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1 Introduction
This paper fleshes out the version of pattern matching that was described in [P2688R0]. It introduces a unified
match expression that can perform a single pattern match using the syntax:
expression match pattern

as well as the selection of pattern matches using the following syntax:
expression match {

pattern => expression-statement
/* ... */

}

A single pattern match yields a boolean, and therefore can be used in other contexts such as if, while, for,
and requires.

let is used to introduce new names within patterns, and are always “bindings” like the ones introduced by
structured bindings in C++17 [P0144R2].

The set of patterns are trimmed down to match the following entities:

1. Values (e.g. 42, "hello", compute_value())
2. Pointer-like types (e.g. T*, optional)
3. Tuple-like types, extending structured bindings (e.g. pair, tuple)
4. Sum types (e.g. variant, expected, any, exception_ptr, polymorphic types)

2 Motivation and Scope
The goal and motivation of this paper is to make further progress on pattern matching for C++.

At the Kona meeting in November 2022, the previous version of this paper [P2688R0] and [P2392R2] was
discussed over whether patterns should be composed vs chained. EWG clearly expressed the desire for patterns
to be composable (i.e. nested patterns):

Poll: “EWG prefers composition over chaining in pattern matching syntax.”

Result: SF: 13, F: 9, N: 2, A: 1, SA: 0

This paper presents (as did [P1371R3]) a design that continues to offer composable patterns.

At the EWG Telecon July 7, 2021, EWG clearly expressed the desire for pattern matching to be available outside
of inspect:

Poll: “Should we spend more time on patmat expressions outside of inspect (as proposed in P2392 or
otherwise), knowing that time is limited and we already have put in a lot of effort towards another patmat
proposal?”

Result: SF: 11, F: 12, N:4, A: 2, SA: 0

This paper offers single pattern matching via expression match pattern which is similar to the is-expression
from [P2392R2]. See

Additionally, it aims to address the following pieces of feedback:
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“Declaration of new names should have an introducer like most other places in the language.”

New names need the let introducer to introduce bindings, just like other new names in most other places in the
language.

“We shouldn’t bifurcate expressions like this.”

That is, expressions are just expressions without needing anything everywhere else in the language. This is true
in this design. That is, x by itself is an expression referring to an existing name like it does everywhere else.

“I don’t want the documentation of pattern matching to have to mention a caveat that x is a new name and
therefore shadows an existing variable.”

As mentioned above, x is an expression that refers to an existing variable.

Another contribution of this paper is Static and Dynamic Conditions, which aim to more clearly specify and
discuss the framework of requirements for patterns. They determine how uses of patterns are checked and/or
tested at compile-time and/or runtime, within template contexts and outside.

Features such as predicates, extractors, structured bindings with designators, static type matching by type or
concepts, and pattern combinators and and or are proposed to be deferred as future extensions.

The following is a list of key goals of the paper:

— Introduce match expression with let bindings.
— Trim down the set of patterns to focus on.
— Allow pattern matching in more places.
— Determine how patterns should be treated in templates.
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3 Comparison Tables
The following are 4-way comparison tables between C++23, [P1371R3], [P2392R2], and this paper.

3.1 Matching Integrals

C++23 P1371R3

switch (x) {
case 0: std::print("got zero"); break;
case 1: std::print("got one"); break;
default: std::print("don't care");

}

inspect (x) {
0 => std::print("got zero");
1 => std::print("got one");
__ => std::print("don't care");

};

P2392R2 This Paper

inspect (x) {
is 0 => std::print("got zero");
is 1 => std::print("got one");
is _ => std::print("don't care");

};

x match {
0 => std::print("got zero");
1 => std::print("got one");
_ => std::print("don't care");

};

3.2 Matching Strings

C++23 P1371R3

if (s == "foo") {
std::print("got foo");

} else if (s == "bar") {
std::print("got bar");

} else {
std::print("don't care");

}

inspect (s) {
"foo" => std::print("got foo");
"bar" => std::print("got bar");
__ => std::print("don't care");

};

P2392R2 This Paper

inspect (s) {
is "foo" => std::print("got foo");
is "bar" => std::print("got bar");
is _ => std::print("don't care");

};

s match {
"foo" => std::print("got foo");
"bar" => std::print("got bar");
_ => std::print("don't care");

};
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3.3 Matching Tuples

C++23 P1371R3

auto&& [x, y] = p;
if (x == 0 && y == 0) {
std::print("on origin");

} else if (x == 0) {
std::print("on y-axis at {}", y);

} else if (y == 0) {
std::print("on x-axis at {}", x);

} else {
std::print("at {}, {}", x, y);

}

inspect (p) {
[0, 0] => std::print("on origin");
[0, y] => std::print("on y-axis at {}", y);
[x, 0] => std::print("on x-axis at {}", x);
[x, y] => std::print("at {}, {}", x, y);

};

P2392R2 This Paper

inspect (p) {
is [0, 0] =>
std::print("on origin");

[_, y] is [0, _] =>
std::print("on y-axis at {}", y);

[x, _] is [_, 0] =>
std::print("on x-axis at {}", x);

[x, y] is _ =>
std::print("at {}, {}", x, y);

};

p match {
[0, 0] =>
std::print("on origin");

[0, let y] =>
std::print("on y-axis at {}", y);

[let x, 0] =>
std::print("on x-axis at {}", x);

let [x, y] =>
std::print("at {}, {}", x, y);

};
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3.4 Matching Variants

C++23 P1371R3

struct visitor {
void operator()(int32_t i32) const {
std::print("got int32: {}", i32);

