
Lifting artificial restrictions on universal character names
Document #: P2620R0
Date: 2022-07-09
Programming Language C++
Audience: EWG, SG-22
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

We propose to lift restrictions on universal-character-names in identifiers.

Motivation

There are restrictions on the constitution of universal-character-names that seem artificial, and
we should lift them1!

\N{LATIN CAPITAL LETTER I} = 42; // ERROR: I is in the basic character set
\N{LATIN CAPITAL LETTER I WITH DOT ABOVE} = 42 ;// Ok

This is by no mean a major issue in C++, as we don’t put restrictions on universal-character-
names in string literals (unlike C), but it is somewhat inconsistent with the lexing model.

Instead of restricting universal-character-names values, we can instead mandate that they are
part of valid identifiers outside of strings.

Comparison With C

C does not allow universal-character-names to designate elements of the basic character set:

2 A universal character name shall not designate a codepoint where the
hexadecimal value is: - less than 00A0 other than 0024 ($), 0040 (@), or 0060 (‘
);

This has been a pain point for users who would like to consistently use \u in string literals as
part of code generation processes.

• LLVM issue: Unicode string literals

• Why C99 has such an odd restriction for universal character names?

• Restrictions to Unicode escape sequences in C11

1This is a small cleanup that isn’t worth doing unless we can spend very little time on it, classified as low priority
bucket 72.

1

mailto:corentin.jabot@gmail.com
https://github.com/llvm/llvm-project/issues/36392
https://stackoverflow.com/questions/20158472/why-c99-has-such-an-odd-restriction-for-universal-character-names
https://stackoverflow.com/questions/62759943/restrictions-to-unicode-escape-sequences-in-c11

I hope that both languages regain consistency by:

• Not restricting UCNs in string literals

• Not putting restrictions on UCNs in identifiers beyond what naturally falls out of the
grammar of identifiers.

Wording

�? Separate translation [lex.separate]

4. The source file is decomposed into preprocessing tokens and sequences of whitespace
characters (including comments). A source file shall not end in a partial preprocessing token or
in a partial comment. Each comment is replaced by one space character. New-line characters
are retained. Whether each nonempty sequence of whitespace characters other than new-
line is retained or replaced by one space character is unspecified. As characters from the
source file are consumed to form the next preprocessing token (i.e., not being consumed as
part of a comment or other forms of whitespace), except when matching a c-char-sequence,
s-char-sequence, r-char-sequence, h-char-sequence, or q-char-sequence, universal-character-name
s are recognized and replaced by the designated element of the translation character set.
If a universal-character-name was replaced during the formation of a preprocessing token,
that token shall match the syntax of an identifier. The process of dividing a source file’s
characters into preprocessing tokens is context-dependent. [Example: See the handling of <
within a #include preprocessing directive. —end example]

�? Character sets [lex.charset]

A universal-character-name designates the character in the translation character set whose UCS
scalar value is the hexadecimal number represented by the sequence of hexadecimal-digit s in
the universal-character-name. The program is ill-formed if that number is not a UCS scalar value.
If a universal-character-name outside the c-char-sequence, s-char-sequence, or r-char-sequence
of a character-literal or string-literal (in either case, includingwithin auser-defined-literal) corresponds
to a control character or to a character in the basic character set, the program is ill-formed.
[Note: A sequence of characters resembling a universal-character-name in an r-char-sequence
does not form a universal-character-name. —end note]

2

	1 Abstract
	2 Motivation
	3 Comparison With C
	4 Wording
	5 Separate translation
	6 Character sets

