Support for static and SBO vectors by
allocators

Document: P2667R0

Date: 2022-10-09

Project: Programming language C++
Audience: LEWG(])

Reply-to: Bengt Gustafsson, bengt.gustafsson@beamways.com

Support for static and SBO vectors by allocators

Introduction

Motivation and scope

Impact on the standard
std::vector must allocate using allocate_at_least
std::vector must only allocate larger blocks than it already has
std::vector must move elements if in source's internal buffer
New traits to enable static_vector size storage optimization
Overlaying sbo_vector capacity with buffer
Iterator invalidation guarantees for vector are affected
Copying and moving between containers with different allocators
Preventing use for other containers
Rebinding rules
ABI considerations
Compile time considerations
Included allocator classes
Included type alias templates

Technical specification

Future directions (NOT PROPOSED)
Usage for basic_string

flat_map family and other container adaptors

Possible addition for deque
Allowing use for node based containers

Acknowledgements

Introduction

This proposal mandates that std: :vector must actually use allocate_at_least forits
allocations and abide by some simple rules for its allocation pattern. std: :vector must also
handle moving of individual elements in more situations in move constructor and move
assignment.

The proposal also contains allocator traits that allows allocator clients to optimize storage when a
static allocator is provided.

Also proposed is a new container constructor and assignment operator between containers of the
same T but different allocator type. This is essentially a separate feature but with more allocators
to choose from it will be more needed.


af://n0
mailto:bengt.gustafsson@beamways.com
af://n8

A buffered_allocator template which has an internal buffer and a backing allocator for

overflow is also included in the proposal, as well as some trivial non-allocating allocators useful
for implementing static_vector with different overflow policies.

Motivation and scope

Introducing static_vector and small buffer optimization-enabled vector (sbo_vector) has been a
long standing request in C++. With P0401 now in C++23 it is almost possible to implement such
vectors using only custom allocators with internal buffer storage. What is missing is that there is
no standard requirement on std: :vector to actually use the std::allocate_at_Tleast function,
and there are no guarantees when it comes to the allocation pattern that vector is allowed to use
its allocator for. However, if std: :vector continues doing what the current implementations do,
and uses allocate_at_least for all allocations, static_vectors and sbo_vectors can be implemented
using allocators, with just one further requirements on vector: The rules for when elementwise
moving is required when vectors are moved must be updated.

However, even with this vector with a fixed max_size buffer still wastes memory as it will store the
buffer address, size and capacity information, while only size is needed, and most often the size
can fitin an 8- or 16-bit integer. To remedy this a new allocator_trait is needed. (To avoid
problems if the entire allocator_traits has been partially specialized for some allocator type we
propose this as a constexpr variable template which uses the same strategy as for
allocate_at_least ). With this a standard library implementation can optimize the storage

requirements for such std::vector specializations.

The advantage of this strategy over creating new static_vector and sbho_vector containers
from scratch is to a large extent that generic code that expects a std: :vector specialization can
use the new containers without having to be further generalized. Another advantage is that it
increases composability between containers and allocators. It also reduces the length of the
standard text to not have to repeat all members of vector two more times, although this is of
course offset by the text required to specify the mechanisms proposed here.

Impact on the standard

This proposal has smallish impact on the standard library in a few different places. The rules that
are marked specifically as applying to std::vector would apply similarly to other containers with a
single growing block strategy.

std::vector must allocate using allocate_at_least

And in addition it must set its capacity to the returned capacity in the allocation_result object.

This requirement emanates from the fact that a sbo- or static- allocator only has one buffer of the
set size. Thus they can return this buffer and its size from the first allocate_at_least call, and the
vector can use this as long as it is large enough. If the vector would call allocate() according to its
normal size increase policy another block of small enough size could be requested and the
allocator would return its internal buffer again, as it does not keep track of whether it is in use.
The vector would have to special treat this and not move the elements if both buffer addresses
are equal. This seems to be more intrusive than requiring that allocate_at_least is called.


af://n10
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p0401r6.html
af://n14
af://n16

std::vector must only allocate larger blocks than it already
has

This is consistent with how vector's growth strategies work today, and anything else is infeasible
as vector's iterators are contiguous. With this rule put on paper a buffered allocator can do
allocations outside its buffer if the parameter to allocate_at_least is larger than its own
buffer's capacity (as the first allocation returned the buffer capacity and vector's don't allocate
new blocks until previous capacity is exhausted).

