Document Number: P2660R0

Date: 2022-10-14

Revises:

Reply to: Brian Bi
Bloomberg
bbil0@bloomberg.net

Working Draft, Extensions to C++ for
Contracts

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
fomatting.

P2660R0

Contents

1 Scope
2 Normative references
3 Terms and definitions

4 General principles
4.1 Implementation compliance

5 Lexical conventions
5.10 Identifiers

6 Expressions
6.7 Constant eXpressions e

9 Declarations
9.11 Attributes e

11 Classes
11.4 Class members e
11.7 Derived classes e e e e e e

13 Templates
13.8 Name resolution e e e e e

14 Exception handling
14.6 Special functions L L L

15 Preprocessing directives
15.2 Conditional inclusion e e e e e e e e e e e
15.11 Predefined macro names e e e e e e e e e e e e

16 Library introduction
16.3 Method of description
16.4 Library-wide requirements L Lo

17 Language support library
171 General oL
17.3 Implementation properties Lo
17.14 Contract violation handling

Annex A Grammar summary

Annex C Compatibility
C.1 Extensions to C++ for Contracts and N4919

Cross references

Index

Index of grammar productions
Index of library headers

Index of library names

Contents

J

11
11
11

12
12

13
13

14
14
14

15
15

15

16
16
16
16

18

19
19

20

21

22

23

24

ii

P2660R0

Index of implementation-defined behavior 25

Contents iii

P2660R0

1 Scope lintro.scope]

1 This document describes extensions to the C++ Programming Language (Clause 2) that introduce contracts,
which are programmatic descriptions of conditions that should hold at particular points of program execution.
These extensions include new syntactic forms, as well as additions to the existing library facilities.

2 N4919, ISO/TEC DIS 14882, provides important context and specification for this document. This document
is written as a set of changes against that specification. Instructions to modify or add paragraphs are written
as explicit instructions. Modifications made directly to existing text from N4919 use underlining to represent
added text and strikethretgh to represent deleted text.

Scope 1

P2660R0

2 Normative references lintro.refs]

1 The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

(1) — N4919, ISO/IEC DIS 14882

Normative references

P2660R0

3 Terms and definitions lintro.defs]

1 No terms and definitions are listed in this document. ISO and IEC maintain terminology databases for use
in standardization at the following addresses:

(1.1) — ISO Online browsing platform: available at https://www.iso.org/obp
(1.2) — IEC Electropedia: available at http://www.electropedia.org

Terms and definitions 3

https://www.iso.org/obp
http://www.electropedia.org

P2660R0

4 General principles lintro]

4.1 Implementation compliance

4.1.1 General [intro.compliance.general]
Conformance requirements for this document are those defined in N4919, 4.1, except that references to “this

document” therein shall be taken as referring to the document that is the result of applying the editing
instructions.

[intro.compliance]

[Note 1: Conformance is defined in terms of the behavior of programs. — end note]

§4.1.1

P2660R0

5 Lexical conventions [lex]

5.10 Identifiers [lex.name]

L In N4919 [lex.name], add the identifiers assume, enforce, ignore, and observe to the list of identifiers with
special meaning in Table 5.

§ 5.10 5

P2660R0

6 Expressions lexpr]

6.7 Constant expressions [expr.const]

L In N4919 [expr.const], apply these changes to paragraph 5:

§6.7

a non-constant library call (3.36);-er
a goto statement (8.7.6):; or

a violation of a checked contract (9.4.2).

It is unspecified whether E is a core constant expression if E satisfies the constraints of a core
constant expression, but evaluation of E would evaluate

an operation that has undefined behavior as specified in Clause 17 through 33,
an invocation of the va_start macro (17.15.2),-ex

a statement with an assumption (9.12.3) whose converted conditional-expression, if evalu-
ated where the assumption appears, would not disqualify £ from being a core constant
expression and would not evaluate to true-

[Note 4: ... —end note]

, Or

a contract with the contract behavior assume (9.4.2.3) that would evaluate to false.

