
Document Number: P2600R0

Date: 2022-06-15

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: EWGI, EWG

Target: C++26

A minimal ADL restriction to avoid
ill-formed template instantiation

ABSTRACT

I researched and tested a minimal change to ADL to avoid ill-formed instantiations of

templates throughADL. IfADL ignores not-yet-instantiated-template types (just likeADL

ignores incomplete types) little to no functionality is lost while losing a sharp edge of the

language. This paper presents the idea, discusses potential code breakage, and presents

potential alternatives/extensions of the idea.

CONTENTS

1 Introduction 1
2 Proposed solution 4
3 Implementation Experience 9
4 Alternative solutions / additional ADL ideas 9
5 Wording 12
6 Suggested Straw Polls 12
7 Acknowledgements 12
A Bibliography 13

P2600R0 1 Introduction

1 INTRODUCTION

Consider the innocent-looking code in Listing 1 (as posted to the core reflector by

Jonathan Wakely1).

s t r u c t I n c o m p l e t e ;

t e m p l a t e < t y p e n a m e T > s t r u c t W r a p { T t ; } ;

t e m p l a t e < t y p e n a m e U n u s e d >

s t r u c t T e s t a b l e

{

e x p l i c i t o p e r a t o r b o o l () c o n s t { r e t u r n t r u e ; }

} ;

i n t m a i n ()

{

T e s t a b l e < I n c o m p l e t e > l ;

i f (l) / / O K

r e t u r n 1 ;

i f (! (b o o l) l) / / O K

r e t u r n 0 ;

i f (! l) / / O K

r e t u r n 0 ;

T e s t a b l e < W r a p < I n c o m p l e t e > > l 2 ;

i f (l 2) / / O K

r e t u r n 1 ;

i f (! (b o o l) l 2) / / O K

r e t u r n 0 ;

i f (! l 2) / / E R R O R

r e t u r n 0 ;

}

Listing 1: Ill-formed instantiation of W r a p < I n c o m p l e t e > because of ADL

The expressions ! l and ! l 2 lead to name lookup of o p e r a t o r ! . The associated en-

tities of l 2 are T e s t a b l e < W r a p < I n c o m p l e t e > > , W r a p < I n c o m p l e t e > , and I n c o m p l e t e .

In this example T e s t a b l e < W r a p < I n c o m p l e t e > > must already have been successfully in-

stantiated, otherwise the declaration of l 2 would have been ill-formed. The type I n c o m -

p l e t e is incomplete and the failure to look for o p e r a t o r ! inside I n c o m p l e t e is ignored.

The type W r a p < I n c o m p l e t e > is a template specialization which has not been instanti-

ated at this point in the translation. But instead of treating the type like the incomplete

I n c o m p l e t e type, the compiler attempts to instantiate the specialization, which leads to

an ill-formed definition of its data member since it has incomplete type.

1 h t t p : / / l i s t s . i s o c p p . o r g / c o r e / 2 0 2 1 / 0 6 / 1 1 1 6 1 . p h p (the basic idea of this paper was already hinted

at in the resulting discussion thread)

1

http://lists.isocpp.org/core/2021/06/11161.php

P2600R0 1 Introduction

The expression ! l is well-formed since ADL ignores incomplete types. Consequently,

a later definition of I n c o m p l e t e as

s t r u c t I n c o m p l e t e {

f r i e n d b o o l o p e r a t o r ! (T e s t a b l e < I n c o m p l e t e >) { r e t u r n t r u e ; }

}

changes the value of the expression ! l .

Why does the standard allow incomplete types (i.e. not require completion) as asso-

ciated entities even though this can lead to ODR violations? Isn’t the same reasoning

applicable to templates that have not been instantiated yet? And what are the use cases

for defining a hidden friend in W r a p < I n c o m p l e t e > which wins in overload resolution

when the argument is a T e s t a b l e < W r a p < I n c o m p l e t e > > ? (The last question is not only

a rhetoric question, see Section 2.3 for a possible answer.)