The only std: :vector method which is allowed to reduce the size of the allocated block is
shrink_to_fit. Alibrary that implements this needs a fix to avoid shrinking more if the data is
already in the internal buffer. This can be done by checking if the capacity returned from
allocate_at_least for the vector size was the same as the previous pointer. Note: This situation
can't be ignored as vector would otherwise in place construct the elements onto themselves.

std::vector must move elements if in source's internal buffer

The vector must amend its rules for when to move elements so that whenever the source's size is
lower than the source's allocator type's value for allocator_info: :buffer_capacity the

elements must be moved rather than the pointers.

bool move_elements = src.capacity() <=
std::allocator_info: :buffer_capacity<SrcAlloc>;

New traits to enable static_vector size storage optimization

A pair of variable templates are introduced to handle the differences needed between regular,
SBO and fixed categories of allocators. The author proposes that these are placed in a namespace
fulfilling the same function as allocator_traits. This prevents from specializing all current traits at
once by specializing the class template itself. The allocate_at_least function should preferably be
moved into this new namespace before the release of the C++23 standard.

namespace std::allocator_info {
template<typename Alloc> constexpr size_t buffer_capacity = 0;
template<typename Alloc> constexpr bool can_allocate = true;

As long as the can_allocate value is true for the allocator that a std::vector is instantiated with, no
optimizations are possible. The allocator will sometimes at least allocate using operator new or
other means which return arbitrary addresses, which must be stored by the vector object along
with information about the current size and capacity.

However, if the can_allocate value is false the allocator offers the vector certain guarantees:

1. allocate_at_least for any element count <= buffer_capacity returns the internal buffer
pointer and the buffer_capacity. If element_count > buffer_capacity allocate_at_least does
whatever is appropriate at overflow.

2. allocate for any element count returns the internal buffer pointer.

3. deallocate does nothing.

This works for an unspecialized vector or other container as long as it follows the prescribed
rules, i.e. never calls allocate().


af://n19
af://n207
af://n210

These guarantees however allows vector to optimize its storage to only a size member, apart from
the allocator object. The number of bits required for this size member can be inferred from the
buffer_capacity of the allocator.

e The data() method of the specialized vector can call allocate(0) to avoid having to store the
address of the current buffer. Thanks to #2 this does not involve any if statements being
executed by the allocator.

e The capacity() method can return the allocator_info: :buffer_capacity value directly to
avoid having to store the count returned from allocate_at_least.

e size() returns the stored size member.

If other functions of vector are implemented in terms of these basic functions no further
specialization is needed, except for an internal function to set the size.

Overlaying shbo_vector capacity with buffer

A sbo_buffer that minimizes its storage requirements could be implemented by using a overflow
value in the size member of the optimized static_vector storage model. If the size is set to this
value the buffer is repurposed to the three pointers needed for the overflowed case. The
drawback with this is that all methods accessing the vector contents must first check for this
special value to know how to find the buffer address. This can be slow, but if all access is using
iterators not so bad.

Implementers can explore such options, this proposal only makes them possible.

Iterator invalidation guarantees for vector are affected

The iterator invalidation guarantees when moving vector contents from one vector to another will
have to be changed to not guarantee stability for all allocators.

The rule is that if allocator_info::buffer_capacity > 0 theiterator guarantees are changed
in addition to the propagate_on_container_move/copy_assignment special case already stated in
the iterator invalidation guareantees.

Copying and moving between containers with different
allocators

std::vector currently does not allow copying and moving between containers with the same
element type but different allocator types. This seems like a useful feature to have, although the
new constructors probably needs to be explicit to avoid surprises.

This feature becomes more important considering copying and moving between vectors with
different size buffers, but with the same backing allocator, and vectors with the backing allocator
itself. In these cases it is beneficial to move the data pointers instead of the elements, provided
the source's internal buffer is not in use, as described above.

