
The Val Object Model
Document #: P2676R0
Date: 2022-10-13
Project: Programming Language C++
Audience: Evolution
Reply-to: Dave Abrahams

<dabrahams@adobe.com>
Sean Parent
<sparent@adobe.com>
Dimitri Racordon
<dimitri.racordon@gmail.com>
David Sankel
<dsankel@adobe.com>

1 Introduction
This paper presents a low-level programming model that is simple, powerful, efficient, and safe. We believe it
could form the basis of a future safe dialect of C++.

2 Motivation and Scope
Software safety is a growing and well-justified concern across government and industry, with a recent Linux
foundation plan specifically calling for “moving software away from C and C++ to safer languages.” Until now,
achieving memory safety in a language like C++ has meant the use of impractical whole-program analysis or the
addition of hard-to-satisfy lifetime annotation requirements that significantly increase API complexity. As an
alternative, we present an object model—implemented in the Val research language—based on value semantics;
an idea already deeply ingrained in C++. It turns out that by “going all in” on value semantics, we gain three
things at once:

— Memory safety by construction
— Thread safety by construction (Rust’s “fearless concurrency”)
— A simple and powerful programming model, with helpful diagnostics

As the C++ committee considers its response to the safety crisis, understanding the Val model could allow us
to arrive at a safer C++ that is also simpler.

3 The Val Object Model
3.1 Independence
The Val model starts by identifying independence—the idea that a mutation to one variable cannot affect
the value of another—as a key property of types with value semantics. Independence is the true source of the
benefits functional programmers attribute to strict immutability, and of Rust’s “fearless concurrency.”

C++ supports independence in three ways:

— Pass-by-value gives the callee an independent value.
— A returned value is independent in the caller (every rvalue is independent).
— Operations such as copying and assignment can be written to avoid sharing mutable state.

1

mailto:dabrahams@adobe.com
mailto:sparent@adobe.com
mailto:dimitri.racordon@gmail.com
mailto:dsankel@adobe.com
https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/OpenSSF/OSS%20Mobilization%20Plan.pdf
https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/OpenSSF/OSS%20Mobilization%20Plan.pdf
https://www.val-lang.dev/

Support for independence of mutable user-defined types can be traced back to Ada and Pascal, but for 30 years
during the OO revolution, new reference-based language designs flooded the scene leaving C++ in a small club
(along with Swift and Rust) of popular languages with first-class value semantics.

Unfortunately, though, C++ also undermines independence:

— Mutation occurs through a this pointer that can alias other reachable pointers and references.
— Pass-by-value eagerly copies parameters, so programmers use references as a substitute.

The key idea behind the Val model is to fully uphold independence while eliminating disincentivizing copies.

3.2 The Law of Exclusivity for C++ References
The use of pass-by-const& to mean “pass-by-value; just do it efficiently” is so ingrained in C++ practice that
we do it automatically, even though it affects semantics:

Inefficient Efficiently Incorrect

// Offsets x by 2*delta.
void offset2(BigNum& x, BigNum delta) {
x += delta
x += delta

}

void main() {
BigNum x = 3;
offset2(x, x);
std::cout << x << std::endl; // Prints 9

}

// Offsets x by 2*delta.
void offset2(BigNum& x, BigNum const& delta) {
x += delta
x += delta

}

void main() {
BigNum x = 3;
offset2(x, x);
std::cout << x << std::endl; // Prints 12

}

The only reasonable way to make the efficient code correct is to add an additional independence requirement,
and hope that users uphold it.
// Offsets x by 2*delta. Requires: x and delta are distinct objects.
void offset2(BigNum& x, BigNum const& delta) {
x += delta
x += delta

}

void main() {
BigNum x = 3;
offset2(x, BigNum(x)); // Note explicit copy
std::cout << x << std::endl; // Prints 9

}

Of course, independence requirements are almost never stated explicitly: in practice, there is an unstated Law
of Exclusivity (LoE) [SE-0176], which requires the value of any object denoted by a mutable reference to be
independent of the values of all other variables. We claim this law is built into every C++ programmer’s mental
model, because there is no other rational way to deal with mutation.