P2660R0

9 Declarations [dcl.dcl]

9.11 Attributes [dcl.attr]

9.11.1 Attribute syntax and semantics [dcl.attr.grammar]

In N4919 [dcl.attr.grammar], apply these changes to paragraph 1:

attribute-specifier:
[[attribute-using-prefixop: attribute-list 1 1
contract-attribute-specifier
alignment-specifier

In N4919 [dcl.attr], after subsection [dcl.attr.depend], add a new subsection:

9.4.2 Contract attributes [dcl.attr.contract]
9.4.2.1 Syntax [dcl.attr.contract.syn]
Contract attributes are used to specify preconditions, postconditions, and assertions for functions.

contract-attribute-specifier:

[[pre contract-behavior,y: : conditional-expression] 1]

[[post contract-behavior,,; identifiero,; : conditional-expression]]

[[assert contract-behavior,,; : conditional-expression]]
contract-behavior:

assume

ignore

observe

enforce

An ambiguity between a contract-behavior and an identifier is resolved in favor of contract-behavior.

A contract-attribute-specifier using pre is a precondition. It expresses a function’s expectation on its arguments
and/or the state of other objects using a predicate that is intended to hold upon entry into the function. The
attribute may be applied to the function type of a function declaration.

A contract-attribute-specifier using post is a postcondition. It expresses a condition that a function should
ensure for the return value and/or the state of objects using a predicate that is intended to hold upon
exit from the function. The attribute may be applied to the function type of a function declaration. A
postcondition may introduce an identifier to represent the glvalue result or the prvalue result object of
the function. When the declared return type of a non-templated function contains a placeholder type, the
optional identifier shall only be present in a definition.

[Example 1:

int f(char * c)
[[post res: res > 0 && c != nullptr]l];

int g(double * p)
[[post res: res != 0 & p !'= nullptr && *p <= 0.0]];

auto h(int x)
[[post res: truell; // error: cannot name the return value

— end ezample]

A contract-attribute-specifier using assert is an assertion. It expresses a condition that is intended to be
satisfied where it appears in a function body. The attribute may be applied to a null statement (8.3). An
assertion is checked by evaluating its predicate as part of the evaluation of the null statement it applies to.

Preconditions, postconditions, and assertions are collectively called contracts. The conditional-expression in
a contract is contextually converted to bool (7.3.1); the converted expression is called the predicate of the
contract.

[Note 1: The predicate of a contract is potentially evaluated (6.3). end note|

§9.4.2.1 7

P2660R0

6 The only side effects of a predicate of a checked contract that are allowed in a contract-attribute-specifier are
modifications of non-volatile objects whose lifetime began and ended within the evaluation of the predicate.
An evaluation of a predicate that exits via an exception invokes the function std: :terminate (14.6.2). The
behavior of any other side effect is undefined.

[Ezample 2:

void push(int x, queue & q)
[[pre enforce: !'q.full()]]
[[post enforce: !q.empty()]]

{
/¥ .. %/
[[assert: q.is_valid()]1]1;
VA Y

¥

int min = -42;

constexpr int max = 42;

constexpr int g(int x)

[[pre enforce: min <= x]] // error
[[pre enforce: x < max]] // OK
{
VA V4
[[assert enforce: 2*x < max]];
[[assert enforce: ++min > 0]]; // undefined behavior
VAR Y
}

— end ezample]

9.4.2.2 Contract conditions [dcl.attr.contract.cond]

1A contract condition is a precondition or a postcondition. The first declaration of a function shall specify
all contract conditions (if any) of the function. Subsequent declarations shall either specify no contract
conditions or the same list of contract conditions; no diagnostic is required if corresponding conditions
will always evaluate to the same value. The list of contract conditions of a function shall be the same if
the declarations of that function appear in different translation units; no diagnostic required. If a friend
declaration is the first declaration of the function in a translation unit and has a contract condition, the
declaration shall be a definition and shall be the only declaration of the function in the translation unit.

