable_function(F&& f);
6 Let VT be decay_t<F>.
7 Constraints:

(7.1) — remove_cvref_t<F> is not the same as copyable_function, and
(7.2) — remove_cvref_t<F> is not a specialization of in_place_type_t, and
(7.3) — is-callable-from<VT> is true.

8 Mandates:
(8.1) — is_constructible_v<VT, F> is true, and
(8.2) — is_copy_constructible_v<VT> is true.

9 Preconditions: VT meets the Cpp17Destructible and Cpp17CopyConstructible requirements.
10 Postconditions: *this has no target object if any of the following hold:

(10.1) — f is a null function pointer value, or
(10.2) — f is a null member function pointer value, or
(10.3) — remove_cvref_t<F> is a specialization of the copyable_function class template, and f has no target object.

Otherwise, *this has a target object of type VT direct-non-list-initialized with std::forward<F>(f).
11 Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless VT is a function pointer

or a specialization of reference_wrapper.

 template<class T, class... Args>
 explicit copyable_function(in_place_type_t<T>, Args&&... args);

12 Let VT be decay_t<T>.
13 Constraints:

(13.1) — is_constructible_v<VT, Args...> is true, and
(13.2) — is-callable-from<VT> is true.

14 Mandates:
(14.1) — VT is the same type as T, and
(14.2) — is_copy_constructible_v<VT> is true.

15 Preconditions: VT meets the Cpp17Destructible and Cpp17CopyConstructible requirements.
16 Postconditions: *this has a target object d of type VT direct-non-list-initialized with std::forward<Args>(args)....
17 Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless VT is a pointer or a spe-

cialization of reference_wrapper.

 template<class T, class U, class... Args>
 explicit copyable_function(in_place_type_t<T>, initializer_list<U> ilist, Args&&... args);

18 Let VT be decay_t<T>.

6

19 Constraints:
(19.1) — is_constructible_v<VT, initializer_list<U>&, Args...> is true, and
(19.2) — is-callable-from<VT> is true.

20 Mandates:
(20.1) — VT is the same type as T, and
(20.2) — is_copy_constructible_v<VT> is true.

21 Preconditions: VT meets the Cpp17Destructible and Cpp17CopyConstructible requirements.
22 Postconditions: *this has a target object d of type VT direct-non-list-initialized with ilist, std::forward<Args>(args)....
23 Throws: Any exception thrown by the initialization of the target object. May throw bad_alloc unless VT is a pointer or a spe-

cialization of reference_wrapper.

 copyable_function& operator=(const copyable_function& f);
24 Effects: Equivalent to: copyable_function(f).swap(*this);
25 Returns: *this.

 copyable_function& operator=(copyable_function&& f);

26 Effects: Equivalent to: copyable_function(std::move(f)).swap(*this);
27 Returns: *this.

 copyable_function& operator=(nullptr_t) noexcept;

28 Effects: Destroys the target object of *this, if any.
29 Returns: *this.

 template<class F> copyable_function& operator=(F&& f);

30 Effects: Equivalent to: copyable_function(std::forward<F>(f)).swap(*this);
31 Returns: *this.

 ~copyable_function();

32 Effects: Destroys the target object of *this, if any.

 22.10.17.??.4 Invocation [func.wrap.copy.inv]
 explicit operator bool() const noexcept;

1 Returns: true if *this has a target object, otherwise false.

 R operator()(ArgTypes... args) cv ref noexcept(noex);
2 Preconditions: *this has a target object.
3 Effects: Equivalent to:

 return INVOKE<R>(static_cast<F inv-quals>(f), std::forward<ArgTypes>(args)...);

where f is an lvalue designating the target object of *this and F is the type of f.

 22.10.17.??.5 Utility [func.wrap.copy.util]
 void swap(copyable_function& other) noexcept;

1 Effects: Exchanges the target objects of *this and other.

 friend void swap(copyable_function& f1, copyable_function& f2) noexcept;
2 Effects: Equivalent to f1.swap(f2).

 friend bool operator==(const copyable_function& f, nullptr_t) noexcept;

3 Returns: true if f has no target object, otherwise false.

Acknowledgements
Thanks to RISC Software GmbH for supporting this work. Thanks to Peter Kulczycki for proof reading

and discussions. Thanks to Matt Calabrese for helping to get conversions to move_only_function to

work.

https://www.risc-software.at/