In fact, the semantics of a mutating function is nearly impossible to describe unless the Law
is upheld. As a result of issues discovered over the course of two decades, there are numerous examples
of standard language designed to prevent specific LoE violations (e.g. 27.2 [algorithms.requirements]/7, 24.2.4
[sequence.reqmts]/37), but looking through the standard with the Law in mind, it is still easy to find cases like
these:

2

https://wg21.link/algorithms.requirements
https://wg21.link/algorithms.requirements#7
https://wg21.link/sequence.reqmts
https://wg21.link/sequence.reqmts#37

Legal; undefined behavior in practice Behavior unspecified

#include <algorithm>
#include <vector>

int main() {
std::vector v = { 0, 1 };
std::ranges::sort(
v, [&v](int x, int y) {

v.push_back(2); return y < x;
});

}

#include <algorithm>
#include <vector>
#include <iostream>

int main() {
std::vector v = { 0, 1, 2, 1, 2 };
std::ranges::replace(v, v[1], v[2]);
for (auto x: v) { std::cout << x; }

}

The standard says the first one (godbolt) is legal, but it causes undefined behavior in practice. A careful reading
shows that the behavior of the second (godbolt) is not specified at all. That’s not because the standard library
specification is careless, but because the general Law was never recognized.

3.3 Parameter Passing Conventions
Val supports four parameter-passing conventions that underlie its object model. Each can be described either
by a simple high-level semantics in terms of owned values, or mechanically in terms of references, but with
additional independence guarantees not provided by C++.

Declaration syntax Semantics C++ mechanics Static guarantee/Note
x: let T or x: T pass-by-const-value T const& Referent is truly immutable
x: inout T borrow for mutation T& Access to x’s value is only via x
x: sink T ownership transfer T&& (non-universal) Callee is responsible for destruction
x: set T initialization placement new Post: x is initialized

The default passing convention is called let. It provides the same semantics as C++ pass-by-const-value, but
without the disincentivizing copy. Inside the callee, x is an independent value: it cannot mutate, either directly
through x or by any other means (such as a hidden mutable pointer or reference).

Mutation in Val is always via inout. An inout parameter is an independent value wholly owned by the callee
and only accessible via the parameter itself. This guarantee is enforced at the call site by disallowing (potentially)
overlapping accesses, thus upholding the Law of Exclusivity. Note that mutations in Val are marked with & at
the call site:
swap(&x.a, &x.b) // OK if a and b are guaranteed distinct.
&v.remove(v[2]) // ERROR: v, being mutated, overlaps v[2]. Pass v[2].copy() instead.
swap(&x[i], &x[j]) // ERROR: x[i] and x[j] may overlap; use index_swap to ensure `i != j`.
&x.index_swap(i, j) // OK; i == j can be checked for dynamically.

The sink convention denotes consumption of the argument; the difference from C++ pass-by-rvalue-reference is
that an lvalue argument becomes inaccessible in the caller, rather than leaving behind a meaningless shell, and
responsibility for destruction passes to the callee along with ownership of the value.
fun consume(_ x: sink Int) {}
var a = 1, b = 1
consume(a) // OK, last use of a
consume(b) // ERROR: b is still in use. Pass b.copy() here instead.
print(b) // last use of b

3

https://godbolt.org/z/xKq3onTj3
https://godbolt.org/z/vnn49YTqb

In Val, the lifetime of a binding extends until its last use, so an lvalue can be sunk without any explicit marking
(such as std::move). A sunk argument is not actually moved in memory until and unless it escapes the callee
(i.e. is stored or returned).

We can ignore the set convention for the purposes of this paper. It is seldom used but completes the language
calculus in a way we consider valuable. Further details at https://val-lang.dev.

3.4 Explicit copies
You may have noticed diagnostics in the previous section that prompt the user to call .copy() explicitly. Because
copies can have signficant cost, Val never copies implicitly (unless the user explicitly opts-in with @implicitcopy).
Because pass-by-value semantics does not imply a copy, though, the number of explicit copies required in Val
code is small. Finally, in case the idea of explicitly copying an integer is anathema to the reader, it should be
noted that explicit copies are not fundamental to the model.

