Trivial relocatability options

Proposal for an alternative approach to trivial relocatability

Document #: P2786R0

Date: 2023-02-10
Project: Programming Language C++
Audience: Evolution Incubator

Library Evolution Incubator
Revises: N/A
Reply-to: Mungo Gill

<mgill83@bloomberg.net >
Alisdair Meredith

<ameredithl@bloomberg.net>

Contents
1 Abstract
2 Revision history.

2.1 RO: Issaquah 2023 L e
Introduction

Motivating use cases

4.1 Efficient vector growth L
4.2 Moving types without empty states Lo
4.3 pmr types are often trivially relocatable oo o
4.4 Future proposal for language support for allocators

Experience at Bloomberg

Key differences between the proposals
6.1 Trivial implies semantics, not syntaxo L
6.2 Predictable specification without deference to Qol oL L.

Proposed changes

7.1 New terms and definitions L
7.2 New type category e
7.3 New semantics e e e e e
7.4 New type trait L
7.5 Newsyntax oL
7.6 Diagnosable errors L e e e
7.7 Relocation functions

Design choices

8.1 No library support is mandated L Lo
8.2 Contextual keyword vs. attribute L
8.3 Type trait vs. concept L e e e
8.4 trivially_relocate as the single place for compiler magic

w

[N B o oW W w

[B2 BTSN N

—= 00 3O O ot

mailto:mgill83@bloomberg.net
mailto:ameredith1@bloomberg.net

9 Known concerns 15

9.1 Separately managed objects L 15
9.2 Internal pointers to members oL 15
9.3 Active element of a union 15
9.4 ABI compatibility 16
9.5 Relocating const-objects L 16
9.6 Trivially relocatable is not trivially swappableo oo 16
10 Alternative designs 17
10.1 Smarter default for dependent templates L oL L 17
10.2 Ignoring trivially_relocatable like constexpr 17
11 FAQ 17
11.1 Is void trivially relocatable? e 17
11.2 Are reference types trivially relocatable? o oL oo 18
11.3 Why not?! o o e 18
11.4 Why can a class with a reference member be trivially relocatable? 18
11.5 Are cv-qualified types, notably const types, trivially relocatable? 18
11.6 Can const-qualified types be passed to trivially_relocate? 18
11.7 Can non-implicit-lifetime types be trivially relocatable? 18
11.8 Why are virtual base classes not trivially relocatable? 18
11.9 Why do deleted special members inhibit implicit trivial relocatability? 18
12 Proposed wording 19
12.1 Feature macros o i e e e e e e 19
12.2 Specification of trivial relocatability L o 19
12.3 Grammar for trivially_relocatable 20
12.4 New type trait o L e 20
12.5 Relocation functions oL 21
13 Appendix: Comparison with [P1144R6] 23
13.1 A Common Basis 23
13.2 Difference in tone e 23
13.3 Interface vs. semantics 24
13.4 Trivial copyability implies trivial relocatability 24
13.5 Implicit trivial relocatability L 24
13.6 Detecting miscategorization Lo 25
13.7 Moved object lifetime and destruction L Lo o 25
13.8 Support for const data members L 26
13.9 New relocation functions L 27
13.10Cosmetic differences L 29
14 Acknowledgements 30
15 References 30
1 Abstract

This paper examines an approach to support trivial relocatability, building upon ideas in previous papers
[P1029R3] and [P1144R6], and leveraging the experience of supporting bitwise movability in the BDE library.
It embraces the motivation for such a feature in those papers, while providing what we believe to be a more
rigorous design and specification.

2 Revision history.

2.1 RO: Issaquah 2023
Initial draft of the paper.

3 Introduction

For our purposes, a trivial relocation operation is a bitwise copy that ends the lifetime of its source object, as-if its
storage were used by another object (6.7.3 [basic.life]p5). Importantly, nothing else is done to the source object,
in particular its destructor is not run. This operation will typically (though exceptions are not forbidden)
be semantically equivalent to a move construction immediately followed by a destruction of the source object.

Any trivially copyable type is trivially relocatable by default. Many other types, even those which have non-trivial
move constructors and destructors, can maintain their correct behavior when trivially relocated — skipping the
source object’s destructor allows for skipping all bookkeeping updates that might need to be done by the
target object’s move constructor. This includes many resource-owning types, such as vector, unique_ptr, and
shared_ptr.

Note that simply doing a bitwise copy of these non-trivially-copyable objects will, as of C++423, result in
undefined behavior (when the copied bytes are treated by later code as an object of the original type). Making
this operation well-defined for those types which opt into this behavior is the primary goal of proposing this
feature as a language extension. The secondary goal is to implicitly support a wider range of trivially relocatable
types. The tertiary goal is to provide better diagnostics when trivial relocation semantics are misused.

We will also perform a detailed comparison of the differences with [P1144R6] (see appendix). Given the level of
similarity between the two papers, key differences will be noted where relevant.