}
void operator()(int64_t i64) const {
std::print("got int64: {}", i64);

}
void operator()(float f) const {
std::print("got float: {}", f);

}
void operator()(double d) const {
std::print("got double: {}", d);

}
};
std::visit(visitor{}, v);

inspect (v) {
<int32_t> i32 =>
std::print("got int32: {}", i32);

<int64_t> i64 =>
std::print("got int64: {}", i64);

<float> f =>
std::print("got float: {}", f);

<double> d =>
std::print("got double: {}", d);

};

P2392R2 This Paper

inspect (v) {
i32 as int32_t =>
std::print("got int32: {}", i32);

i64 as int64_t =>
std::print("got int64: {}", i64);

f as float =>
std::print("got float: {}", f);

d as double =>
std::print("got double: {}", d);

};

v match {
int32_t: let i32 =>
std::print("got int32: {}", i32);

int64_t: let i64 =>
std::print("got int64: {}", i64);

float: let f =>
std::print("got float: {}", f);

double: let d =>
std::print("got double: {}", d);

};
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This example is matching the variant alternatives using concepts.

C++23 P1371R3

struct visitor {
void operator()(

std::integral auto i) const {
std::print("got integral: {}", i);

}
void operator()(

std::floating_point auto f) const {
std::print("got float: {}", f);

}
};
std::visit(visitor{}, v);

inspect (v) {
<std::integral> i =>
std::print("got integral: {}", i);

<std::floating_point> f =>
std::print("got float: {}", f);

};

P2392R2 This Paper

// not supported v match {
std::integral: let i =>
std::print("got integral: {}", i);

std::floating_point: let f =>
std::print("got float: {}", f);

};
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3.5 Matching Polymorphic Types

struct Shape { virtual ~Shape() = default; };
struct Circle : Shape { int radius; };
struct Rectangle : Shape { int width, height; };

C++23 P1371R3

virtual int Shape::get_area() const = 0;

int Circle::get_area() const override {
return 3.14 * radius * radius;

}
int Rectangle::get_area() const override {
return width * height;

}

int get_area(const Shape& shape) {
return inspect (shape) {
<Circle> [r] => 3.14 * r * r;
<Rectangle> [w, h] => w * h;

};
}

P2392R2 This Paper

int get_area(const Shape& shape) {
return inspect (shape) {
[r] as Circle => 3.14 * r * r;
[w, h] as Rectangle => w * h;

};
}

int get_area(const Shape& shape) {
return shape match {
Circle: let [r] => 3.14 * r * r;
Rectangle: let [w, h] => w * h;

};
}

3.6 Matching Nested Structures

struct Rgb { int r, g, b; };
struct Hsv { int h, s, v; };

using Color = variant<Rgb, Hsv>;

struct Quit {};
struct Move { int x, y; };
struct Write { string s; };
struct ChangeColor { Color c; };

using Command = variant<Quit, Move, Write, ChangeColor>;

Command cmd = ChangeColor { Hsv { 0, 160, 255 } };

8



C++23 P1371R3

struct CommandVisitor {
void operator()(Quit) const {}
void operator()(const Move& move) const {
const auto& [x, y] = move;
// ...

}
void operator()(const Write& write) const {
const auto& text = write.s;
// ...

}
void operator()(

const ChangeColor& cc) const {
struct ColorVisitor {

void operator()(const Rgb& rgb) {
const auto& [r, g, b] = rgb;
// ...

}
void operator()(const Hsv& hsv) {
const auto& [h, s, v] = hsv;
// ...

}
};
std::visit(ColorVisitor{}, cc.c);

}
};
std::visit(CommandVisitor{}, cmd);

inspect (cmd) {
<Quit> _ => // ...
<Move> [x, y] => // ...
<Write> [text] => // ...
<ChangeColor> [<Rgb> [r, g, b]] => // ...
<ChangeColor> [<Hsv> [h, s, v]] => // ...

};

P2392R2 This Paper

inspect (cmd) {
is Quit => // ...
[x, y] as Move => // ...
[text] as Write => // ...
[[r, g, b]] as ChangeColor as [Rgb] => // ...
[[h, s, v]] as ChangeColor as [Hsv] => // ...

}

cmd match {
Quit: _ => // ...
Move: let [x, y] => // ...
Write: let [text] => // ...
ChangeColor: [Rgb: let [r, g, b]] => // ...
ChangeColor: [Hsv: let [h, s, v]] => // ...

};

Example from Destructuring Nested Structs and Enums section from Rust documentation.
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4 Design Overview
The overall idea is to introduce a single match construct that can be used to perform single pattern match, or a
selection of pattern matches.
expression match {
pattern => expression-statement
// ...

}

let denotes that an identifier is a new name rather than an existing name.
constexpr int x = 42;

expression match {
x => ... // match against existing `x`
let x => ... // introduce new x.

}

On the right of => is an expression-statement rather than a statement. This means that only expressions are
allowed, and I believe it will be best to pursue do expressions [P2806R2] to do statement things.