2 Two lists of contract conditions are the same if they consist of the same contract conditions in the same
order. Two contract conditions are the same if their predicates are the same, and their contract-behaviors are
the same or are both absent. Two predicates contained in contract-attribute-specifiers are the same if they
would satisfy the one-definition rule (6.3) were they to appear in function definitions, except for renaming of
parameters, return value identifiers (if any), and template parameters.

3 [Note 1: A function pointer cannot include contract conditions.
[Ezample 1:

typedef int (xfpt) () [[post r: r !'= 0]]; // error: contract condition not on a function declaration

int g(int x)
[[pre: x >= 0]]
[[post r: r > x]]

{
return x+1;
}
int (xpf) (int) = g; // OK
int x = pf(5); // contract conditions of g are checked

— end ezample]
— end note]

4 The predicate of a contract condition has the same semantic restrictions as if it appeared as the first
expression-statement in the body of the function it applies to, except that the return type of the function is

§9.4.2.2 8

P2660R0

known in a contract condition appertaining to its definition, even if the return type contains a placeholder
type.

A precondition is checked by evaluating its predicate immediately before starting evaluation of the function
body.

[Note 2: The function body includes the function-try-block (Clause 14) and the ctor-initializer (11.9.3). — end note|
A postcondition is checked by evaluating its predicate immediately before returning control to the caller of
the function.

[Note 3: The lifetime of local variables and temporaries has ended. Exiting via an exception or via longjmp (17.15.3)

is not considered returning control to the caller of the function. — end note]

If a function has multiple preconditions, their evaluation (if any) will be performed in the order they appear
lexically. If a function has multiple postconditions, their evaluation (if any) will be performed in the order
they appear lexically.

[Ezample 2:

void f(int * p)
[[pre: p !'= nullptr]] /) #1
[[post: *p == 1]1] /) #3
[[pre: *p == 0]] /) #2

{
*p = 1;

}

— end example]

If a postcondition odr-uses (6.3) a non-reference parameter in its predicate and the function body makes
direct or indirect modifications of the value of that parameter, the behavior is undefined.

[Ezample 3:

int f(int x)
[[post enforce r: r == x]]
{
return ++x; // undefined behavior

}

void g(int * p)
[[post enforce: p != nullptr]]

{
*p = 42; // OK, p is not modified
}
int h(int x)
[[post enforce r: r == x]]
{
potentially_modify(x); // undefined behavior if x is modified
return Xx;
}

— end example]

9.4.2.3 Checking contracts [dcl.attr.contract.check]

The contract behavior of a contract-attribute-specifier is one of ignore, assume, enforce, and observe as
specified by the contract-behavior. If the contract-behavior is absent, the implicit contract behavior of the
translation unit is used. The translation of a program consisting of translation units where the implicit
contract behavior is not the same in all translation units is conditionally-supported with implementation-
defined semantics. There should be no programmatic way of setting, modifying, or querying the implicit
contract behavior of a translation unit.

[Note 1: Multiple contract conditions may be applied to a function type with the same or different contract-behaviors.
[Ezample 1:

int z;

bool is_prime(int k) ;

§9.4.23 9

P2660R0

void f(int x)
[[pre: x > 0]]
[[pre enforce: is_prime(x)]]
[[post assume: z > 10]]
{
VA Y
}

— end ezample]

— end note]

3 The predicate of a contract with contract-behavior ignore or assume is an unevaluated operand (7.2). The
predicate of a contract without contract-behavior where the implicit contract behavior is ignore or assume is
not evaluated.

[Note 2: The predicate is potentially evaluated (6.3). — end note]

If the predicate of a contract with the contract behavior assume would evaluate to false, the behavior is
undefined.

4 The violation handler of a program is a function of type “noexcept,,; function of (lvalue reference to
const std::experimental::contract_violation) returning void”. The violation handler is invoked when
the predicate of a checked contract evaluates to false (called a contract violation). There should be no
programmatic way of setting or modifying the violation handler. It is implementation-defined how the
violation handler is established for a program and how the std::experimental::contract_violation
(17.14.2) argument value is set, except as specified below. Implementations are encouraged to provide
a default violation handler that outputs the contents of the std::experimental: :contract_violation
object and then returns normally. If a precondition is violated, the source location of the violation is
implementation-defined.