4 Motivating use cases

We believe [P1144R6] has done a good job a motivating proposals in this area. Here, we highlight the specific
use cases that drive our proposal, just as a reinforcement of the earlier paper.

4.1 Efficient vector growth

Suppose we have a move-only type, class MoveOnlyType (for example, a unique ownership smart pointer),
and we wish to hold a vector of these types std: :vector<MoveOnlyType>. Simply emplacing 5 of these objects
would require that MoveOnlyType’s move constructor and destructor be called 7 additional times due to the vector
expansion required as more elements are inserted than the capacity (at least in one current implementation of
std::vector).

If MoveOnlyType were trivially relocatable, and if std: : vector were to take that into account as an optimization,
then the vector expansion caused by these 5 emplacements would require only 3 memmove operations, with no
additional calls to MoveOnlyType’s move constructor and destructor.

For this example we are assuming an initially empty vector with no reserve capacity, and that the implemen-
tation has a growth strategy of doubling the reserved space when more is required, from 0 to 1 to 2 to 4 to
8.

4.2 Moving types without empty states

Some types do not have a non-allocating empty state, so cannot have a noexcept move constructor. One example
is a known implementation strategy for std: :1list that always allocates at least a sentinel node. Lacking a non-
throwing move constructor, vectors of such list have a painful growth strategy. However, as long as the sentinel
does not maintain a back-pointer into its list object, such a type can be trivially relocated as the old object

https://wg21.link/basic.life

immediately ends its life without running its destructor, so does not have to restore invariants — there is no
window of opportunity to access the live object in a state where it has broken invariants.

4.3 pmr types are often trivially relocatable

The original motivation for this feature in the BDE library was to ensure efficient movement of allocator aware
types, using the allocator model that became standardized in namespace std: :pmr. As the allocator is simply
a pointer to a memory resource, and allocated memory does not reside within the owning object itself, many
non-trivial allocator-aware types can be trivially relocatable if an appropriate markup is available.

4.4 Future proposal for language support for allocators

The authors are also working on a separate proposal for direct language support for allocators, based upon the
std: :pmr design ([P2685R0]). That proposal anticipates support for trivial relocatability.

5 Experience at Bloomberg

Bloomberg has relied heavily on low level optimizations enabled by assuming the trivially relocatable model
holds. This implementation experience is built on the, so far valid, assumption that no current compilers
are optimizing to transform programs based on the specific undefined behaviors we exploit. The emulation is
achieved through a type trait, bslmf: :IsBitwiseMovable. More recently, in an experimental branch to explore
language extensions, pbastd::is_trivially_relocatable is used to demonstrate relocation of types using
std: :pmr: :polymorphic_allocator. This experimental model is a pure library extension, and has no impact
unless libraries are written to test this trait before choosing an optimized implementation. In particular, types
that are not trivially copyable must opt into the trait with a special traits markup, or by specializing the trait
for their relocatable type. Note that user specialization would not be permitted for a standardized type trait,
per 21.3.2 [meta.rqmts|p4.

The initial language support we propose is that the new trait will detect trivially copyable types as also being
trivially relocatable by default, while other types will default to non-trivially-relocatable. This part can be
covered by a library emulation, implementing the new trait in terms of std::is_trivially_copyable.

6 Key differences between the proposals

In reading the material that follows, it is good to be aware of the major differences in its design that led to
details differing from [P1144R6].

6.1 Trivial implies semantics, not syntax

[P1144R6] is based upon relocatability semantics, which are equivalent to a move followed by destruction. That
design leads to the deduced relocatable property being framed in terms of publicly accessible move constructor
and destructor, and the trivially relocatable requirements are based on those same syntactic requirements.

This proposal leads with the idea that triviality is key, and that all other trivial semantics in the language are
based upon the trivial semantics of bases and members, not syntax. Hence, public access to relocating functions
does not matter, as we will relocate using the trivial semantic instead for such types. For example, this leads to
support for trivially relocating friends.

6.2 Predictable specification without deference to Qol

[P1144R6] provides permission to use bitwise copies to perform relocation operations, but does not mandate it.
That optimization is left as a Qol feature of the relocating library functions. Misuse by annotating types that
are not suitable for relocation often leads to UB, or programs that are ill-formed, no diagnostic required.

https://wg21.link/meta.rqmts

This proposal leaves no room for Qol, fully specifying observable behavior, and requiring (diagnosable) ill-
formed programs when the facility is misused. This principle of predictability in the specification/syntax leads
to a divergence over whether the proposed property can be explicitly revoked.

6.3 Can std::swap be implemented as three relocates?

[P1144R6] constrains itself to supporting only types that support implementing std::swap as three relocate
operations. That rules out support for types that are important to this proposal, notably all pmr containers such
as std: :pmr::vector<std::pmr::string>. See Trivially relocatable is not trivially swappable for details.