The following is used to match a value against a single pattern.
expression match pattern

The following is the match expression being used within an if statement.
if (expr match [0, let foo]) {
// `foo` is available here

} else {
// but not here

}

A optional guard can be added for a single pattern match as well:
std::pair<int, int> fetch(int id);

bool is_acceptable(int id, int abs_limit) {
return fetch(id) match let [min, max] if -abs_limit <= min && max <= abs_limit;

}

4.1 Syntax Overview

// Single pattern match
expr-or-braced-init-list match constexpropt pattern guardopt

// Selection pattern match
expr-or-braced-init-list match constexpropt trailing-return-typeopt {

pattern guardopt => expr-or-braced-init-list ;
pattern guardopt => break ;
pattern guardopt => continue ;
pattern guardopt => return expr-or-braced-init-listopt ;

}

guard:
if expression

10



pattern:
match-pattern
let binding-pattern
match-pattern let binding-pattern
... // only in structured bindings pattern (P1061)

match-pattern:
_ // wildcard
constant-expression // value
( pattern ) // grouping
? pattern // pointer-like
discriminator : pattern // variant-like, polymorphic, etc.
[ pattern-0 , … , pattern-N ] // tuple-like

binding-pattern:
identifier
[ binding-pattern-0 , … , binding-pattern-N ]
... identifier // only in structured bindings pattern (P1061)

discriminator:
type-id
type-constraint

4.2 Pattern Specifications
4.2.1 Wildcard Pattern

_

A wildcard pattern always matches any subject.
int v = 42;
v match {

_ => std::print("ignored");
// ^ wildcard pattern
};

This paper reattempts for _ to be the wildcard pattern. See Wildcard Pattern Syntax for further discussion.

— Matching Condition: None

4.2.2 Let Pattern

let binding-pattern

A let pattern always matches any subject. The binding-pattern is either an identifier or a structured bindings
pattern.
int v = 42;
v match {

let x => std::print("ignored");
// ^^^^^ let pattern
};

let can be used to introduce new names individually, or all-in-one.
let x // x is new
[a, let y] // a is old, y is new
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[let x, b] // x is new, b is old
let [x, y] // x and y are both new
let [x, [y, z]] // x, y, z are all new

match-pattern let binding-pattern

A let pattern can appear after a match-pattern to create bindings to the value that was matched with match-
pattern.
int i = 42;
i match {
42 => // match 42
let x => // bind name
42 let x => // match 42 and bind name at the same time

};

std::pair p = {0, 0};
p match {
[0, let y] => // match and bind a piece
let whole => // bind whole pair
[0, let y] let whole => // do both

};

4.2.3 Constant Pattern

constant-expression

A constant pattern tests the value of subject against the value of the constant pattern. The constant pattern
can be any constant-expression, such as literals, constexpr variables, or values of an enum.

— Matching Condition: bool(subject == constant-expression);

4.2.4 Parenthesized Pattern

( pattern )

A parenthesized pattern is used to group undelimited patterns.

— Matching Condition: subject match pattern

Example:
void f(const Shape* s) {

s match {
? (Circle: let c) => // ...
? (Rectangle: let r) => // ...
_ => // ...

};
}

std::optional<int> maybe_int();

void f() {
maybe_int() match {

(? let i) let o => // i is int, o is the whole optional
_ => // ...

};
}
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4.2.5 Optional Pattern

? pattern

An optional pattern tests pointer-like objects. It matches if subject contextually converts to true and *subject
matches pattern.

— Matching Condition: bool(subject) && *subject match pattern

4.2.6 Alternative Pattern

type-id : pattern
type-constraint : pattern

An alternative pattern tests sum type objects such as variant, any, and polymorphic types.

Let s be subject, S be std::remove_cvref_t<decltype(subject)>.

Case 1: Variant-like

An alternative pattern matches if the variant-like object stores a value of type type-id or the value of type
satisfies type-constraint, and the stored value matches pattern.

If std::variant_size<S> is well-formed and std::variant_size<S>::value is an integral, let I be the value
of s.index(). An alternative pattern matches if std::variant_alternative_t<I, S> is type-id or if it satisfies
type-constraint, and pattern matches get<I>(s).

Case 2: Casts

If auto* p = cast<S>::operator()<type-id>(s) is well-formed, alternative pattern matches if p contextually
converts to true and std::forward_like<decltype(s)>(*p) matches pattern.

A cast customization point is proposed, rather than using any_cast. Since any has an implicit constructor
from anything, overloading any_cast which takes const any& will likely cause a problem. Moreover, [P2927R0]
is in the process of introducing std::try_cast.
template <typename>
struct cast;

template <>
struct cast<std::any> {
template <typename T>
static const T* operator()(const std::any& a) noexcept {
return std::any_cast<T>(&a);

}

template <typename T>
static T* operator()(std::any& a) noexcept {
return std::any_cast<T>(&a);

}
};

template <>
struct cast<std::exception_ptr> {
template <typename T>
static const T* operator()(const std::exception_ptr& p) noexcept {
return std::try_cast<T>(p); // P2927R0

}
};

Case 3: Polymorphic Types
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This is listed as a separate case in case it’s needed for optimization flexibility. In principle though, the following
specialization of cast should provide the desired semantics.
template <typename Base>
requires requires { std::is_polymorphic_v<T>; }
struct cast<Base> {
template <typename T>
static const T* operator()(const Base& b) noexcept {
return dynamic_cast<const T*>(&b);

}

template <typename T>
static T* operator()(Base& b) noexcept {
return dynamic_cast<T*>(&b);

}
};

4.2.7 Structured Bindings Pattern

[ pattern-0 , … , pattern-N ]

Given the following structured binding declaration:

auto&& [ e-0, …, e-N ] = subject ;

Let e-i be a unique exposition-only identifier if pattern-i is a pattern and an ellipsis (...) if pattern-i is an ellipsis
(...). Structured bindings pattern matches subject if e-i matches pattern-i for all i where e-i is an identifier.