Detecting if the backing allocator type is the same is uses a new trait
backing_allocator_of<Alloc> which by default is Alloc but for buffered_allocator is its third

template parameter:


af://n356
af://n43
af://n50

namespace std::allocator_info {
template<typename Alloc> struct backing_allocator_of {
using type = Alloc;
it

// Specialize for a buffered allocator described below.
template<typename T, size_t Sz, typename Alloc>
struct backing_allocator_of<buffered_allocator<T, Sz, Alloc>> {
using type = backing_allocator_of<Alloc>; // Recurse if necessary

Ie

template<typename Alloc> using backing_alloc_of_t =
backing_alloc_of<Alloc>::type;

}

Then the move constructor and move assignment can check if the backing_allocator_t of of the Ihs
and rhs are the same, and if so move the buffer ownership to the destination.

Standardizing this trait allows for user defined allocators with similar semantics as
buffered_allocator. If only buffered_allocator is ever going to be able to optimize
moving/copying with the same backing allocator this trait can be internal to vector. he author
thinks that even as we today have a hard time coming up with more than one way of buffering
elements that are to be accessed by a contiguous iterator, we should not limit the future by not
standardizing this trait.

Preventing use for other containers

Allocators with std::allocator_info: :buffer_capacity<Alloc> > 0 are not useful for
containers which have other allocation patterns than vector, basic_string and similar types. Thus it

would be preferred to have static_asserts in such containers to get a good error message if such
an allocator is used for instance in a map.

Rebinding rules

In node based containers and for the Microsoft debug mode iterator integrity check blocks the
allocator provided as template parameter is rebound to another T, such as map_node<T> for

some implementation of std::map. It is unclear at this point exactly what the uses for rebinding
allocators is.

This proposal does not give thought to this but posits that the rebinding rules work as usual, so
that for a static_vector<T, 100> the Microsoft control block allocator would allow for 100 control
blocks inside the vector's memory footprint. Microsoft would have to get the backing allocator
and rebind that to get similar behaviour as today.

ABI considerations

As this proposal does not change behaviour or data layout of vectors which use pre-existing
allocators there are no ABI problems for currently existing code.

However, an implementation must implement the optimizations outlined above for the
can_allocate == false case immediately to avoid future ABI breakage when those

optimizations do get implemented.


af://n223
af://n67
af://n70

The only further caveat is that any implementation changes made to optimize the implementation
for can_allocate == false must not change the non-static data member layout in vectors using
other allocators.

Compile time considerations

Adding new allocator classes and traits to <memory> and adjustments in <vector> will add some
compile time even if the new allocators are not used. As Modules get more and more used this
impact will be reduced greatly. If the alternative is static_vector and sbo_vector as separate class
templates the added code would be much more, but on the other hand maybe those were
intended for their own separate header files which are not included by as many translation
modules.

Included allocator classes

This proposal contains a set of allocator classes which model the same Allocator concept as
std::allocator (in its C++23 form). The main class is buffered_allocator which adds a buffer of a
specific number of elements to a backing allocator and forwards most of the properties of the
backing allocator. This includes can_allocate, importantly.

template<typename T, size_t Sz, typename Backing = allocator<T>> class
buffered_allocator;

In addition three trivial non-allocating classes are proposed, which allow customizing the overflow
behaviour of a static_vector.

template<typename T> struct terminating_allocator; // Terminate in alloc()
template<typename T> struct throwing_allocator; // Throw bad_alloc in
alloc()

tempTlate<typename T> struct unchecked_allocator; // Return nullptr from
alloc.

The unchecked_allocator case still not offers the preferred solution as the if statement in

std: :vector: :reserve still has to exist if vector does not know that it deals with an unchecked
allocator. One can hope that an optimizing compiler will be able to optimize this away but it is
unclear if this is realistic. If this is not true a further trait for ignoring overflow may have to be
added to single out the ignoring allocators. As there are hardly more ways to ignore overflow than
using unchecked_allocator offers it would also be possible to specialize vector on the fact that the
backing allocator is a specialization of unchecked_allocator, ignoring custom allocators that also
may have this behaviour.