1.1 is this a real problem?

To determine whether Listing 1 poses a real problem, consider that T e s t a b l e < T > is

equivalent to s t d : : u n i q u e _ p t r < T > wrt. o p e r a t o r ! . I.e. a few corner cases, but still

legitimate uses of u n i q u e _ p t r lead to puzzling errors2.

Furthermore, for s t d : : u n i q u e _ p t r < s t d : : a r r a y < I n c o m p l e t e , N > > , instantiation on

ADL can occur in many more places; for example on range-based for loops as shown in

Listing 2. The reason for the error in Listing 2 isn’t the lookup of b e g i n and e n d (it would

1 c l a s s I n c o m p l e t e ;

2 u s i n g D a t a = s t d : : a r r a y < I n c o m p l e t e , 3 > ;

3 u s i n g P t r = s t d : : u n i q u e _ p t r < D a t a > ;

4

5 v o i d a s s e r t _ n o n n u l l (s t d : : s p a n < P t r > x)

6 {

7 f o r (c o n s t P t r & p t r : x) / / E R R O R : ' s t d : : a r r a y < _ T p , _ N m > : : _ M _ e l e m s ' h a s

8 a s s e r t (p t r) ; / / i n c o m p l e t e t y p e

9 }

Listing 2: Iteration over s t d : : s p a n < s t d : : u n i q u e _ p t r < s t d : : a r r a y < I n c o m p l e t e ,

N > > > is ill-formed

be if x had no b e g i n or e n d members) but rather that operators applied to the iterator

lead to ADLwhich instantiates s t d : : a r r a y < I n c o m p l e t e , 3 > . Thus, to write an iterator

that doesn’t break on legitimate use of incomplete types a library developer has to use

the ADL-proofing pattern from Listing 3 as explained by O’Dwyer [P2538R0]. We might

2 OTOH, u n i q u e _ p t r is not boolean-testable, so maybe users should simply learn to cast u n i q u e _ p t r ,

o p t i o n a l , etc to b o o l ?

2

P2600R0 1 Introduction

1 t e m p l a t e < t y p e n a m e T >

2 s t r u c t I t e r a t o r I m p l {

3 c l a s s t y p e {

4 / / . . .

5 } ;

6 } ;

7

8 t e m p l a t e < t y p e n a m e T >

9 u s i n g I t e r a t o r = t y p e n a m e I t e r a t o r I m p l < T > : : t y p e ;

Listing 3: ADL-proofed iterator type

expect standard library developers to learn and apply this pattern. But we should not

expect from any other C++ library developer to work around ADL surprises.

1.2 instantiation via adl interferes with the evolution of C++

With the current behavior of ADL, adding non-member o p e r a t o r [] or overloadable

o p e r a t o r ? : [P0917R3] to the language3 is a breaking change. Existing code that cur-

rently compiles just fine would suddenly instantiate templates through ADL and thus

potentially lead to ill-formed instantiation.

Instantiation via ADL is a concern that needs to be considered for language and library

evolutionwheneverADL is required for a new feature. This proposal makes language and

library evolution simpler (or even turn breaking changes into non-breaking changes).

1.3 less need for adl proofing

To complete the picture, note that the issue is not specific to operators (e.g. Listing 4).

However, for operators there’s no simple “always fully qualify your calls” rule to avoid

ADL.

1 t e m p l a t e < c l a s s T > s t r u c t H o l d e r { T t ; } ;

2 s t r u c t I n c o m p l e t e ;

3 H o l d e r < I n c o m p l e t e > * p ;

4 i n t f (H o l d e r < I n c o m p l e t e > *) ;

5 i n t x = f (p) ; / / e r r o r : H o l d e r < I n c o m p l e t e > i s a n a s s o c i a t e d e n t i t y

6 i n t y = : : f (p) ; / / o k : n o A D L

Listing 4:Minimal example triggering ill-formed instantiation, as presented in [P2538R0]

O’Dwyer [P2538R0] goes on to show how the original definition of s t d : : p r o j e c t e d

leads to ill-formed instantiation on ADL. His proposed solution requires ADL-proofing of

s t d : : p r o j e c t e d , which requires a change in how the class template is defined.