4.3 Scope of Bindings
The scope of the bindings introduced by let are as follows:

— If the pattern is left of =>, the scope of the binding is the corresponding expression statement.
— If the pattern is in expression match pattern guardopt, the scope of the binding is the expression

including the optional guard, unless:
— If the construct is the condition of an if statement, the scope of the binding is the then substatement of

the if statement.
— If the construct is the condition of a for, or while statement, the scope of the binding is the substatement

of for or while statement.

Example:
bool b1 = e1 match [0, let x] if x > 1;
// x not available here.

bool b2 = e2 match [let x]; // not a redeclaration
// x not available here.

if (e3 match (? let elem)) {
// elem available here

} else {
// elem not available here

}

while (queue.next() match (? let elem)) {
// elem available here

}

14



4.4 Static and Dynamic Conditions
Every pattern has a corresponding condition which is tested against the subject to determine whether the pattern
matches the subject.

For example, the constant pattern 0 has a condition that it matches if subject == 0 is true. However, there
are static and dynamic dimensions to which this condition can be applied. These dimensions are defined here.

4.4.1 Static Conditions

Static conditions are the static requirements of a pattern. The patterns being introduced in this paper have
dynamic behavior, and therefore their static conditions are the validity of a pattern’s match condition.

See Static Type Checking with Constraint Pattern for an example where this isn’t the case.

The main question is, are these static requirements checked or tested? Going back to the constant pattern 0, its
static condition is whether subject == 0 is a valid expression.
void f1(int x) {
x match {
0 => // ...
_ => // ...

};
}

In this example, whether x == 0 is a valid expression is checked at compile-time. If x is a std::string for
example, the program is ill-formed.
void f2(std::string x) {
x match {
0 => // ill-formed
_ => // ...

};
}

This behavior is likely to be pretty obvious to folks. But what if x were a templated parameter instead?
void f3(auto x) {
x match {
0 => // fine here
_ => // ...

};
}

f3("hello"s); // proposed: ill-formed

This paper proposes that this example be ill-formed at the instantiation site. While a model that treats 0 as a
no-match would be doable, I believe it’ll be better and safer as an opt-in feature. For f3<std::string> to have
different type-checking behavior than f2 would be novel and likely lead to subtle bugs.

This means that static conditions of patterns are always checked and enforced at compile-time. See More on
Static Conditions for further design discussions, and Testing the Static Conditions with match requires which
suggests an extension to explicitly treat the static conditions as compile-time tests rather than checks.

The semantics for this was not precisely defined in [P1371R3], and [P2392R2] proposes for f3("hello"s) to be
well-formed and 0 is a no-match.
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4.4.2 Dynamic Conditions

Dynamic conditions are more obvious and straight-forward. The constant pattern 0 matches if subject == 0
is true. But true when?

This paper proposes that match tests the dynamic condition at runtime, (think if) and match constexpr tests
it at compile-time (think if constexpr).

match match constexpr

void f(int x) {
x match {
0 => // ...
1 => // ...
_ => // ...

};
}

template <std::size_t I>
const auto& get(const S& s) {
return I match constexpr -> const auto& {
0 => s.foo();
1 => s.bar();
_ => static_assert(false);

};
}

5 Design Decisions and Discussions
5.1 Unified match Expression
The match expression presented in this paper unifies the syntax for a single pattern match and a selection of
pattern matches. Namely, expr match pattern and expr match { ... }.

The single pattern match expr match pattern is very similar to expr is pattern introduced in [P2392R2].

Early attempts at pattern matching with inspect also explored the idea of being a statement and an expression
depending on its context. In short, if it appears in an expression-only context (e.g. int x = inspect { ... };)
then it’s an expression. If it appears in a context where a statement or an expression can appear
(e.g. { inspect { ... } }), then it’s interpreted as a statement.

Having to differentiate between the statement-form and expression-form was a novel situation with no other
precedent in the language. Additionally, whatever the keyword, it would’ve needed to be a full keyword. Maybe
inspect would’ve been okay, but something like match was not even a possibility.

With this approach, match is feasible as a context-sensitive keyword, and and there is only an expression-form,
which simplifies the design.

5.2 Wildcard Pattern Syntax
This paper proposes _ as the syntax for wildcard patterns. Note that this is different from bindings that are
introduced with the name _.

For example,
e match {

_ => // ...
// ^ this is a wildcard

let [_, _] => // ...
// ^ ^ these are bindings
};

In the bindings case, the semantics are the same as [P2169R4], which was accepted for C++26. That is, a single
declaration of _ is usable but a use after a redeclaration is ill-formed.

In the wildcard case, it is a special rule in that _ can be an existing variable. For example,
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int i = 101;
int _ = 202;

i match {
_ => // 101 != 202 but _ is a wildcard, so this matches.

};

The recommended workaround is to use a guard:
int i = 101;
int _ = 202;

i match {
let x if x == _ => // ...

};

— [P1371R3] proposed __ which was also the syntax recommended in [P1110R0].
— [P1469R0] proposed disallowing use of _ as an identifier in the context of structured bindings, but this was

rejected by EWG. as it’s not referred to, and was accepted for C++26.
— [P2392R2] proposed _ as well.

This is a relatively small cost to get _ as the wildcard pattern, given the prevalence and scope of adoption of
_ across the industry. Languages such as Python, Rust, Scala, Swift, C#, Erlang, Prolog, Haskell, OCaml and
many others already use _. Pattern matching facilities across different languages do vary, but I’m not aware of
any language that disagree on _.

5.3 Why We Want Expressions in Patterns
If expressions are not supported at all, this would mean we couldn’t do some of the most simple operations that
switch can handle. We should be able to at the very least match integrals, strings, and enums.