[Note 8: Implementations are encouraged but not required to report the caller site. — end note]

If a postcondition is violated, the source location of the violation is the source location of the function
definition. If an assertion is violated, the source location of the violation is the source location of the statement
to which the assertion is applied.

5 If a violation handler exits by throwing an exception and a contract is violated on a call to a function with a
non-throwing exception specification, then the behavior is as if the exception escaped the function body.

[Note 4: The function std::terminate is invoked (14.6.2). — end note]
[Ezample 2:

void f(int x) noexcept [[pre: x > 0]];

void g() {
£(0); // std: :terminate () if violation handler throws
VAT V)

}

— end example]

6 A checked contract is a contract with the contract behavior observe or enforce. If the contract behavior
of a violated contract is enforce and execution of the violation handler does not exit via an exception,
execution is terminated by invoking the function std: :terminate (14.6.2).

[Note 5: A contract behavior of enforce is for detecting and ending a program as soon as a bug has been found. A
contract behavior of observe provides the opportunity to instrument a contract into a pre-existing code base and fix
errors before enforcing the check. — end note]

[Ezample 3:

void f(int x) [[pre observe: x > 0]];
void g(int x) [[pre enforce: x > 0]];

void h() {
£(0); // Violation handler invoked.
g(0); // Violation handler invoked then std::terminate() after handler.
VAPV

}

— end ezample]

§9.4.2.3 10

P2660R0

11 Classes [class]

11.4 Class members [class.mem]

11.4.1 General [class.mem.general]

L In N4919 [class.mem.general], apply these changes to paragraph 7:

A complete-class context of a class is a
— function body (9.5.1),
— default argument (9.3.4.7),
— default template argument (13.2),
— noexcept-specifier (14.5),-er
— default member initializer, or

— contract condition (9.4.2)

within the member-specification of the class.

[Note 4: ... —end note]
11.7 Derived classes [class.derived]
11.7.3 Virtual functions [class.virtual]

1 In N4919, add a paragraph at the end of [class.virtual]:

If an overriding function specifies contract conditions (9.4.2), it shall specify the same list of
contract conditions as its overridden functions; no diagnostic is required if corresponding con-
ditions will always evaluate to the same value. Otherwise, it is considered to have the list of
contract conditions from one of its overridden functions; the names in the contract conditions
are bound, and the semantic constraints are checked, at the point where the contract condi-
tions appear. Given a virtual function f with a contract condition that odr-uses *this (6.3), the
class of which f is a direct member shall be be an unambiguous and accessible base class of
any class in which f is overridden. If a function overrides more than one function, all of the
overridden functions shall have the same list of contract conditions (9.4.2); no diagnostic is
required if corresponding conditions will always evaluate to the same value.

[Example 11:
struct A {
virtual void g() [[pre: x == 0]1;
int x = 42;
};

int x = 42;
struct B {

virtual void g() [[pre: x == 0]1;
}

struct C : A, B {
virtual void g(); // error: preconditions of overridden functions are not the same

};

—end example]

§11.7.3 11

13 Templates

13.8 Name resolution

13.8.3 Dependent names

13.8.3.3

Type-dependent expressions

L In N4919 [temp.dep.expr], apply these changes to paragraph 3:

§13.8.3.3

a conversion-function-id that specifies a dependent type,-or

P2660R0

[temp]

[temp.res]
[temp.dep]
[temp.dep.expr]

the identifier introduced in a postcondition (9.4.2) to represent the result of a templated

function whose declared return type contains a placeholder type, or

dependent

12

P2660R0

14 Exception handling l[except]

14.6 Special functions [except.special]

14.6.2 The std::terminate function [except.terminate]
1 In N4919 [except.terminate], apply these changes to paragraph 1:

— when acalltoawait(), wait_until(), or wait_for () function on a condition variable (33.7.4,
33.7.5) fails to meet a postcondition-, or

— when evaluation of the predicate of a contract (9.4.2) exits via an exception, or

— when the violation handler invoked for a failed contract condition check (9.4.2) on a noexcept
function exits via an exception, or

— when the violation handler has completed after a failed contract check with the enforce
contract behavior.