3 Motivation is / will be given in their own papers.

3

P2600R0 2 Proposed solution

This proposal makes ADL-proofing for avoiding ill-formed instantiation unnecessary4.

The language would lose one sharp edge at a minor cost (more complex wording & new,

unlikely, and easy to work around corner case for users).

1.4 history

To estimate howmuch code might be affected by limiting template instantiation on ADL

to the argument type itself, it is helpful to know that template instantiation via ADL had

not been implemented in compilers for a long time. Template instantiation via ADLworks

since GCC 4.5.0 (April 2010), Clang 3.1.0 (May 2012), and since an ICC release between

ICC 14 and 165.

2 PROPOSED SOLUTION

Let us consider a simple solution to make ADL avoid the above situations:

Don’t instantiate templates via ADL except for the argument type itself.

Rationale: If a given associated entity has not been instantiated at this point in the

translation,

1. the user might have avoided instantiation intentionally since instantiation would

be ill-formed; and

2. the type was not important enough up to this point that instantiation was neces-

sary — the chances for it to make a semantic difference are small —.

If I interpret the current wording correctly, the reason compilers instantiate templates

via ADL is [temp.inst] p2:
[temp.inst]

2 Unless a class template specialization is a declared specialization, the class template specialization is implicitly
instantiated when the specialization is referenced in a context that requires a completely-defined object type or
when the completeness of the class type affects the semantics of the program. […]

In basically all cases, the completeness of the class type does not affect the semantics

of the program, though. But the compiler cannot know that instantiation is unnecessary

until after it instantiated the template. The subsequent note in [temp.inst] clarifies that

the knowledge about whether a name exists or not is considered affecting semantics.

Therefore implementations have no choice of avoiding instantiation, even if they kept

track of ADL-relevant names (i.e. hidden friends).

4 ADL-proofing is still a useful tool for avoiding ADL hijacking.

5 I have only been able to test with the compilers available on Compiler Explorer

4

P2600R0 2 Proposed solution

2.1 necessary instantiation

The one case where instantiation via ADL is still required is shown in Listing 5. The

situation in Listing 5 is unlikely (but certainly not impossible6), since almost every other

use of the lvalue x would lead to instantiation.

1 t e m p l a t e < t y p e n a m e T >

2 s t r u c t A {

3 f r i e n d v o i d f (c o n s t A &) ;

4 } ;

5

6 v o i d g (c o n s t A < i n t > & x) {

7 f (x) ;

8 }

Listing 5: Requires instantiation or reasonable code could break.

Therefore, given an argument of reference to T , ADL should instantiate T and its bases

but none of its template arguments.

2.2 namespaces of base classes

Consider Listing 6 which defines a base class in a different namespace (A) than the de-

rived class template. In order for ADL to consider A as associated namespace when an

1 n a m e s p a c e A {

2 c l a s s B { } ;

3 v o i d f (B *) ;

4 }

5 v o i d f (v o i d *) ;

6

7 t e m p l a t e < c l a s s T > c l a s s C : p u b l i c A : : B { } ;

8

9 v o i d g (C < i n t > * p) {

1 0 f (p) ; / / c a l l s : : f b e c a u s e C < i n t > h a s n o t b e e n i n s t a n t i a t e d

1 1 A : : B * o t h e r _ p t r = p ; / / i n s t a n t i a t e s C < i n t > t o f i n d i t s b a s e t y p e s

1 2 f (p) ; / / c a l l s A : : f b e c a u s e C < i n t > h a s b e e n i n s t a n t i a t e d b e f o r e A D L