6.4 Support for pmr types

The scoped allocator model, typified by std: :pmr types, is a strong motivator behind this proposal, notably for
examples like std: :pmr: :vector<std::pmr::string>. As such, we are careful to specify the feature to support
our primary use case.

We do not want to state the motivations of [P1144R6] as we are not the authors, so any summary of ours would
misstate in some way. However, it appears to be more concerned with supporting types with some notion of
regular behavior, and as such does not support types following the pmr allocator model.

7 Proposed changes

Our proposal changes and extends C+423 as follows.

7.1 New terms and definitions

We need to introduce and specify some key terms. These terms can be found in numerous other proposals, and
the definitions proposed here are very similar:

— relocate: To relocate a type from memory address src to memory address dst means to perform an
operation or series of operations such that an object equivalent (often identical) to that which existed at
address src exists at address dst, that the lifetime of the object at address dst has begun, and that the
lifetime of the object at address src has ended.

— relocatable: To say that an object is relocatable is to say that it is possible to relocate the object from
one location to another.

— trivially relocatable: Conceptually, a type is trivially relocatable if it can be relocated by means of
copying the bytes of the object representation and then ending the lifetime of the original object without
running its destructor.

A trivially relocatable type is a type that is implicitly trivially relocatable and/or is explicitly trivially
relocatable, and/or is an array of trivially relocatable types; otherwise the type is not trivially relocat-
able. Any otherwise trivially_relocatable type can be declared non-trivially relocatable by means of the
trivially_relocatable keyword with value false.

— implicitly trivially relocatable: An implicitly trivially relocatable type has no user-provided or
deleted destructors, no virtual base classes, no non-trivially-relocatable bases or non-static data members,
and the constructor selected for construction from a single rvalue of the same type is neither user-provided
nor deleted.

— Examples of types that are trivially relocatable by default are trivially copyable types, such as scalar
types, aggregates of trivially relocatable types, including arrays of such types, and such aggregates
with const and/or reference data members. Empty types can satisfy the requirements for an implic-
itly trivially relocatable type.

— Assuming it meets the requirements of the previous bullet point, then if a class has an appropriate
(move or copy) constructor, it is implicitly trivially relocatable regardless of the access level

(public/protected/private) of that constructor. This non-requirement for accessibility follows the
same model as the standard specification for trivially copyable types.

— If the copy constructor inhibits the declaration of the move constructor, then a class is implicitly
trivially relocatable if the copy constructor is implicitly defined, otherwise the copy constructor is
not relevant. Note that there are no requirements that the destructor be accessible, merely that it is
neither deleted nor user-provided.

— explicitly trivially relocatable: An explicitly trivially relocatable type is a user defined (class) type
that is defined with the contextual keyword trivially_relocatable and value true, with the following
proviso:

— An explicitly trivially relocatable class type may not contain any non-trivially relocatable
non-static data members nor base classes, nor have any virtual base classes. (I.e., it is a diagnosable
error to add the keyword with value true to a class that does not qualify.)

It is important to note that we are proposing to permit, by means of said keyword, types that would otherwise be
non-copyable and non-movable to be relocatable. For this reason we cannot define relocate and relocatable
in terms of a move construction followed by a destruction (as is done in [P1144R6]). The ability to explicitly
make a type trivially relocatable enables providing a customized (and thus non-trivial) move constructor and
destructor while declaring that the compound operation is trivial.

7.2 New type category

To better integrate language support, we further recommend that the language can detect types as trivially
relocatable where all their bases and non-static data members are, in turn, trivially relocatable; the con-
structor selected for construction from a single rvalue of the same type is neither user-provided nor deleted;
and their destructor is neither user provided nor deleted. This definition follows the same principle used in the
standard to define trivially copyable.

7.3 New semantics

In order to ensure that libraries taking advantage of the trivially relocatable semantic do not introduce undefined
behaviour, the model of lifetimes for objects must be extended to allow for relocation of trivially relocatable
types. As the compiler cannot know if a specific memcpy or memmove call is intended to duplicate or move an
object, we propose introducing the trivially_relocate function template to call memmove on our behalf, which
signifies to the compiler and other source analysis tools that the lifetime of the new object(s) has begun and the
lifetime of the original object(s) has ended:

template <class T>
requires is_trivially_relocatable_v<T>
T+ trivially_relocate(T* begin, T* end, T* new_location) noexcept;

Note that this function is designed to move a range of objects, rather than a single object, as that is expected to
be the common use case. Further note that, consistent with its low level purpose often tied to move semantics,
this function is denoted with noexcept despite having a narrow contract regarding valid and reachable pointers.

This design deliberately puts all “compiler magic” and core-language interaction dealing with the object lifetimes
into a single place, rather than into a number of different relocate-related overloads. Note that there is no
permission for a user to copy the bytes to perform a relocation themselves, unlike with trivial copyability,
although that would still work for trivially copyable types.

trivially_relocate can be thought of as ending the lifetime of the moved-from objects, followed by a memmove
, followed by start_lifetime_as (or maybe start_lifetime_as_array) on the moved-to objects. Unlike
memmove on its own, it is restricted to trivially relocatable types rather than to implicit lifetime types.