§ 14.6.2 13

P2660R0

15 Preprocessing directives lcpp]

15.2 Conditional inclusion [cpp.cond]
L In N4919 [cpp.cond], add the attributes assert, post, and pre to Table 22 with the value 202306L.

15.11 Predefined macro names [cpp.predefined]
In N4919 [cpp.predefined], add the macro name ___ cpp_ contracts to Table 23 with the value 202306L.

§ 15.11 14

P2660R0

16 Library introduction [library]

16.3 Method of description [description]
16.3.2 Structure of each clause [structure]
16.3.2.4 Detailed specifications [structure.specifications]

L In N4919 [structure.specifications], apply these changes to paragraph 3, bullet 3:

Preconditions: the conditions that the function assumes to hold whenever it is called; violation
of any preconditions results in undefined behavior.

[Example 3: An implementation might express such conditions via an attribute such as [[pre]]
(9.4.2). However, some conditions might not lend themselves to expression via code. —end example]

16.4 Library-wide requirements [requirements]
16.4.2 Library contents and organization [organization)]
16.4.2.3 Headers [headers]

1 In N4919 [headers|, add the entry <experimental/contract> to Table 25.

16.4.5 Constraints on programs [constraints]
16.4.5.3 Reserved names [reserved.names]
16.4.5.3.3 Macro names [macro.names]

L In N4919 [macro.names|, apply these changes to paragraph 2:

A translation unit shall not #define or #undef names lexically identical to keywords, to the
identifiers listed in Table 5, er-to the attribute-tokens described in 9.11, or to the identifiers
assert, post, or pre, except that the names assert, likely, and unlikely may be defined as
function-like macros (15.6).

§ 16.4.5.3.3 15

P2660R0

17 Language support library [support]

17.1 General [support.general]
In N4919 [support.general], apply these changes to paragraph 2:

The following subclauses describe common type definitions used throughout the library, charac-
teristics of the predefined types, functions supporting start and termination of a C++ program,
support for dynamic memory management, support for dynamic type identification, support for
exception processing, support for initializer lists, support for contract violation handling, and
other runtime support, as summarized in Table 39.

Also add a row to Table 39, after subclause “Coroutines”:

Table 1: Language support library summary [tab:support.summary]

’ Subclause Header ‘

’ 17.14 Contract violation handling <experimental/contract> ‘

and increment the section number of all following rows.

17.3 Implementation properties [support.limits]

17.3.2 Header <version> synopsis [version.syn]

In N4919 [version.syn|, apply these changes to paragraph 2:

#define __cpp_lib_containers_ranges 202202L
/7’ako in <vector>, <list>, <forward_list>, <map>, <set>, <unordered_map>, <unordered_set>,
// <deque>, <queue>, <stack>, <string>

#define __cpp_lib_contracts 202306L // also in <experimental/contract>

#define __cpp_lib_coroutine 201902L // also in <coroutine>

In N4919 [support], after section [support.coroutine], add a new section:

17.14 Contract violation handling [support.contract]

17.14.1 Header <experimental/contract> synopsis [contract.syn]

The header <experimental/contract> defines a type for reporting information about contract violations
generated by the implementation.

namespace std {
class contract_violation;

}

17.14.2 Class contract_violation [support.contract.cviol]

namespace std {
namespace experimental {
class contract_violation {
public:
uint_least32_t line_number() const noexcept;
string_view file_name() const noexcept;
string_view function_name() const noexcept;
string_view comment() const noexcept;

§17.14.2 16

P2660R0

The class contract_violation describes information about a contract violation generated by the implemen-

tation.

uint_least32_t line_number() const noexcept;
Returns: The source code location where the contract violation happened (9.4.2). If the location is
unknown, an implementation may return 0.

string_view file_name() const noexcept;
Returns: The source file name where the contract violation happened (9.4.2). If the file name is
unknown, an implementation may return string_view{}.

string_view function_name() const noexcept;
Returns: The name of the function where the contract violation happened (9.4.2). If the function name
is unknown, an implementation may return string_view{}.

string_view comment() const noexcept;

Returns: Implementation-defined text describing the predicate of the violated contract.