So we need to allow expressions at least in some capacity. Let’s say for example we only allow literals. This
would give us matching for integral and string literals, but we wouldn’t be able to match against constexpr
variables of integrals and strings.

It also doesn’t get us enums, since enum values are not literals. We need unqualified names to be able to access
enum values, and qualified names to be able to access enum class values.

At this point, we already basically have primary-expression. The question of how to handle referring to existing
names vs introducing new names have to be addressed. Only allowing primary-expression rather than constant-
expression might still be useful or needed to avoid further grammar complications, but the fundamental issue of
existing vs new names I don’t think could nor should be avoided.

5.4 Exploration of Variable Declaration Syntax for Alternative Pattern
The proposed syntax in this paper is
type-id : pattern
type-constraint : pattern

Here’s a simple example:
std::variant<int, bool, std::string> parse(std::string_view);

parse(some_input) match {
int: let i => // ...
bool: let b => // ...
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std::string: let s => // ...
};

This looks more like case labels where the alternatives are listed and the appropriate one is chosen. The
correponding value is then matched with a nested pattern.

The absolute minimal syntax would be std::string s, which is rather appealing but ultimately not what is
proposed.

An example using this syntax might be something like:
std::variant<int, bool, std::string> parse(std::string_view);

parse(some_input) match {
int i => // ...
bool b => // ...
std::string s => // ...

};

Question 1: What are i, b, and s?

They certainly look like variable declarations, and I think it’ll be too surprising for them to be anything else. So
let’s for now assume that they are variable declarations. In this case, they should probably used as a general way
to introduce new names within a pattern for binding purposes. We want patterns to compose, so this applies to
nested patterns as well, but at the top-level this might look like:
int parse_int(std::string_view);

parse_int(some_input) match {
0 => // ...
1 => // ...
auto i => // use `i` which is `int` returned by `parse_int`

// not 0 or 1
}

Question 2: How do you disambiguate auto x between variant itself vs the alternative inside?

std::variant is a very unique sum type, in that you are able to handle the “catch-all” case where you can
generically access the value inside of it.

C++23 Variable Declaration Approach

std::visit(
overload(
[](int i) { /* ... */ },
[](auto x) { /* ... */ }),

parse(some_input));

parse(some_input) match {
int i => // ...
auto x => // ...

};

But what is x? Is it the unhandled alternatives of the variant, or is it the variant itself?

In the parse_int example from above, auto i was a binding to the whole value!

Note that for polymorphic types we could actually make this work since there’s no way to generically operate
on the runtime value of a polymorphic type anyway.
struct Shape { virtual ~Shape() = default; };
struct Circle : Shape { int radius; };
struct Rectangle : Shape { int width, height; };
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const Shape& get_shape();

get_shape() match {
const Circle& c => // runtime downcast to `Circle`.
const auto& s => // `s` can't generically be `Triangle` or `Rectangle` anyway.

};

This is what C# does for example:
Shape get_shape();

get_shape() switch {
Circle c => // runtime downcast to `Circle`
var s => // `s` is the whole shape.

};

While this syntax would work for polymorphic types specifically, there is a general desire to unify the handling
of sum types like variant and polymorphic types. For example, [P2411R0] points out:

The ‘is’-and-‘as’ notation [P2392] is cleaner and more general than the [P1371] and successors notation. For
example, it eliminates the need to use the different notation styles for variant, optional, and any access.
Uniform notation is the backbone of generic programming.

[P1371R3] already had uniform notation at least for variant, any and polymorphic types, but regardless, the
point is that using syntax that works only for polymophic types but not variant is not desired.

Question 3: Initialization? Conversions? First-match? Best-match?

Going back to the first example:
std::variant<int, bool, std::string> parse(std::string_view);

parse(some_input) match {
int i => // ...
bool b => // ...
std::string s => // ...

};

Are these variable declarations initialized by direct-initialization, copy-initialization, list-initialization, something
else? Having to answer this question isn’t necessarily a blocker, but one needs to be chosen.

Regardless of the answer though, there’s no initialization form that disallows conversions in general. If these
have first-match semantics (the only form of matching that has been proposed so far), int i would match if the
variant is in the bool state, since all of these are valid:
int i1(true); // direct
int i2 = true; // copy
int i3{true}; // list
int i4 = {true}; // copy-list

On the other hand, best-match semantics would introduce significant complexity. Value-matching needs to
consider becoming best-match, and this would likely mean evaluating more than necessary in order to compute
a score to best-match with. If value-matching remained first-match, then we would have best-match semantics
weaved info first-match semantics. This is likely very difficult for users.

Note that even with best-match semantics, allowing conversions makes code like this difficult to diagnose missing
cases:
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parse(some_input) match {
int i => // ...
std::string s => // ...
// maybe missing bool case? it is covered by `int` though...

};

Question 4: How do we match against an existing value?

Variable declaration syntax isn’t conducive to referring to an existing value. Suppose there is a constexpr value
batch_size that we want to match against. int batch_size wouldn’t work since that would be introducing
a new variable. batch_size could be annotated somehow, but annotating existing names rather than the new
names has already been attempted.

More generally, variable declaration syntax isn’t conducive to composition.

With this paper, the first example would be written as:
std::variant<int, bool, std::string> parse(std::string_view);

parse(some_input) match {
int: let i => // ...
bool: let b => // ...
std::string: let s => // ...

};

1. i, b, and s are bindings, introduced by let.
2. How do you disambiguate auto x between variant itself vs the alternative inside?