Included type alias templates

To simplify usage of vectors using buffered_allocator with different backing allocators a set of
type alias templates are included in this proposal. These type aliases should be in the

<vector> header. The reason for providing three different static_vector type aliases is the
lingering uncertainty on which overflow policy should be default. If this is resolved it could be
better to only have one static_vector type alias and let programmers create the other two as
needed.


af://n74
af://n82
af://n84

The author believes that the unchecked variant is most appropriate to be this default policy. The
rationale is that for programs with normal safety requirements (programs will not break pre-
conditions) this is the appropriate selection. Programmers using static_vector will check for
overflow by other means outside the static_vector and don't expect static_vector to do any
checking for them.

template<typename T, size_t Sz, typename Backing = std::allocator<T>>
using sbo_vector = vector<T, buffered_allocator<T, Sz, Backing>>;

template<typename T, size_t SzZ>
using static_vector_throw = sbo_vector<T, Sz, throwing_allocator<T>>;

template<typename T, size_t SzZ>
using static_vector_terminate = sbo_vector<T, Sz, throwing_allocator<T>>;

template<typename T, size_t SzZ>
using static_vector_unchecked = sbo_vector<T, Sz, unchecked_allocator<T>>;

Technical specification

The wording changes for this seem to be rather obvious from the description above.

Future directions (NOT PROPOSED)

Usage for basic_string

std::basic_string has a suitable allocation strategy it is not proposed to be included it as most
implementations already have their own small buffer optimization in place. An alternative would
be to mandate that basic_string must forego its own small buffer optimization (if any) in case
std::allocator_info: :buffer_capacity<Alloc> > 0. This is not proposed.

flat_map family and other container adaptors

With the flat_map family of class templates in C++23 combined with the above sbo and static
vectors similar behaviour can easily be achieved with just some type alias templates such as:

template<typename Key, typename T, size_t Sz, typename Compare = less<Key>>
using sbo_flat_map = flat_map<Key, T, Compare, sbo_vector<key, Sz>,
sbo_vector<T, SzZ>>;

However, with already four containers in the flat_map family it seems a bit over the top to declare
16 type aliases like this, consuming 16 names in the std namespace. If stack, queue and
priority_queue are included this is another 12 type aliases.

Therefore no such type aliases are proposed.

Possible addition for deque

One container that doesn't fit in any of these categories is deque, as it presumably has one
vector-like block and then any number of equal size blocks. What would be interesting to have is
maybe a deque specialized to use a rebind of the incoming static- or sbo-allocator for the main
block and then use the backing_allocator_of<Alloc> allocator for the individual blocks, or if
this has !can_allocate<Backing> the static case std::allocator. The need for a deque that can


af://n80
af://n252
af://n254
af://n335
af://n263

only allocate a fixed number of blocks allocated on the heap seems limited, but a deque which
keeps the first block pointers in an internal buffer until it is exhausted seems like a fair deal.

Allowing use for node based containers

With an extended set of traits and a bitmap of used elements a static- or sbo- allocator could be
devised for node-allocating containers such as maps and linked lists. This is under the assumption
that instead of calling allocate_at_least those containers would call allocate(1) each time a new
node is needed.

The allocators useful for these containers are not optimal for vector as they have to keep track of
which elements are in use, and the move rules for the sbo_case are more complicated, as the
container itself may have ot move a subset of its nodes (those in the SBO buffer) and not others
(those on the heap).

This breaks not only the iterator invalidation rules of today, but also the node data address
stability guarantees, which makes this less attractive.

Acknowledgements

Thanks to my employer ContextVision AB for supporting the author attending standardization
meetings.


af://n349
af://n354

	Support for static and SBO vectors by allocators
	Introduction
	Motivation and scope
	Impact on the standard
	std::vector must allocate using allocate_at_least
	std::vector must only allocate larger blocks than it already has
	std::vector must move elements if in source's internal buffer
	New traits to enable static_vector size storage optimization
	Overlaying sbo_vector capacity with buffer
	Iterator invalidation guarantees for vector are affected
	Copying and moving between containers with different allocators
	Preventing use for other containers
	Rebinding rules
	ABI considerations
	Compile time considerations
	Included allocator classes
	Included type alias templates

	Technical specification
	Future directions (NOT PROPOSED)
	Usage for basic_string
	flat_map family and other container adaptors

	Possible addition for deque
	Allowing use for node based containers

	Acknowledgements