1 3 }

1 4

1 5 / / a n a l o g u e s i t u a t i o n w i t h i n c o m p l e t e t y p e s :

1 6 c l a s s I ;

1 7 v o i d g 0 (I * p) { f (p) ; } / / c a l l s : : f

1 8 c l a s s I : p u b l i c A : : B { } ;

1 9 v o i d g 1 (I * p) { f (p) ; } / / c a l l s A : : f

Listing 6: ADL in namespace of base class

6 E.g. h t t p s : / / g c c . g n u . o r g / P R 3 4 8 7 0 , which lead to GCC instantiating templates via ADL

5

https://gcc.gnu.org/PR34870

P2600R0 2 Proposed solution

argument of type C < i n t > * is used, the base types of the class template need to be know.

However, if ADLwere not to instantiate C < i n t > anymore, the behaviorwould depend on

the preceding code: whether C < i n t > had already been instantiated or not. The analogue

issue for an incomplete type I exhibits the same behavior change in ADL after defining

I . However, for the incomplete type it is more obvious why the base types’ namespaces

are not considered (“You didn’t say that A : : B is a base!”).

Note that overload resolution still has to instantiate class templates to find bases, as

shown in Listing 7. It is an open question whether template instantiation via ADL on

1 c l a s s B 0 { } ;

2 n a m e s p a c e A {

3 c l a s s B : p u b l i c B 0 { } ;

4 v o i d f (B *) ;

5 }

6 v o i d f (v o i d *) ;

7 v o i d f (B 0 *) ;

8

9 t e m p l a t e < c l a s s T > c l a s s C : p u b l i c A : : B { } ;

1 0

1 1 v o i d g (C < i n t > * p) {

1 2 f (p) ; / / c a l l s : : f (B 0 *)

1 3 / / c a n d i d a t e s : : : f (v o i d *) a n d : : f (B 0 *) , o v e r l o a d r e s o l u t i o n i n s t a n t i a t e s

1 4 / / C < i n t > a n d p i c k s : : f (B 0 *) , i . e . o v e r l o a d r e s o l u t i o n w o r k s u n c h a n g e d

1 5 f (p) ; / / c a l l s A : : f (A : : B *)

1 6 / / b e c a u s e A D L n o w f i n d s t h e a d d i t i o n a l c a n d i d a t e A : : f (A : : B *)

1 7 }

Listing 7: Class template instantiation on overload resolution if ADL does not instantiate

C < i n t >

arguments of pointer type is enough of a problem to warrant the surprising behavior of

the (contrived) example in Listing 7 (vs. the surprising behavior of Listing 4). As a more

conservative change to ADL, given an argument of pointer to T , let ADL instantiate T

and its bases but none of its template arguments.

Beyond references and pointers — as far as I have seen — there is little use in ADL

instantiating templates. I propose to modify [basic.lookup.argdep] and/or [temp.inst] to

treat not-yet-instantiated-template types like incomplete types except if the not-yet-

instantiated-template type is the type of the function argument7.

2.3 std::reference_wrapper example

s t d : : r e f e r e n c e _ w r a p p e r < X > , where X implements hidden friends, is the canonical

example where this proposal has the potential for breaking existing code. An idea for

7 stops handwaving; this is nowhere near wording …

6

P2600R0 2 Proposed solution

avoiding the breaking change is presented in Section 4.1. Note that, since C++20, s t d

: : r e f e r e n c e _ w r a p p e r < T > does not require T to be complete and we can therefore

construct valid examples with the type s t d : : r e f e r e n c e _ w r a p p e r < W r a p < I n c o m p l e t e

> > . The relevant class of examples follows the pattern shown in Listing 8. This pattern

1 s t r u c t X {

2 f r i e n d c o n s t e x p r i n t f (c o n s t X &) { r e t u r n 1 ; }

3 f r i e n d c o n s t e x p r b o o l o p e r a t o r ! (c o n s t X &) { r e t u r n f a l s e ; }