§17.14.2 17

P2660R0

Annex A (informative)
Grammar summary [gram|

attribute-specifier:
[[attribute-using-prefix,p; attribute-list]]
contract-attribute-specifier
alignment-specifier

contract-attribute-specifier:
[[pre contract-behavior,,: : conditional-expression]]
[[post contract-behavior.y: identifier,,: : conditional-expression]]
[[assert contract-behavior,y; : conditional-expression]]

contract-behavior:
assume
ignore
observe
enforce

Grammar summary 18

P2660R0

Annex C (informative)
Compatibility [diff]

C.1 Extensions to C++ for Contracts and N4919 [diff.cpp23]

C.1.1 General [diff.cpp23.general]
Subclause C.1 lists the differences between Extensions to C++ for Contracts and N4919 (ISO/IEC DIS 14882).

C.1.2 Clause 5: lexical conventions [diff.cpp23.lex]

Affected subclause: 5.10

Change: New identifiers with special meaning.

Rationale: New core language functionality that may be used by the C++ standard library.

Effect on original feature: The identifiers assume, enforce, ignore, and observe have new special
meanings in this Technical Specification. Valid C++ 2023 code that #defines or #undefs a macro name
lexically identical to one of these identifiers may be invalid in this extension of C++ (16.4.5.3.3).

C.1.3 Clause 16: library introduction [diff.cpp23.library]

Affected subclause: 16.4.2.3

Change: New header.

Rationale: New functionality.

Effect on original feature: The C++ header <experimental/contract> (17.14) is new. Valid C++ 2023
code that #includes a header with this name may be invalid in this extension of C++.

Affected subclause: 16.4.5.3.3

Change: New reserved names.

Rationale: New core language functionality that may be used by the C++ standard library.

Effect on original feature: The reserved names post and pre are new. Valid C++ 2023 code that #defines
or #undefs a macro name lexically identical to one of these identifiers may be invalid in this extension of
C++.

§C.1.3 19

P2660R0

Cross references

Each clause and subclause label is listed below along with the corresponding clause or subclause number and
page number, in alphabetical order by label.

class (Clause 11) 11 reserved.names (16.4.5.3) 15
class.derived (11.7) 11

class.mem (11.4) 11 structure (16.3.2) 15
class.mem.general (11.4.1) 11 structure.specifications (16.3.2.4) 15
class.virtual (11.7.3) 11 support (Clause 17) 16

constraints (16.4.5) 15 support.contract (17.14) 16
contract.syn (17.14.1) 16 support.contract.cviol (17.14.2) 16
cpp (Clause 15) 14 support.general (17.1) 16

cpp.cond (15.2) 14 support.limits (17.3) 16

cpp.predefined (15.11) 14
temp (Clause 13) 12

dclattr (9.11) 7 temp.dep (13.8.3) 12
dcl.attr.contract (9.4.2) 7 temp.dep.expr (13.8.3.3) 12
dcl.attr.contract.check (9.4.2.3) 9 temp.res (13.8) 12
dcl.attr.contract.cond (9.4.2.2) 8

dcl.attr.contract.syn (9.4.2.1) 7 version.syn (17.3.2) 16

dclattr.grammar (9.11.1) 7
dcl.del (Clause 9) 7
description (16.3) 15

diff (Annex C) 19
diff.cpp23 (C.1) 19
diff.cpp23.general (C.1.1) 19
diff.cpp23.lex (C.1.2) 19
diff.cpp23.library (C.1.3) 19

except (Clause 14) 13
except.special (14.6) 13
except.terminate (14.6.2) 13
expr (Clause 6) 6
expr.const (6.7) 6

gram (Annex A) 18
headers (16.4.2.3) 15

intro (Clause 4) 4
intro.compliance (4.1) 4
intro.compliance.general (4.1.1) 4
intro.defs (Clause 3) 3
intro.refs (Clause 2) 2
intro.scope (Clause 1) 1

lex (Clause 5) 5

lex.name (5.10) 5

library (Clause 16) 15
macro.names (16.4.5.3.3) 15
organization (16.4.2) 15
requirements (16.4) 15