3.5 Bindings
Bindings, which play the same role as variables in C++, have three forms:

Declaration Convention Static guarantee/Note
var x = expr sink x is a variable. Any lvalue expr becomes inaccessible forever.
let x = expr let x (and any lvalue expr) are truly immutable during x’s lifetime. No copy

implied.
inout x = expr inout expr (and anything of which it is a part) is inaccessible during x’s lifetime.

Each form can be understood as though the binding were a parameter to a continuation formed by the code
through the binding’s last use, with a corresponding parameter passing convention. During the lifetime of a let
or inout binding to (part of) an lvalue, use of that lvalue is restricted as necessary to preserve independence:
fun use<T>(_ x: T) {}

fun test(_ inout x: (first: Int, second: Int)) { // x is a tuple with two named fields.
let y = x.first
print(x) // OK
x.first += 1 // ERROR: `x.first` is `let`-bound to `y`.
use(y)

inout z = x.first
z += 1 // OK
print(x) // ERROR: `x` is `inout`-bound to `z`.
use(z)

print(x) // OK; `x` no longer `inout`-bound.
}

Because the semantics of these bindings are based on those of our parameter passing conventions, they have the
semantics of independent values, just like parameters.

3.6 Projections: Abstracting Partwise Access
A projection is an abstraction for access to a part of an object. For example, you might want to provide
read/write access to the top element of a stack. To support that sort of access without exposing references, Val
provides projections in two forms: subscripts and computed properties (which can be thought of as subscripts
without parameters).

4

type Stack<T> {
var storage: Array<T> = []
public fun push(_ x: T) inout { &storage.append(x) }
public fun pop() -> T inout { return &storage.removeLast() }

public property top: T {
inout { yield &storage[storage.count() - 1] }

}
}

fun test() {
var x = Stack<Int>()
&x.push(3)
&x.push(4)
&x.top += 1 // <====
print(x.top) // 5

}

The top property works without exposing references by using inversion of control: where the implementation
yields, the last element of storage is passed for mutation to a closure (lambda) representing the mutation, which
is synthesized to encode the mutation at the marked line:
// rewritten accessor
public fun top:inout(_ mutate: (inout T)->Void) {
mutate(&storage[storage.count() - 1]) // Explicit inversion of control

}
...
// rewritten call site
x.top:inout((y){ y += 1 })

The idea of combining inversion of control with this syntactic transformation is due to John McCall of the Swift
project. Although it (still!) isn’t part of the official Swift language, the provisional unofficial support for it is
widely used for reasons that should become clear.

3.6.1 Projection Accessors

Aside from an inout accessor, there are three other projection accessor types:

Accessor Meaning Result lifetime
inout yield a part of self for mutation bounded by lifetime of self
let yield a part of self for reading bounded by lifetime of self
set write to self without exposing the previous value n/a
sink consume self, exposing a part independent

In the case of Stack’s top property, these accessors are all synthesized from the inout accessor, but in general
each one can be written separately, when there is a performance advantage. If inout and set are omitted but
let is provided, the projection is immutable regardless of the mutability of self.

3.6.2 Projecting Ephemeral Notional Parts

The inversion of control provided by inout and let accessors allows us to project notional parts that aren’t
actually stored anywhere in memory. For example, this Angle type stores its value in radians, but also exposes
a value in degrees that can be let bound or passed inout like any other mutable property:

5

https://forums.swift.org/t/modify-accessors/31872/293

type Angle {
public var radians: Double
public property degrees: Double {
inout {

var d = radians * 180.0 / Double.pi
yield &d
radians = d * Double.pi / 180.0

}
set(newValue) {

radians = newValue * Double.pi / 180.0
}

}
}

fun test() {
var x: Angle(radians: Double.pi / 2)
print(x.degrees) // 90
var y: Double = 180
swap(&y, &x.degrees)
print(x.radians) // 3.14159265...
x.degrees = 0 // uses the `set` accessor
print(x.radians) // 0

}

This is an example where an explicit accessor can beat a synthesized one. If degrees did not have an explicit
set accessor, it would be synthesized from the inout accessor, and the line x.degrees = 0 would compute the
existing value in degrees, only to immediately assign over it.