Note that start_lifetime_as is constrained to work only for implicit lifetime types whereas this proposal is
intended to support all trivially relocatable types, which are often not implicit lifetime types. The different
constraints are appropriate in each case. For the currently specified start_lifetime_as function, the idea is

that we point the compiler to a region of memory, and say “take these bytes of unknown provenance and turn
them into objects”. In particular, we might be copying bytes into memory from a stream, and those bytes did
not originate as objects in this abstract machine. Conversely, trivially_relocate takes existing valid objects
in memory, copies their bytes to a new location, and asks the compiler to imbue life into specifically those
bytes copied from known valid objects. It is important that the copying and imbuing life occur within the same
transaction, as that gives the compiler its necessary guarantees. Hence, all the new functionality is bundled into
a single trivially_relocate function, rather than decomposing into smaller parts that would allow the users
to perform the memmove themselves.

7.4 New type trait

In order to expose the relocatability property of a type to library functions seeking to provide appropriate
optimizations, we propose a new trait std::is_trivially_relocatable<T> which enables the detection of
trivial relocatability.

template< class T >
struct is_trivially_relocatable;

template< class T >
inline constexpr bool is_trivially_relocatable_v = is_trivially_relocatable<T>::value;

having a base characteristic of std: :true_type if T is trivially relocatable and std::false_type otherwise.

Note that it is expected that the std::is_trivially_relocatable trait shall be implemented through a com-
piler intrinsic, much like std::is_trivially_copyable, so the compiler can use that intrinsic when the lan-
guage semantics require trivial relocatability, rather than requiring actual instantiation (and knowledge) of the
standard library trait.

7.5 New syntax

In order to enable trivial relocatability to be useful for more complicated (i.e., non-trivially copyable) types,
it must be possible to explicitly mark non-trivially copyable types as trivially relocatable. As this should
be an issue only for class types (including unions), for which we recommend adding a new contextual keyword
trivially_relocatable as part of the class definition, similar to how final applies to classes. E.g.,

We propose one new contextual keyword that can be placed in a class-head to attach a trivially relocatable
predicate to a class:

— trivially_relocatable(bool-expression) which is used:
— With value true to explicitly make a class trivially relocatable, and
— With value false to explicitly remove trivial relocatability from a class.

The boolean predicate is optional, with a plain trivally_relocatable defaulting to true.

It is possible, by means of the trivially_relocatable(bool-ezpression) specification, to declare a class as
trivially relocatable even if that class has a user-defined copy constructor and/or move constructor and/or
destructor. This differs from [P1144R6] in the following notable ways:

— Where trivially_relocatable is specified with value true, we do not require that the move constructor,
copy constructor, and/or destructor be public or unambiguous. The trivially_relocatable specification
takes precedence.

— It is possible to render, by means of the keyword and value false, any type, even a trivially copyable
type, non-trivially relocatable.

Our motivation for the explicit specification always supplanting the implicit specification, rather than just the
case of true supplanting false, is the confusion we encountered when considering other semantics in alternative
designs below. It became clear that it was much simpler to reason about our examples when the trivial relocation
specification could be trusted to mean literally what it said.

While we do not have use cases for making trivially relocatable types to be non trivially relocatable, we do not
have use cases to disallow it either, and must choose a meaning for the syntax. Our experience with language
design in general has been that users will find corners where even the most obscure feature is useful, so prefer
to not remove a potentially useful feature that is intuitive from the syntax.

It may be argued that this is a case where [P1144R6] leans on the semantics of the feature where this proposal
leans on the syntax.

7.6 Diagnosable errors

In a non-dependant context, it would be a diagnosable error to mark a type as trivially relocatable if it
comprises any bases or non-static members that are not trivially relocatable. Types with virtual base classes
are automatically not trivially relocatable, as their implementation on some platforms involves an internal
pointer. We prefer that this low level behavior is consistent across platforms, rather than left as an unspecified
Qol concern, as our current experience has not yet turned up a usage of virtual base classes that would also
benefit from this feature.

Note that there are no issues with virtual functions, as virtual function table implementations do not take a
pointer back into the class, so the vtable pointer can be safely relocated.

7.6.1 Simple examples without a predicate

The common form is expected to be the simple case, without a predicate.

struct MyType trivially_relocatable : BaseType {
// class definition detatls

MyType (MyType&&); // user supplied
// Having a user-provided move constructor, “MyType would not be
// trivially relocatable by default. The “trivially relocatable’”
// annotation trusts the user that this type can indeed be trivially
// relocated.
};

struct NotRelocatable : BaseType {
// class definition detatils

NotRelocatable (NotRelocatable&&); // user supplied
// Having a user-provided move constructor, “NotRelocatable is mot
// trivially relocatable.

