
Document Number: P2551R2

Date: 2022-06-22

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Jonathan Wakely <cxx@kayari.org>

Audience: LEWG

Target: C++23

Clarify intent of P1841 numeric traits

ABSTRACT

A list of design-related questions after implementation of [P1841R2] “Wording for Indi-

vidually Specializable Numeric Traits”.

CONTENTS

0 Changelog 1
1 Introduction 1
2 Design Questions 1
3 Proposed Changes 3
4 Straw Polls 4
A Bibliography 4

P2551R2 0 Changelog

0 CHANGELOG

0.1 changes from revision 0

Previous revision: P2551R0

• Removed questions that were answered in the last telecon.

• Present options for r e c i p r o c a l _ o v e r f l o w _ t h r e s h o l d .

0.2 changes from revision 1

Previous revision: P2551R1

• Back to presenting all questions

• Added section “Proposed Changes”

1 INTRODUCTION

[P1841R2] provides wording for numeric traits. The last design paper was [P0437R1]

with additions from [P1370R1].

2 DESIGN QUESTIONS

1. When exactly is a trait disabled for a given numeric type? It seems the intent was

for the v a l u e member to be defined whenever a representation for the desired

constant exists. The wording needs to clarify whether any behavioral aspects play

a role. For example, a d e n o r m _ m i n may be enabled independent of whether the

execution environment flushes denormals to zero / treats denormals as zero. Even

in the case of a processor that unconditionally zeros denormals; as long as a rep-

resentation exists, is the trait enabled? Conversely, if a representation does not

exist, is the trait disabled? Specifically, d e n o r m _ m i n should never have the value of

n o r m _ m i n ?

2. Please clarifywhetherwewant to treat b o o l as a numeric type and enable the traits

accordingly. The current wording in [P1841R2] enables the traits for b o o l , which

is consistent with s t d : : n u m e r i c _ l i m i t s . s t d : : n u m e r i c _ l i m i t s < b o o l > will still

exist if needed. Numeric code does not use b o o l as a numeric type, despite it

being technically an “arithmetic type” in the core language.

1

https://wg21.link/P2551R0
https://wg21.link/P2551R1

P2551R2 2 Design Questions

3. Many of the numeric traits are motivated by floating-point and make little sense

for integral types. Is it intended that all of the following numeric traits are enabled

also for integral types?

• d e n o r m _ m i n

• e p s i l o n

• m a x _ e x p o n e n t

• m a x _ e x p o n e n t 1 0

• m i n _ e x p o n e n t

• m i n _ e x p o n e n t 1 0

• i n f i n i t y

• q u i e t _ N a N

• s i g n a l i n g _ N a N

4. r e c i p r o c a l _ o v e r f l o w _ t h r e s h o l d is currently defined as:

P1841R2 [num.traits.val]

t e m p l a t e < c l a s s T > s t r u c t r e c i p r o c a l _ o v e r f l o w _ t h r e s h o l d < T > { s e e b e l o w } ;

9 The smallest positive value 𝑥 of type T such that T (1) /𝑥 does not overflow.

This yields a subnormal number for IEC559 types. How should this value change

wrt. treat-denormals-as-zero? I.e. in a situation where the hardware treats subnor-

mal operands as zero you get 1/0 -> inf, which does overflow. In which case it

doesn’t match the specification anymore. This trait is specified by a behavior and

as such may depend on processor state. As a compile-time constant this value

must be independent from runtime behavior. But what is the correct value? See

h t t p s : / / g o d b o l t . o r g / z / e W x d n T Y f 8 for a demonstration of the problem.

Update after consultation with Mark and Damien (the P1370R1 authors):

• It would be possible to decouple the specification from runtime behavior by

specifying behavior of constant expressions only; i.e. that T (1) /𝑥 does not

overflow in a constant expression.

• P1370R1 presented an algorithm to determine the value and it does not yield

the “smallest positive value 𝑥 of type T such that T (1) /𝑥 does not overflow”.

2

https://godbolt.org/z/eWxdnTYf8

P2551R2 3 Proposed Changes

• The P1370R1 algorithm seems to ensure that the value is never subnormal.