Because inout and let projections have partwise access semantics but don’t require pre-existing storage, they
perfectly match any use case where resources of an object need to be temporarily and safely used in a different
context. This covers many cases that in Rust would require difficult-to-use named lifetime annotations. A
less general but perhaps more recognizable set of use cases correspond to places we’d be tempted to use proxy
references in C++, if only they didn’t cause so many problems:

— A ZipCollection containing tuples of projected elements can be projected from a tuple of underlying
collections.

— A matrix in row-major storage can project its columns as a property.
— A collection type C can have a slicing subscript that safely projects a region as an ephemeral Slice<C>.

The slice contains the region’s bounds and a projection of the collection itself.
— A collection can be projected into a pair of independent Slices that divide it at some position and can be

mutated in distinct threads.
— A Dictionary<Key, Value> where keys, values, and liveness bits are stored in contiguous memory regions

can be subscripted with a Key, projecting a writable ephemeral Optional<Value> (writing nil deletes the
key). Due to inversion of control, in-place mutation of a subscripted dictionary uses only one hash lookup
where a getter/setter formulation would require two.

3.7 When and How to “Go Unsafe”
So far we’ve been looking only at Val’s safe subset, which can’t be used to efficiently express every correct program.
Val also contains unsafe constructs accessible only by tagging the enclosing expression with the unsafe keyword.
That makes Val a safe-by-default language in the same category as Rust. 1 The usual way to use unsafe code
in such languages is to encapsulate it in a carefully-vetted component that can be declared safe. For example, a
doubly-linked list can be implemented in Rust using only safe constructs, but if the list code is correct you will
pay for needless dynamic checks that never fail. Instead, you can reimplement the list with carefully-used unsafe

1Swift is safe-by-default within a thread, but uses a higher-level actor model for inter-thread data isolation.

6

operations, and after extensive validation, declare it safe. The new list is no less safe than any safe primitive,
which has likewise been extensively validated and declared safe.

Depending on the details of a programming language design, different programs may be forced to use unsafe
constructs or accept dynamic safety checks. We could make it possible to express more things safely in Val were
we to add Rust-style named lifetime annotations. These annotations, however, add cognitive overhead and are
so notoriously difficult to use that “fighting the borrow checker” has become a meme among Rust programmers.
At the same time, because Val exploits the semantics of whole/part relationships, we believe it can safely express
far more than lifetime-annotation-free Rust can.

4 Comparison with the C++ Core Guidelines
The work most closely related to Val’s object model in the landscape of C++ safety is Stroustrup and Sutter’s
C++ Core Guidelines [CoreGuidelines]. This project captures common wisdom on ways to “use modern C++
effectively” and safely in the form of rules enforceable through static analysis and dynamic checks.

Some things are simple: avoid unsafe casts and type punning for type safety, and use cheeap dynamic checks to
ensure accesses are in-bounds. Lifetime safety, however, requires a more sophisticated approach.

The C++ Core Guidelines rely on an ownership discipline for reasoning about the lifetime of an object. An
owner is an object that owns another object (e.g. an instance of std::vector owns the elements that it contains),
and the owner is solely responsible for the destruction of its owned object(s). Preventing code from destroying
things it doesn’t own eliminates a large class of errors.

To keep the annotation burden at a minimum, rules have carefully designed defaults that correspond to most
valid use of modern C++. It is worth noting that many of these defaults seem to express the same ideas
expressed by Val’s part projection semantics. The patterns that do not fit these defaults can be expressed by
user annotations. We refer the interested reader to [P1179R1] for the complete specification.

We note that the ownership discipline proposed by the C++ Core Guidelines upholds the Law of Exclusivity
(although it goes overboard, forbidding even immutable references from aliasing one another). This rule effectively
eliminates reference semantics.