};

struct Error trivially_relocatable : BaseType {
NotRelocatable member;
// This class is ill-formed, as it requests to be trivially relocatable,
// but the compiler can see a mon-relocatable data member that cannot be
// worked around.

Error (Error&&); // user supplied
// There is mothing this move constructor can do to repair the trivial
// relocatability property, as it is mot invoked during trivial
// relocation.

7.6.2 Examples using the predicate

The boolean predicate form, trivially_relocatable(false), can be used to opt out of the behavior for a
type that might otherwise be trivially relocatable by default. However, the main purpose of the predicate is
to allow class templates to indicate their trivial relocatability where their opt-in might depend on the supplied
template arguments.

For example purposes, let us consider the following two classes:

struct Relocatable trivially_relocatable(true) {}; // trivially relocatable
struct Alternative trivially_relocatable(false) {}; // not trivially relocatable

static_assert(is_trivially_relocatable_v<Relocatable>);
static_assert(!is_trivially_relocatable_v<Alternative>);

Clearly, Relocatable is a trivially relocatable class type, and Alternative is a non-trivially relocatable class
type. We will use these classes to illustrate how similar, but subtly different, class templates behave.

As an initial example, we write a simple aggregate that demonstrates we get the expected behavior that correctly
deduces trivial relocatability when we have no user-supplied special members:

template<class TYPE>
struct Example {
TYPE value_a;
TYPE value_b;
i

static_assert(is_trivially_relocatable_v<Example<Relocatable>>);
static_assert(!is_trivially_relocatable_v<Example<Alternative>>);

However, for most of our remaining examples we are concerned with the case of a class template that provides
its own special members, so needs to supply a trivial relocation specification. The examples look simple, and
may lead to thinking “why am I messing with all this template syntax when the simple Example works?” but
remember, these are deliberately simplified examples to highlight just the relevant code, and the underlying
lesson is intended for larger code in practice, where Example would clearly not suffice.

As our first example, we write a class template that uses the trivially relocatable specification to forward the
trivial relocatability of its dependent members:

template<class TYPE>
class Duo trivially_relocatable(is_trivially_relocatable_v<TYPE>)
{
private:
TYPE value_a;
TYPE value_b;
public:
~Duo() {} // User provided destructor so not implicitly relocatable
i

static_assert(is_trivially_relocatable_v<Duo<Relocatable>>);
static_assert(!is_trivially_relocatable_v<Duo<Alternative>>);

Next, we use type constraints in a requires clause instead, so see how the behavior differs:
template<class TYPE>

requires is_trivially_relocatable_v<TYPE>
class RelocatableDuo trivially_relocatable

{

private:

TYPE value_a;

TYPE value_b;
public:

~RelocatableDuo() {} // User provided destructor so nmot implicitly relocatable
s

static_assert(is_trivially_relocatable_v<RelocatableDuo<Relocatable>>) ;
static_assert(!is_trivially_relocatable_v<RelocatableDuo<Alternative>>); // 4ll-formed

Observe that the static assertion for RelocatableDuo<Alternative> is ill-formed not because that
static_assert fails, but rather, that the RelocatableDuo template cannot be instantiated for Alternative
at all, i.e., RelocatableDuo is a template that wraps only trivially relocatable types, and so can guarantee to
always be trivially relocatable.

For another example, we can try to make a class template unconditionally trivially relocatable:

template<class TYPE>
class TryRelocatable trivially_relocatable
{
private:
TYPE value_a;
TYPE value_b;
public:
~TryRelocatable() {} // User provided destructor so not implicitly relocatable
};

static_assert(is_trivially_relocatable_v<TryRelocatable<Relocatable>>) ;
static_assert(!is_trivially_relocatable_v<TryRelocatable<Alternative>>); // ill-formed

The Alternative instantiation fails again, but this time it fails because the trivially_relocatable specifica-
tion is violated, which is a diagnosable error. The error message is likely to refer to the value_a and value_b
members, where the error message for the RelocatableDuo example would be related to violating the type
constraints of the requires clause.

Note that as an unadorned trivially_relocatable specification is equivalent to trivially_relocatable (true),
we can also consider the opposite case, trivially_relocatable(false):

template<class TYPE>
class NotRelocatable trivially_relocatable(false)
{
private:
TYPE value_a;
TYPE value_b;
public:
~NotRelocatable() {} // User provided destructor so not implicitly relocatable
};

static_assert(!is_trivially_relocatable_v<NotRelocatable<Relocatable>>) ;
static_assert(!is_trivially_relocatable_v<NotRelocatable<Alternative>>) ;

Here we see both instantiations are again valid, and the trivial relocation specification forces both instantiations
to be not trivially relocatable.

As a final example of Duo-like types, we consider what happens if one of the members is not type-dependent,
and not relocatable:

10

template<class TYPE>
struct Erroneous trivially_relocatable

{

Alternative value_a; // ill-formed
TYPE value_b;
Ig

This case is ill-formed in all cases, and can be diagnosed in the template definition without waiting for an
instantiation.