Thus, the specification should have been “The smallest positive normal value

𝑥 of type T such that T (1) /𝑥 does not overflow”

• Since the actual reciprocal overflow threshold depends on runtime state,

we’re not sure who would/should use a compile-time constant. It seems sim-

pler and safer to remove r e c i p r o c a l _ o v e r f l o w _ t h r e s h o l d from P1841.

Mark wrote:

I would prefer to remove r e c i p r o c a l _ o v e r f l o w _ t h r e s h o l d en-

tirely. The intent of the feature was to describe actual computer be-

havior at run time, so that library authors could write generic code.

However,we can’t do thatwith traits. For example, traits can’t change

value based on compiler flags. I wish I had realized that better when

proposing the feature.

5. n u m e r i c _ l i m i t s : : m a x _ d i g i t s 1 0 is 0 for integral types. Is m a x _ d i g i t s 1 0 _ v < i n t >

supposed to yield d i g i t s 1 0 _ v < i n t > + 1 ? Or should it only be specialized for

floating-point?

3 PROPOSED CHANGES

After reviewing P2551, Library Evolution wanted to make the following changes:

1. Allow deviation of new individually specializable numeric traits from n u m e r i c _ -

l i m i t s .

2. Base new individually specializable numeric traits on representation rather than

behavior.

3. Disable b o o l for new individually specializable numeric traits.

4. Disable the new individually specializable numeric traits for integral types when

they are not meaningful for n u m e r i c _ l i m i t s .

5. m a x _ d i g i t s 1 0 should be enabled for integral types (yielding d i g i t s _ 1 0 _ v + 1).

6. Remove r e c i p r o c a l _ o v e r f l o w _ t h r e s h o l d .

3

P2551R2 4 Straw Polls

4 STRAW POLLS

4.1 lewg telecon 2022-03-29

Poll: Numeric traits can deviate from n u m e r i c _ l i m i t s .

SF F N A SA

13 8 0 0 0

Poll: Numeric traits should be based on representation rather than behavior (ignoring

r e c i p r o c a l _ o v e r f l o w _ t h r e s h o l d).

SF F N A SA

7 5 2 0 0

Poll: All numeric traits for bool should be disabled.

SF F N A SA

12 6 1 0 0

Poll: The numeric traits that are notmeaningful for n u m e r i c _ l i m i t s (d e n o r m _ m i n , e p s i l o n ,

etc) should be disabled for integral types.

SF F N A SA

14 3 0 0 0

Poll: m a x _ d i g i t s 1 0 should deviate from n u m e r i c _ l i m i t s and yields d i g i t s 1 0 _ v + 1 .

SF F N A SA

6 5 2 0 0

4.2 lewg telecon 2022-06-07

Poll: Remove r e c i p r o c a l _ o v e r f l o w _ t h r e s h o l d from P1841.

SF F N A SA

6 4 1 0 0

A BIBLIOGRAPHY

[P0437R1] Walter E. Brown. P0437R1: Numeric Traits for the Standard Library. ISO/IEC

C++ Standards Committee Paper. 2018. url: h t t p s : / / w g 2 1 . l i n k / p 0 4 3 7 r 1 .

4

https://wg21.link/p0437r1

P2551R2 A Bibliography

[P1841R2] Walter E. Brown. P1841R2: Wording for Individually Specializable Numeric

Traits. ISO/IEC C++ Standards Committee Paper. 2021. url: h t t p s : / / w g 2 1 .
l i n k / p 1 8 4 1 r 2 .

[P1370R1] Mark Hoemmen and Damien Lebrun-Grandie. P1370R1: Generic numeri-

cal algorithm development with(out) numeric_limits. ISO/IEC C++ Standards

Committee Paper. 2019. url: h t t p s : / / w g 2 1 . l i n k / p 1 3 7 0 r 1 .

5

https://wg21.link/p1841r2
https://wg21.link/p1841r2
https://wg21.link/p1370r1

	0 Changelog
	0.1 Changes from revision 0
	0.2 Changes from revision 1

	1 Introduction
	2 Design Questions
	3 Proposed Changes
	4 Straw Polls
	4.1 LEWG telecon 2022-03-29
	4.2 LEWG telecon 2022-06-07

	A Bibliography