With this paper, let x binds the whole value, whereas auto: let x binds to the value inside the variant. The
following is an example of let x binding the whole value:
int parse_int(std::string_view);

parse_int(some_input) match {
0 => // ...
1 => // ...
let i => // use `i` which is `int` returned by `parse_int`

// not 0 or 1
}

The following is an example of auto: let x where we bind the alternative inside the variant.

std::visit(
overload(
[](int i) { /* ... */ },
[](auto x) { /* ... */ }),

parse(some_input));

parse(some_input) match {
int: let i => // ...
auto: let x => // x is bool or string

};

3. Initialization? Conversions? First-match? Best-match?

Initialization and conversions are dictated by the rules and principles of bindings as introduced by structured
bindings.

The problem of first-match vs best-match is solved by requiring an exact-match for alternative types. With
exact-match, first-match and best-match become equivalent.
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Variable Declaration Approach This Paper

parse(some_input) match {
int i => // ...
std::string s => // ...
// missing bool case, but covered by `int`.

};

parse(some_input) match {
int: let i => // ...
std::string: let s => // ...
// error: missing bool case

};

To be precise, the type to the left of the : is used to match an alternative as declared. This is similar to how
std::get works. For example:
void f(std::variant<const int, std::string> v) {
v match {
const int: let i => // `const int` is required here.
std::string: let s => // ...

};
}

5.5 Discussion on Variant-like Types
We have a few variant-like facilities: optional, expected, and variant. Type-based alternative matching for
std::variant seems pretty obvious.
void f(std::variant<int, std::string> v) {
v match {
int: let i => // ...
std::string: let s => // ...

};
}

The int and string are the states that a variant<int, std::string> can be in, and facilities such as
holds_alternative<int> and get<int> clearly provide type-based access to variant.

Of course, in general there’s more to it. The variant could be in a valueless-by-exception state, or we can have
std::variant<T, T>. Let’s table these for now.

The ? pattern specifically supports the pointer-like usage pattern, so we can write:
void f(int* p) {
p match {
? let i => // ...
nullptr => // ...

};
}

optional and expected are “variant-like” in that they have “one-of” states. However, their interfaces are not
std::variant-like at all. They carry much more semantic implications. optional<T> behaves more like T than
variant<std::nullopt_t, T> would. expected<T, E> behaves more like T than E, and again, more like T than
variant<T, E> would. Their interfaces are also pointer-like rather than std::variant-like.

Given this, it seems natural enough to match on an optional like this:
void f(std::optional<int> o) {
o match {
? let i => // ...
std::nullopt => // ...
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};
}

A std::variant-like approach would look like this:
void f(std::optional<int> o) {
o match {
int: let i => // ...
std::nullopt_t: _ => // ...

};
}

Here, if we changed std::optional<int> to say, a std::optional<double> the int: let i pattern would be
ill-formed, whereas the ? would continue to work. This is consistent with the usage of optional today:
void f(std::optional<int> o) {
// no mention of `int` in the below usage.
if (o) {
use(*o);

} else {
// ...

}
}

Open Question: For exhaustiveness checking purposes, matching with ? then _ will always be sufficient. But
this means ? will need to be matched first. For types like T* and unique_ptr, it should be possible to say
matching with ? and nullptr is exhaustive, and nullptr can be matched first as well. For optional though,
the null state is std::nullopt. To use nullptr for this seems wrong, given that optional design explicitly
introduced nullopt over using nullptr itself. The solution in [P2392R2] is to introduce is void, but this seems
problematic at least for expected<void, error> where the question becomes ambiguous.

But expected<T, E> gets more tricky. The “no value” case is not just some sentinel type/value, but is some
type E retrieved by .error().
void f(std::expected<int, parse_error> e) {
e match {
? let i => // ...
// How do we match and access `.error()` ?

};
}

So perhaps a variant-like approach would be better here:
void f(std::expected<int, parse_error> e) {
e match {
int: let i => // ...
parse_error: let err => // ...

};
}

This seems simple and clean enough. Similar to variant however, we can have expected<T, T>. Unlike variant
though, it actually goes out of its way to store a std::unexpected<T> as the error state to distinguish the two.
It’s conceivable to use this unexpected type to support expected<T, T>:
void f(std::expected<int, int> e) {
e match {
int: let i => // ...
std::unexpected<int>: let err => // distinguish
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};
}

But that would really hinder the by-far more common use cases:
void f(std::expected<int, parse_error> e) {
e match {
int: let i => // ...
std::unexpected<parse_error>: let err => // yuck

};
}

It was considered to allow matching std::expected<T, T> with T and std::unexpected<T> while matching
std::expected<T, E> with T and E. But it’s a bit weird for std::unexpected<E> to then not work at all, and
also weird for err in std::unexpected<T>: let err to not be a binding to a std::unexpected<T>, but rather
a binding to a T. A reference to the underlying std::unexpected<T> is also not an interface that std::expected
exposes. Furthermore, this wouldn’t solve the problem of variant<T, T> in a consistent manner. At best it’d
be a special case for std::expected.

Ideally, value and error would be names associated to the types T and E, such that they can be used even
when T and E are the same, and are stable even when T and E changes.

This is essentially how the Result type in Rust is defined, as well as many other languages that provide similar
functionalities.
enum Result<T, E> {
Ok(T),
Err(E),

}

This is matched like this:
match parse(some_input) {
Ok(v) => // use `v`
Err(err) => // use `err`

}

A few approaches were considered to emulate this “name-based” dispatch.