Another example where the trivial relocation specification might be useful is for trivial relocatability to be
contingent on avoiding some small object optimization, such as:

template<class T>
class Container trivially_relocatable(sizeof (T) > SHORT_OPTIMIZATION_LIMIT)

{
// Store small objects with an in-object representation, and dynamically
// allocate storage for larger objects.
/Y

s

Here we are concerned purely with whether a type is small enough to fit the small object optimization, and make
no effect to further constrain on type. This might be how we approach retrofitting trivial relocatability into an
existing library without raising ABI concerns.

7.7 Relocation functions

We propose two additional library functions to relocate ranges of objects. Note that this initial proposal does
not have single-object relocation functions as our primary motivation is relocating objects in bulk. It would be
easy to add single-object relocate functions, but the effect can be achieved by calling the proposed functions
with a range of a single object, so we wait to hear that the evolution groups feel sufficiently motivated to request
such convenience functions.

7.7.1 trivially_relocate

We propose the following function template to relocate trivially relocatable objects by means of a memmove. This
function is the unique entry point into the core magic that tracks and manages object lifetimes in the abstract
machine:

template <class T>
requires (is_trivially_relocatable_v<T> && !is_const_v<T>)
void trivially_relocate(T* begin, T* end, T* new_location) noexcept;

This function template is equivalent to:

memmove (new_location, begin, sizeof(T) * (end - begin));

with the precondition that end is reachable from begin. It further has the following two very important effects,
that matter to the abstract machine but do not have any apparent physical effect (i.e., these effects do not
change bits in memory), much like std: :launder:

— it begins the lifetime of the objects *new_location, * (new_location+1), .., through to * (new_location+end-begin-1).
If any of the objects or their subobjects are unions, they have the same active elements as the corresponding
objects in the range [begin, end).

— it ends the lifetime of the objects *begin, *(begin+1), .., through to *(end-1). This means it will be
Undefined Behavior to access these objects or to attempt to destruct any of them.

11

Note: the first bullet (beginning the new lifetime(s) of the new object(s)) could be achieved by saying that this
is equivalent to:

memmove (new_location, begin, sizeof(T) * (end - begin));
std::start_lifetime_as_array_without_preconditions(new_location, sizeof(T) * (end - begin))

but there is not currently a mechanism to end the lifetime(s) of the source object(s).

7.7.2 relocate

We also propose a new “convenience” function template:

template <class T>
requires ((is_trivially_relocatable_v<T> && !is_const_v<T>) ||
is_nothrow_move_constructible_v<T>)
T+ relocate(T* begin, T* end, T* new_location)

Which is equivalent to:

if constexpr (is_trivially_relocatable_v<T>) {
trivially_relocate(begin, end, new_location);

}

else if (ranges-do-not-overlap) {
std::uninitialized_move(begin, end, new_location);
std: :destroy(begin, end);

b
else {

// relocate-and-destroy each member in the appropriate order
¥

Note that this function supports overlapping ranges, just like memmove.

This function is similar to uninitialized_relocate in [P1144R6], except that our proposal requires pointers
rather than input iterators for the source, and mandates we always trivially relocate types that support trivial
relocation. The always-trivially-relocate-where-possible requires the input range be contiguous, but in principle
we could relax this to using iterators that model the contiguous_iterator concept.

This function is also constrained to require nothrow move constructible types, as that better reflects its use case
as an efficient relocation with minimal overhead. If an exception were thrown, the user would lack the information
to put the program back into a good state, and the following move_and_destroy function is intended to support
such use cases.

We do not have uninitialized in the name, as relocation already implies that we target range will be overwritten
— but note that we do support overlapping ranges where some of the relocating objects are already initialized
(and being overwritten) in the target range, which would therefore not be fully uninitialized.

7.7.3 move_and_destroy

We further propose a second “convenience” function template, that takes iterator ranges, supports potentially-
throwing move constructors, but does not support overlapping input and output ranges:

template <class Inputlterator, class NoThrowForwardIterator>
requires is_nothrow_move_constructible_v<iter_value_t<NoThrowForwardIterator>>
NoThrowForwardIterator move_and_destroy(InputIterator first, InputIterator last,
NoThrowForwardIterator destination);

This function is directly inspired by uninitialized_relocate in [P1144R6]. However, as per its name in this

proposal, it is mandated to always perform a move-construct followed by destruction and is not given permission
to switch to a trivially relocating implementation for certain types. Implementations may still find ways to

12

as-if such an implementation if they stare carefully at all the requirements, but we do not explicitly ban such
implementations, we do not anticipate that as a worthwhile optimization.

Note that this function does not accept types that are not move constructible, even if they are trivially relocatable.