Cross references 20

Index

A

assert

keyword, 7, 18
assertion, 7
assume

keyword, 7, 18
attribute

contracts, 10

attribute-specifier, 7, 18

C

contract, 7
predicate, 7
contract condition, 8

contract violation, 10
contract-attribute-specitfier, 7, 18
contract-behavior, 7, 18

E

enforce

keyword, 7, 18

I

ignore
keyword, 7, 18

0]

observe

keyword, 7, 18

P

post

keyword, 7, 18
postcondition, 7
pre

keyword, 7, 18
precondition, 7

A\

violation handler, 10

Index

P2660R0

21

P2660R0

Index of grammar productions

The first bold page number for each entry is the page in the general text where the grammar production is
defined. The second bold page number is the corresponding page in the Grammar summary (Annex A).
Other page numbers refer to pages where the grammar production is mentioned in the general text.

attribute-specifier, 7, 18

contract-attribute-specifier, 7, 7-9, 18
contract-behavior, 7, 7-10, 18

Index of grammar productions 22

P2660R0

Index of library headers

The bold page number for each entry refers to the page where the synopsis of the header is shown.

<experimental/contract>, 16

Index of library headers 23

Index of library names
C

comment
contract_violation, 17

contract_violation, 16
comment, 17
file_name, 17
function_name, 17
line_number, 17

F

file_name
contract_violation, 17

function_name
contract_violation, 17

L

line_number
contract_violation, 17

Index of library names

P2660R0

24

P2660R0

Index of implementation-defined behavior

The entries in this index are rough descriptions; exact specifications are at the indicated page in the general
text.

establishing of and argument for violation handler,
10

implicit contract behavior not the same in all
translation units, 9

return value of experimental::contract_-
violation: :comment,
17

source location of precondition violation, 10

Index of impl.-def. behavior 25

	Contents
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 General principles
	4.1 Implementation compliance
	4.1.1 General

	5 Lexical conventions
	5.10 Identifiers

	6 Expressions
	6.7 Constant expressions

	9 Declarations
	9.11 Attributes
	9.11.1 Attribute syntax and semantics
	9.4.2 Contract attributes
	9.4.2.1 Syntax
	9.4.2.2 Contract conditions
	9.4.2.3 Checking contracts

	11 Classes
	11.4 Class members
	11.4.1 General

	11.7 Derived classes
	11.7.3 Virtual functions

	13 Templates
	13.8 Name resolution
	13.8.3 Dependent names
	13.8.3.3 Type-dependent expressions

	14 Exception handling
	14.6 Special functions
	14.6.2 The std::terminate function

	15 Preprocessing directives
	15.2 Conditional inclusion
	15.11 Predefined macro names

	16 Library introduction
	16.3 Method of description
	16.3.2 Structure of each clause
	16.3.2.4 Detailed specifications

	16.4 Library-wide requirements
	16.4.2 Library contents and organization
	16.4.2.3 Headers

	16.4.5 Constraints on programs
	16.4.5.3 Reserved names
	16.4.5.3.3 Macro names

	17 Language support library
	17.1 General
	17.3 Implementation properties
	17.3.2 Header <version> synopsis

	17.14 Contract violation handling
	17.14.1 Header <experimental/contract> synopsis
	17.14.2 Class contract_violation

	A Grammar summary
	C Compatibility
	C.1 Extensions to C++ for Contracts and N4919
	C.1.1 General
	C.1.2 Clause 5: lexical conventions
	C.1.3 Clause 16: library introduction

	Cross references
	Index
	A
	C
	E
	I
	O
	P
	V

	Index of grammar productions
	Index of library headers
	Index of library names
	C
	F
	L

	Index of implementation-defined behavior