In Val, ownership is conveyed through whole/part relationships. For example, a vector (i.e., a dynamic array in
Val parlance parlance) is naturally a composition of its parts: the elements. A whole is responsible for the lifetime
of its parts, just like an owner is responsible for that of its owned objects. Further, mutating a whole requires its
independence, just like passing an owner as an argument prevents its contents from being simultaneously passed
by reference.

To illustrate, consider the type declaration below, which follows the C++ Core Guidelines. The default rules
for identifying owners do not apply in this example, requiring the a user-defined annotation to declare Matrix3
as an owner type of double.
class [[gsl::Owner<double>]] Matrix3 {
double components[9];

public:
double& operator()(size_t row, size_t column) {
if (row > 8 || column > 8) {

throw out_of_range("component position out of bounds");
}
return components[row * 3 + column];

}
};

*Note that the operator declaration is implicitly annotated by [[gsl::post(lifetime(ret,{this}))]] to
denote the fact that the lifetime of the returned reference is bound by that of *this.

7

In Val, annotations are unnecessary because the whole/part relationship between a matrix and its components
can be derived from the type’s declaration.
type Matrix3 {
var components: Double[9]

public subscript(_ row: Int, _ column: Int): Double {
inout {

precondition((0 ..< 9).contains(row) && (0 ..< 9).contains(column))
yield &components[row * 3 + column]

}
}

}

Without first-class pointers and references in Val’s safe subset, reasoning about whole/part relationships is
sufficient to achieve similar expressiveness as ownership-based approaches, without an ad-hoc ownership model.
The definition of a whole is unambiguous in a world governed by mutable value semantics. In contrast, the
definition of an owner in a world of references is orthogonal and it compels the user to teach the compiler or
static analyzer about the distinctions between owners and non-owners. While the category to which a type
belongs might be sometimes inferred, other cases must resort to annotations.

Although the C++ Core Guidelines do not claim complete memory safety and do not address thread safety yet,
they take the same basic approach as Rust, which already offers statically guaranteed memory and thread safety
by construction. Since they already have a Law of Exclusivity, which is a sufficient basis for both kinds of safety,
we are confident they can reach these goals through iterative refinement.

Val’s safe subset is nearly as expressive as Rust’s; the main difference being that in Val, one cannot “reseat” a
let or inout binding (i.e., a reference in Rust) to make it refer to a different object. We beleive this limitation
has very little impact in practice, as reseatable bindings can expressed with key paths [SE-0161]. Hence, using
Rust as a proxy for a future more complete version of the C++ Core Guidlines, we can predict that Val’s
expressiveness is on par with the latter.

5 Conclusion
We believe the Val object model is in a “sweet spot” of simplicity and expressive power due to the combination
of a few powerful ideas:

— The Law of Exclusivity ensures independence, the foundation of value semantics.
— Projections allow access to parts, including ephemeral ones, without introducing references.
— It’s not worth trying to capture every possible thing in the type system. Accepting localized, reviewed use

of unsafe constructs, or dynamic safety checking, may be better than adding language features to statically
prove every program safe.

Adopting this model may not be the right thing for C++, but we hope the insights we’ve shared can inspire
some fresh thinking about safety.

6 References
[CoreGuidelines] Bjarne Stroustrup and Herb Sutter. 2022. C++ Core Guidelines.

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

[P1179R1] Herb Sutter. 2018. Lifetime safety: Preventing common dangling.
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf

[SE-0161] David Smith, Micheal LeHew, and Joe Groff. 2017. Key Paths.
[SE-0176] John McCall. 2017. Enforce Exclusive Access to Memory.

8

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf

	Introduction
	Motivation and Scope
	The Val Object Model
	Independence
	The Law of Exclusivity for C++ References
	Parameter Passing Conventions
	Explicit copies
	Bindings
	Projections: Abstracting Partwise Access
	Projection Accessors
	Projecting Ephemeral Notional Parts

	When and How to “Go Unsafe”

	Comparison with the C++ Core Guidelines
	Conclusion
	References