4 } ;

5

6 i n t g (s t d : : r e f e r e n c e _ w r a p p e r < X > r e f) {

7 r e t u r n ! r e f ? 0 : f (r e f) ; / / r e t u r n s 1

8 }

Listing 8: Hidden friends are transparent for s t d : : r e f e r e n c e _ w r a p p e r

relies on:

1. s t d : : r e f e r e n c e _ w r a p p e r < X > is convertible to X , and

2. ADL looks into X for hidden friendswhen s t d : : r e f e r e n c e _ w r a p p e r < X > is a func-

tion argument (operand).

Note that X doesn’t need to know about (or even spell out) s t d : : r e f e r e n c e _ w r a p p e r

and can therefore work with any type that has a conversion operator to X and where X

is an associated entity. Notably, and inconsistently, function arguments of type X R e f , as

1 s t r u c t X R e f {

2 X * p t r ;

3 c o n s t e x p r o p e r a t o r X & () c o n s t n o e x c e p t { r e t u r n * p t r ; }

4 } ;

Listing 9: Hidden friends are not transparent for a non-template reference wrapper

defined in Listing 9, will not find hidden friends of X on name lookup. See Section 4.1

for an idea that would resolve the inconsistency.

With the following ingredients we can build an example (see Listing 10) that would

break with the proposed language change:

• A class template specialization X < Y > that has not been instantiated yet.

• A hidden friend in X < Y > .

• A function call (or operator) which wants to find said hidden friend in name lookup.

• Wrap everything as s t d : : r e f e r e n c e _ w r a p p e r < X < Y > > .

7

P2600R0 2 Proposed solution

1 t e m p l a t e < t y p e n a m e T >

2 s t r u c t X

3 {

4 T d a t a ;

5 f r i e n d a u t o o p e r a t o r < = > (c o n s t X & , c o n s t X &) = d e f a u l t ;

6 } ;

7

8 / / s t a t i c _ a s s e r t (s t d : : t o t a l l y _ o r d e r e d < X < i n t > >) ;

9 / / t h e f o l l o w i n g f a i l s u n l e s s X < i n t > w a s i n s t a n t i a t e d a l r e a d y (e . g . w i t h t h e

1 0 / / l i n e a b o v e)

1 1 s t a t i c _ a s s e r t (s t d : : t o t a l l y _ o r d e r e d < s t d : : r e f e r e n c e _ w r a p p e r < X < i n t > > >) ;

Listing 10: s t d : : r e f e r e n c e _ w r a p p e r example which would fail unless line 8 is uncom-

mented

As far as I can tell there is no class template in the standard library that fits this descrip-

tion. However, the s t d : : e x p e r i m e n t a l : : s i m d < T , A b i > class template of the Paral-

lelism TS 2 specifies its operators as hidden friends. Consequently, the example in List-

ing 11 would not instantiate s i m d < f l o a t > anymore via ADL and thus fail to compile.

1 # i n c l u d e < e x p e r i m e n t a l / s i m d >

2 # i n c l u d e < f u n c t i o n a l >

3

4 a u t o f (s t d : : r e f e r e n c e _ w r a p p e r < s t d : : e x p e r i m e n t a l : : s i m d < f l o a t > > x) {

5 r e t u r n x = = x ; / / w o u l d n o t i n s t a n t i a t e s i m d < f l o a t > a n y m o r e

6 }

Listing 11: Regression when combining s t d : : r e f e r e n c e _ w r a p p e r with

s t d : : e x p e r i m e n t a l : : s i m d .

An example similar to Listing 11 is still highly unlikely to occur outside of code snippets

specifically written for demonstrating the issue. In general, an expression instantiating

s i m d < f l o a t > (i.e. the wrapped type) would precede the use of the reference wrapper

with high probability. More importantly, the explicit use of s t d : : r e f e r e n c e _ w r a p p e r

or similar reference types is not common. At least r e f e r e n c e _ w r a p p e r is unwrapped

transparently for s t d : : b i n d and typically unwraps automatically when a function with

a reference to the wrapped type is called.