We do not support overlapping ranges in this function as, in general, it is undefined behavior to compare iterators
into different sequences when trying to determine if there is an overlap, never mind the cost for non-random
access iterators, and unsupportability of input iterators. Pointers are a special case as arbitrary (valid) pointers
can be compared using std: :less<>.

We provide a single iterator range signature to introduce this facility, but can imagine LEWG wanting to consider
sentinels, std ranges support, and bounded output ranges rather than a single iterator to range-check the output.

8 Design choices

8.1 No library support is mandated

It is the intention that this extension be fully backwards compatible, and no library changes are required. Library
implementers may, if they so desire, take advantage of this feature in order to improve performance, but they
are not mandated to do so. This is a conservative position until we have confirmed that there would be no ABI
concerns from explicitly applying this to the library specification (see ABI compatibility).

This extension relies on core language support, but does not change existing program behavior, even if the
trivially relocatable property is deduced. It merely enables libraries to detect this property, and apply their
own optimizations if they so desire.

Looking ahead to a follow-up paper from LEWG that performs a more detailed analysis, a library component
(such as a container) will typically be affected in one of three ways:

1. Some components will, based on the definition in the standard, automatically gain trivial relocatability
when appropriate based on the contained type. Examples are array, pair and tuple.

2. Some components could be marked as unconditionally trivially relocatable, if it is desired to do so in
the future, for example shared_ptr and filesystem: :path.

3. Some components could be marked as conditionally trivially relocatable, based on the trivial relo-
catability of contained types or other conditions. Examples are optional and variant.

As library implementations vary, the category into which a particular component is placed may vary.

Note that some types that intuitively seem like they might be unconditionally trivially relocatable are often
only conditionally trivially relocatable due to forgotten template parameters with default arguments, such as
allocators or the deleter policy for unique_ptr. In other cases such as function, semantic constraints to support
small object optimizations can affect the choice. This is part of the reason to focus this proposal exclusively on
the minimal core language support, while deferring a detailed library analysis to a follow-up paper for LEWG if
this proposal is accepted.

8.2 Contextual keyword vs. attribute

Our design mandates all behavior regarding trivial relocatability rather than leaving potential usage unspecified,
as a quality of implementation issue. In particular, several categories of misuse are expected to produce diagnostic
errors.

We expect templates to make use of the trivially_relocatable markup, and prefer to avoid putting extra
work parsing attributes through the template machinery, although there are no technical limitations here. For
example, we believe that a specification relying on existing template wording will be simpler than trying to specify
a how a pack expansion works within such an attribute (although the groundwork was laid when alignas was
an attribute).

13

Usage of the trivially_relocatable markup should be clear and simple, especially with its mandated seman-
tics, much as final became one of the first contextual keywords. Notably, trivially_relocatable would fall
into the grammar in exactly the same location as final on a class.

By contrast, [P1144R6] prefers to use an attribute. The most obvious benefit is that an unnamed class can unam-
biguously use the attribute. When using a contextual keyword, we must limit usage to the case disambiguated
by the opening paren of the boolean expression.

It has also been pointed out that the use of a parenthetical bool-expression in this position of the contextual
keyword grammar might cause problems if some future language extension wanted to place a parenthetical list
there, unrelated to contextual keywords:

struct Foo { };

struct Foo (Bar) { }; // always a syntaz error today, but maybe we'd like to use this tomorrow
struct Foo final { };

struct Foo final (Bar) { }; // always a syntaz error today, but maybe we'd like to use this tomorrow
struct Foo trivially_relocatable { };

struct Foo trivially_relocatable (Bar) { }; // uh-oh!

Note that this would not be an issue if the hypothetical extension were to place the new parenthetical before
the contextual keywords, but that is already a constraint on future design. Such concerns do not arise with the
attribute form.

We are not aware of any such hypothetical extensions at this point, but should be aware of our choices.

8.3 Type trait vs. concept

Existing library facilities in this space, such as observing trivial copyability, are rendered as type traits rather
than concepts. Such type traits can easily be used to constrain templates in requires clauses, but do not
participate in subsumption relationships.

It would be simple to specify a concept in terms of the proposed trait, but that trait is squatting on the good
name. Note that the contextual nature of the keyword means there is no actual conflict here, but overloading
an identifier this way might be confusing for users.

The C++ grammar enforces that concepts cannot be specialized, unlike templates. Specifying as a concept,
rather than a type trait, would eliminate an unusual source of potential user error, and might have been the
preferred approach for this reason, were it not for the precedent of the existing family of trivial type traits.

8.4 trivially_relocate as the single place for compiler magic

When it comes to exposing core language facilities as a library API, we prefer to keep the interaction as small
and local as possible, ideally just a single “magic” function to imbue the new behavior.

Looking at a more general purpose library interface, we see the importance of being able to relocate arbitrary
ranges of objects, using the traditional move-and-destroy semantic where trivial relocatability is not supported.
We believe there are sufficient complexity getting the details right when handling overlapping source/destination
ranges that it merits adding to the library. Support for overlapping ranges is inspired by memmove allowing for
overlapping trivially relocatable ranges.