1. Introduce a parallel enum class with the desired names.
enum class expected_state { value, error };

template <typename T, typename E>
class expected {
// ...

expected_state index() const {
return has_value() ? expected_state::value : expected_state::error;

}

template <expected_state S>
auto&& get(this auto&& self) {
if constexpr (S == expected_state::value) {

return *std::forward<decltype(self)>(self);
} else if constexpr (S == expected_state::error) {

return std::forward<decltype(self)>(self).error();
} else {
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static_assert(false);
}

}
};

template <typename T, typename E>
struct variant_size<expected<T, E>> : std::integral_constant<std::size_t, 2> {};

template <typename T, typename E>
struct variant_alternative<(std::size_t)expected_state::value, expected<T, E>> {
using type = T;

};

template <typename T, typename E>
struct variant_alternative<(std::size_t)expected_state::error, expected<T, E>> {
using type = E;

};

The usage would need to be something along the lines of:
std::expected<int, parse_error> parse(std::string_view sv);

void f() {
parse(some_input) match {
using enum std::expected_state;
value: let v => // ...
error: let err => // ...

};
}

While the introduction of std::expected_state seems a bit odd on first glance, it actually doesn’t seem any
more odd than other related helper types such as std::in_place_t, std::unexpect_t, std::unexpected, etc.

2. Use the existing tag types

We already have tag types, and they roughly correspond with the various states. For example, std::expected
uses std::in_place_t and std::unexpect_t.
void f(std::expected<int, parse_error> e) {
e match {
std::in_place_t: let v => // ...
std::unexpect_t: let err => // ...

};
}

The names std::in_place_t and std::unexpect_t are terrible substitute for value and error. We’d be better
off with just using the types directly, and not fully supporting the std::expected<T, T> case.

3. Use the reflection of the accessors as the tags

This idea would be to come up with a new variant-like protocol using reflection. If a type let’s say were to advertise
its alternatives through std::vector<std::meta::info>, and we use those as the tags for dispatching…
template <typename T, typename E>
struct expected {
static consteval std::vector<std::meta::info> alternatives() {
return { ^value, ^error };

}
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constexpr const T& value() const&;
constexpr const E& error() const& noexcept;
// other qualified versions...

};

With this, perhaps we could pull off something like:
void f(std::expected<int, parse_error> e) {
e match {
e.value: let v => // ...
e.error: let err => // ...

};
}

I think this is a very interesting direction for both tuple-like and variant-like protocols, but I haven’t been able
to flesh out the details. See Reflection-based Tuple-like and Variant-like Customization Points.

In the end, the suggested path for now is:

T* std::optional<T>

ptr match {
? let x => // ...
nullptr => // ...

};

opt match {
? let x => // ...
std::nullopt => // ...

};

std::expected<T, E> std::variant<T, U>

e match {
T: let v => // ...
E: let err => // ...

};

v match {
T: let t => // ...
U: let u => // ...

};

5.6 Reflection-based Tuple-like and Variant-like Customization Points
“Tuple-like” customization today involves specializing std::tuple_size, std::tuple_element, and implement-
ing a get<I> function. Section 2.3.6 “Cleaner form for structured bindings’”tuple-like” customization” from
[P2392R2] has a good summary of the problem.

It also also says:

If we want to go further, then as Bjarne Stroustrup points out, the logical minimum is something like this,
which can be viewed as a jump table (similar to a vtbl) – the most general form, ideally provided by the class
author:
structure_map (EncapsulatedRect) { topLeft, width, height };

and as Bjarne Stroustup points out in [P2411R0]:

The mapping from an encapsulating type to a set of values used by pattern matching must be simple and
declarative. The use of get<>() for structured binding is an expert-only mess. Any code-based, as opposed
to declarative, mapping will have such problems in use and complicate optimization. We can do much better.

Perhaps this problem can be tackled with reflection.
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struct EcapsulatedRect {
static consteval std::vector<std::meta::info> elements() {
return { ^topLeft, ^width, ^height };

};

Point topLeft() const;
int width() const;
int height() const;

};

The advantage of this is that we can put data members as well as member functions into elements as opaque
reflections and apply them when needed.

Similarly, it seems feasible for there to be a reflection-based variant-like protocol as well.
template <typename... Ts>
struct variant {
static consteval std::vector<std::meta::info> alternatives() {
return { ^Ts... };

};

// ...
};

Note that for tuple-like protocol, even if we were to come up with something better, I think we’ll still have
to continue supporting the current protocol. There are types written that opted into that protocol that use
structured bindings and std::apply and other things today.

Variant-like protocol is actually a different story. Unlike tuple-like protocol, The variant helpers such as
std::variant_size, std::variant_alternative are solely used by std::variant. std::visit, the only
thing that might already be using a “variant-like protocol” does not support non-std::variants. It does support
types that directly inherit from std::variant [P2162R2], but they work by being converted into std::variant
beforehand.

As such, there’s a bigger opportunity for variant-like protocol to not bless the existing set of facilities but to
come up with something better.

5.7 More on Static Conditions
This is an elaboration of the discussion from Static Conditions. The question is: how are the requirements
and validity of patterns handled? The proposed solution in this paper is for the static conditions to always be
checked. For templates, this means the they are checked at instantiation.

Another approach is for some patterns to allow to be invalid if the subject is a dependent value. Since in this
case, the pattern can be valid under some instantiations.

This can be made to work, and would certainly useful. As the default behavior however, it seems like it will
likely cause subtle bugs.