While the chance of breakage after restricting instantiation via ADL may be close to

zero, we have no way of making a more substantial statement. It is impossible to prove

that no breakage will occur, because the absence of certain code patterns cannot be

proven.

8

P2600R0 3 Implementation Experience

3 IMPLEMENTATION EXPERIENCE

I implemented the presented idea for GCC. In this implementation the type of a pointer

argument is not instantiated (cf. Section 2.2). The necessary change to the ADL code

was straightforward: In principle the change involved only making template instantiation

conditional on whether the type is the argument type itself or an associated entity. A

modified GCC 12.1 can be obtained at h t t p s : / / g i t h u b . c o m / m a t t k r e t z / g c c / t r e e /

7 2 6 6 f 1 c 5 f 7 5 f c 7 a 9 7 0 d e .

One test of GCC’s testsuite (shown in Listing 12) broke with the change. The test case

1 t e m p l a t e < t y p e n a m e > s t r u c t g { s t a t i c c o n s t i n t h = 0 ; } ;

2 t e m p l a t e < t y p e n a m e i > v o i d d e c l v a l () { s t a t i c _ a s s e r t (! g < i > : : h , " ") ; }

3 t e m p l a t e < t y p e n a m e > s t r u c t a {

4 t e m p l a t e < t y p e n a m e d , t y p e n a m e c >

5 f r i e n d a u t o f (d & & , c & &)

6 n o e x c e p t (d e c l v a l < c >) - > d e c l t y p e (d e c l v a l < c >) ; / / { d g - e r r o r " d i f f e r e n t e x c e p t i o n " }

7 } ;

8 t e m p l a t e < t y p e n a m e d , t y p e n a m e c > a u t o f (d & & , c & &) - > d e c l t y p e (d e c l v a l < c >) ;

9 s t r u c t e { } ;

1 0 s t a t i c _ a s s e r t ((e { } , d e c l v a l < a < i n t > >) , " ") ; / / { d g - e r r o r " n o c o n t e x t t o r e s o l v e t y p e " }

Listing 12: GCC test that broke after implementation of less eager ADL

(d e c l v a l < a < i n t > > without parenthesis is no error — with parenthesis

a < i n t > isn’t an associated entity)

started failing because the expression (e , d e c l v a l < a < i n t > >) requires name lookup of

o p e r a t o r , and the type a < i n t > is an associated entity and therefore was instantiated

(i.e. GCC was looking for a hidden friend comma operator in a < i n t >) which lead to the

actual failure this test was looking for. To me Listing 12 is no motivation for holding back

on this proposal, rather the opposite. For what it’s worth, Clang doesn’t even instantiate

a < i n t > for this test case.

I found no further code breakage.

4 ALTERNATIVE SOLUTIONS / ADDITIONAL ADL IDEAS

I believe the above suggestion would be a strict improvement of the C++ language and

better than the alternatives listed in the following. However, in order to reduce the po-

tential for breaking existing code and to resolve an inconsistency of ADL with regard to

reference wrappers, I believe the idea in Section 4.1 should be part of the final solution.

9

https://github.com/mattkretz/gcc/tree/7266f1c5f75fc7a970de
https://github.com/mattkretz/gcc/tree/7266f1c5f75fc7a970de

P2600R0 4 Alternative solutions / additional ADL ideas

4.1 add conversion operator return types to associated entities

Observe the inconsistency in Listing 13. Each of the three types r e f < f o o > , i n t _ r e f , and

1 s t r u c t f o o {

2 f r i e n d b o o l o p e r a t o r ! (c o n s t f o o &) n o e x c e p t ;

3 } ;

4

5 t e m p l a t e < c l a s s T >

6 s t r u c t r e f {

7 T * d a t a ;

8 c o n s t e x p r o p e r a t o r T & () c o n s t n o e x c e p t { r e t u r n * d a t a ; }

9 } ;

1 0

1 1 s t r u c t i n t _ r e f {

1 2 i n t * d a t a ;

1 3 c o n s t e x p r o p e r a t o r i n t & () c o n s t n o e x c e p t { r e t u r n * d a t a ; }

1 4 } ;

1 5

1 6 s t r u c t f o o _ r e f {

1 7 f o o * d a t a ;

1 8 c o n s t e x p r o p e r a t o r f o o & () c o n s t n o e x c e p t { r e t u r n * d a t a ; }

1 9 } ;

2 0

2 1 v o i d f (c o n s t r e f < f o o > & r 0 , c o n s t i n t _ r e f & r 1 , c o n s t f o o _ r e f & r 2) {

2 2 ! r 0 ; / / f i n d s f o o : : o p e r a t o r ! b e c a u s e f o o i s a n a s s o c i a t e d e n t i t y

2 3 ! r 1 ; / / O K

2 4 ! r 2 ; / / E R R O R

2 5 }

Listing 13: Different name lookup for three reference types that should be equivalent

(h t t p s : / / g o d b o l t . o r g / z / 8 3 f q T 7 6 v n)

f o o _ r e f (partially) model a reference (conversion operator defined as for s t d : : r e f e r -

e n c e _ w r a p p e r). But they behave considerably different because name lookup is differ-

ent.

To make Listing 13 consistent, we could add another rule to ADL and add the return

types of all conversion operators as associated entities. Since these types are much more

likely to make a semantic difference on name lookup, template instantiation should be

performed. However, only the conversion operators of the function argument type itself

must be considered; conversion operators of return types of conversion operators are

irrelevant, as are conversion operators of template arguments. As a consequence the

examples in Listing 10 and Listing 11 would work again.

Obviously, more ADL has the potential to add more problems. But if this is introduced

together with not instantiating templates anymore, the net effect should be positive.

Counter-examples are welcome to improve the discussion of the idea.

10

https://godbolt.org/z/83fqT76vn

P2600R0 4 Alternative solutions / additional ADL ideas

I have implemented this idea in GCC and found no regressions in the GCC and lib-

stdc++ test suites. More testers are welcome. A modified GCC 12.1 can be obtained at

h t t p s : / / g i t h u b . c o m / m a t t k r e t z / g c c / t r e e / 7 8 9 5 9 3 4 f 8 5 8 f b b 2 e 6 0 3 9 .

4.2 opt-out/in adl

If the committee cannot agree on changing thewayADL and template instantiationwork,

we are basically only left with new opt-in/out syntax, if we want to solve this problem.

I am not ready to explore this idea. I mention it here to give a complete picture of the

solution space.

As a straw-man example consider Listing 14. Note that such an opt-in/out solution

1 / / o p t s o u t o f c o n s i d e r i n g i m p l i c i t a s s o c i a t e d e n t i t i e s ; i n s t e a d ` b a r ` a n d i t s

2 / / a s s o c i a t e d e n t i t i e s a r e t h e a s s o c i a t e d e n t i t i e s o f f o o < T > :

3 t e m p l a t e < t y p e n a m e T >

4 s t r u c t f o o : a d l b a r { / * . . . * / } ;

5

6 / / n o a s s o c i a t e d e n t i t i e s :

7 t e m p l a t e < t y p e n a m e T >

8 s t r u c t m e o w : a d l v o i d { / * . . . * / } ;

9

1 0 / / f i x t h e ` u n i q u e _ p t r ` p r o b l e m f r o m L i s t i n g 1

1 1 n a m e s p a c e s t d {

1 2 t e m p l a t e < c l a s s T , c l a s s D = d e f a u l t _ d e l e t e < T > >

1 3 c l a s s u n i q u e _ p t r : a d l v o i d {

1 4 / / . . .