Consider an example like this:
template <typename Operator>
void f(const Operator& op) {
op.kind() match {
'+' => // ...
'-' => // ...
'*' => // ...
"/" => // ...
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_ => throw UnknownOperator{};
};

}

Let’s say op.kind() returns a char, but we can’t be sure of that since op is templated. With the approach in
this proposal, the typo of "/" (should be '/'!) will be detected as a compile-time error. In a model where a
pattern can be invalid because the subject is dependent, this will likely be well-formed, fallthrough to the _ case,
and throw an exception at runtime.

It’s true that this function should probably be better constrained using concepts, but the reality is that this
kind of code is extremely prevalent today. Note that just using if, we would have been provided this safety:
template <typename Operator>
void f(const Operator& op) {
if (op.kind() == '+') {
// ...

} else if (op.kind() == '-') {
// ...

} else if (op.kind() == '*') {
// ...

} else if (op.kind() == "/") { // error: comparison between pointer and integer
// ...

} else {
throw UnknownOperator{};

}
}

Testing the Static Conditions with match requires is described as a future extension where users can explicitly
opt in to relax this requirement on static conditions.

6 Future Extension Exploration
The following lists patterns and features excluded from this paper, but could still be useful future extensions.

6.1 Static Type Checking with Constraint Pattern
A constraint pattern could be used to perform static type checks.

type-constraint

The static condition of a constraint pattern would be that decltype(subject) satisfies the type-constraint.

For example,
void f(auto p) {
p match {
[std::convertible_to<int>, 0] => // statically check that first elem converts to int.
// ...

};
}

If used with structured bindings, this becomes very similar to the static type checking proposed in [P0480R1].
auto [std::same_as<std::string> a, std::same_as<int> b] = f();

The syntax changes would be:
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match-pattern
// ...

+ type-constraint

binding-pattern
// ...

+ type-constraint identifier

6.2 Testing the Static Conditions with match requires
The sections Static Conditions and More on Static Conditions described what static conditions are. They also
described why by default, match and match constexpr should both always check the static conditions.

match requires (or some other spelling) would offer a way to test the static conditions instead.

match requires if constexpr (requires { ... })

void f(auto x) {
x match requires { // not proposed
0 => // ...
"hello" => // ...
_ => // ...

};
}

f("hello"s); // fine, skips 0

void f(auto x) {
if constexpr (requires { x == 0; }) {
if (x == 0) {
// ...
goto done;

}
}
if constexpr (requires { x == "hello"; }) {
if (x == "hello") {
// ...
goto done;

}
}
// ...
done:;

}

Using the constraint pattern from Static Type Checking with Constraint Pattern, we can perform a sequence of
static type tests.
void f(auto x) {
x match requires { // not proposed
std::same_as<bool> => // ...
std::integral => // ...
std::same_as<std::string_view> => // ...
std::range => // ...

};
}

Using the let pattern, we can even bind names to each of these:
void f(auto x) {
x match requires { // not proposed
std::same_as<bool> let b => // ...
std::integral let i => // ...
std::same_as<std::string_view> let sv => // ...
std::range let r => // ...
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};
}

Another example with structured bindings patterns:
void f(auto x) {
x match requires { // not proposed
let [x] => // ...
let [x, y] => // ...
let [x, y, z] => // ...
let [...xs] => // ...

};
}

Rather than the static condition (matching size requirement) of structured bindings pattern being checked, they
are if constexpr tested instead.

match match constexpr

if (condition) {
// ...

}

// match constexpr
if constexpr (condition) {
// ...

}

match requires (not proposed) match requires constexpr (not proposed)

if constexpr (requires { condition ; }) {
if (condition) {
// ...

}
}

if constexpr (requires { condition ; }) {
if constexpr (condition) {
// ...

}
}

6.3 Pattern Combinators
Pattern combinators provide a way to succinctly combine multiple patterns.

or ( pattern-0 , … , pattern-N )
and ( pattern-0 , … , pattern-N )

Example:

This Paper With or:

direction match {
'N' => f();
'E' => g();
'S' => f();
'W' => g();

};

direction match {
or('N', 'S') => f();
or('E', 'W') => g();

};
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This Paper With or:

e match {
A: let a => f();
B: let b => f();
C: let c => g();

};

e match {
or(
A: let a,
B: let b

) => f();
C: let c => g();

};

6.4 Designator Support for Structured Bindings
This would extend structured bindings to allow designators (i.e. .field_name) to match on that field.

match-pattern
// ...

+ [ designator-0 : pattern-0 , … , designator-N : pattern-N ]

binding-pattern
// ...

+ [ designator-0 : binding-pattern-0 , … designator-N : binding-pattern-N ]

Example:
return scope match {
GlobalScope: _ => Cxx::Scope::global_();
NamespaceScope: [.fact: let f] => Cxx::Scope::namespace_(f);
ClassScope: [.fact: let f] => Cxx::Scope::recordWithAccess(f, access(acs));
LocalScope: [.fact: let f] => Cxx::Scope::local(f);

// ^^^^^^^^^^^^^^
};

6.5 Value-based discriminators
This would extend the alternative pattern to allow value-based discriminators.

discriminator:
type-id
type-constraint

+ constant-expression

From Discussion on Variant-like Types, the example of enum values value and error:
enum class expected_state { value, error };

std::expected<int, parse_error> parse(std::string_view sv);

void f() {
parse(some_input) match {
using enum std::expected_state;
value: let v => // ...
error: let err => // ...

};
}
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variant<T, T> expected<T, T>

void f(variant<int, int> v) {
v match {
0: let first => // ...
1: let second => // ...

};
}

void f(expected<int, int> e) {
e match {
0: let value => // ...
1: let error => // ...

};
}
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