1 5 } ;

1 6 }

Listing 14: Straw-man opt-in/out syntax for ADL

would not open a path for the evolution of non-member o p e r a t o r [] and overloadable

o p e r a t o r ? : .

4.3 tentative instantiation

It seems like an obvious solution to require IFINAE (instantiation failure is not an error)

on ADL, i.e. to require tentative template instantiation. However, this would place a

huge burden on implementations: The instantiation depth might be very deep, before the

condition is found. IFINAE requires a rollback of all unfinished instantiations that lead to

the issue. It seems like a huge but solvable task for compilers, butwithout implementation

experience it is not a realistic path forward.

11

https://github.com/mattkretz/gcc/tree/7895934f858fbb2e6039

P2600R0 5 Wording

4.4 inhibit instantiation if a template parameter is incomplete

A minimal solution for solving the problem in Listing 1 inhibits instantiation on ADL if

a template parameter is incomplete. This would cover some of the cases where ADL

appears too eager. However, only minor variations of such examples would instantiate

the class templates again, leading to the same errors we were trying to fix. The solution

would thus appear to be rather fragile and potentially more confusing than helpful.

4.5 instantiation if and only if there are hidden friends with a matching name

The current wording already makes instantiation conditional on whether “the complete-

ness of the class type affects the semantics of the program”. Can we take this a step

further, and require instantiation only if the compiler determines name lookup will find

something it wouldn’t find otherwise? Such a conditionwould come close to tentative in-

stantiation but isn’t necessarily the same thing. Name lookup requires less information of

the complete type. Only when determining viability and performing overload resolution

is the completely instantiated type unavoidable.

An implementation would have to

1. keep a list of names of all hidden friends, and

2. be able to determine additional associated namespaces from base classes.

Instantiation is only necessary if a hidden friend was found via name lookup. For the

other case instantiation will likely be required for overload resolution, though.

5 WORDING

TBD.

6 SUGGESTED STRAW POLLS

None at this point.

7 ACKNOWLEDGEMENTS

This paper and my implementation for GCC are a reaction to a discussion on the CWG

list with input from a JonathanWakely, Richard Smith, Peter Dimov, Barry Revzin, Arthur

O’Dwyer, VilleVoutilainen, andDaveedVandevoorde. ArthurO’Dwyer suggested to con-

sider s t d : : r e f e r e n c e _ w r a p p e r examples and strengthen the motivation.

12

P2600R0 A Bibliography

A BIBLIOGRAPHY

[P0917R3] Matthias Kretz. P0917R3:Making operator?: overloadable. ISO/IEC C++ Stan-

dards Committee Paper. 2019. url: h t t p s : / / w g 2 1 . l i n k / p 0 9 1 7 r 3 .

[P2538R0] Arthur O’Dwyer. P2538R0: ADL-proof std::projected. ISO/IEC C++ Standards

Committee Paper. 2022. url: h t t p s : / / w g 2 1 . l i n k / p 2 5 3 8 r 0 .

13

https://wg21.link/p0917r3
https://wg21.link/p2538r0

	1 Introduction
	1.1 Is this a real problem?
	1.2 Instantiation via ADL interferes with the evolution of C++
	1.3 less need for ADL proofing
	1.4 History

	2 Proposed solution
	2.1 Necessary instantiation
	2.2 Namespaces of base classes
	2.3 std::reference_wrapper example

	3 Implementation Experience
	4 Alternative solutions / additional ADL ideas
	4.1 Add conversion operator return types to associated entities
	4.2 Opt-out/in ADL
	4.3 Tentative instantiation
	4.4 Inhibit instantiation if a template parameter is incomplete
	4.5 Instantiation if and only if there are hidden friends with a matching name

	5 Wording
	6 Suggested Straw Polls
	7 Acknowledgements
	A Bibliography