We offer two range APIs. relocate accepts pointers to ranges in memory, supports both movable and
trivially relocatable types, supports overlapping ranges, and mandates trivial relocation when supported.
move_and_destroy is directly inspired by uninitialized_relocate in [P1144R6], and supports iterator ranges
more broadly. As it is not generally possible to identify overlapping ranges where the iterator types vary, we
offer no support for overlapping ranges. Unlike [P1144R6], this specification does not permit trivial relocation
of the elements, guaranteeing the move-and-destroy semantic.

Note that we deliberately use C++20 requires clauses to constrain these functions. We believe this is important
for the tight core/library specification for trivially_relocate, but is largely cosmetic to ease review when

14

looking at

the other two functions. LWG may prefer to specify such functions with a Constraints: function element instead.

9 Known concerns

9.1 Separately managed objects

Performing trivial relocations is generally not appropriate for an object whose lifetime is separately managed,
such as a local variable on the stack, an object of static or thread storage duration, or a non-static data member
within a class. Adding compiler support to better observe trivial relocations means we may get warnings on
such misuse. (This concern is similar to destroying and recreating an object in-place. In such cases it is essential
to recreate the object before its destructor will be called implicitly — hence a warning and not an error, as the
idiom is already valid.)

9.2 Internal pointers to members
If a user explicitly (and erroneously) marks as trivially relocatable a class with an invariant that stores a
pointer into an internal structure, then relocation will typically result in UB. For example:

class MyClass
trivially_relocatable

{
private:
int data_v[2];
int *data_p; // data_p will not be valid after a trivial relocation.
public:
MyClass(int a, int b)
{
data_v[0] = a;
data_v[1] = b;
data_p = &(data_vI[1]);
}
MyClass(MyClass &&other)
{
data_v[0] = other.data_v[0];
data_v[1] = other.data_v[1];
data_p = &(data_v[1]); // NOT copied from other.data_v !!!
}
s

After trivial relocation, data_p in the relocated object would point to the address where the member of the old
object resided, but that object’s lifetime has now ended. UB occurs for any use of that pointer now, other that
assigning a new value, or destruction.

Note that this cannot happen without the user explicitly marking the class as trivially relocatable, as the
default rules for trivial relocatability handle this use case by requiring only implicitly defined move construc-
tors.

9.3 Active element of a union

When a union is trivially relocated, the active element of the union must follow along, or it would be undefined
behavior to access the relocated active element. As compilers typically do not explicitly track the active member,
it is thought that this would have minimal impact on implementations. However, for the purpose of static analysis,
or compilers seeking undefined behavior to exploit for optimizations, it is necessary to add the guarantee to
propagate the active element through the “compiler magic” in trivial_relocate function. Note that this

15

guarantee must apply to non-static data members that are unions too, including anonymous unions and variant
data members.

9.4 ABI compatibility

We do not anticipate any ABI compatibility concerns, but have been surprised before. Once the incubator is
happy to forward this proposal to evolution, we will ask the ABI group for their opinion to better inform this
part of the paper.

We deliberately avoid applying the trivially_relocatable trait to the standard library, deferring that work
to a separate paper once the ABI implications are properly understood.

9.5 Relocating const-objects

The specification for a trivially relocatable type supports const-qualified types, including const-qualified class
types. However the trivially_relocate function itself is constrained to exclude ranges of const objects.

The key concern is that destroying non-const objects with automatic, static, or thread storage duration is valid,
as long as those objects are replaced before their destruction in invoked. However, it is undefined behavior to
replace a const object with such a storage duration in the same manner (6.7.2 [intro.object|p10).

In order to protect from accidentally triggering UB, the special function to trivially relocate objects accepts only
non-const qualified object. If the user knows they are dealing with objects of dynamic storage duration, they
can cast away constness before the call with a const_cast, but must do so explicitly, acknowledging their intent.

Similarly, const-qualified non-static data members satisfy the definition of trivially relocatable, so do not dis-
qualify class types with such non-static data members from also being trivially relocatable, and the complete
object can easily (and safely) be relocated without requiring a const-cast. This is the same behavior that is
supported for references as non-static members.

9.6 Trivially relocatable is not trivially swappable

The most significant difference between this proposal and [P1144R6] is whether the trivial relocatability property
is necessary and sufficient to optimize std: :swap to three relocate operations.

[P1144R6] reports significant benefits optimizing std: : swap as three relocate operations, which is why it requires
trivially relocatable types to have appropriate assignment operators as well. The underlying assumption is
that destroy-then-move-construct has the same behavior as move-assign for supported types. This restriction
immediately excludes a set of types very important to the authors of this proposal, namely types using scoped
allocators (or any other allocator that does not propagate on swap). Prominent examples of types that do not
satisfy this second move constraint include class types with const or reference data members, all polymorphic
types, and types with non-propagating allocators (such as all of pmr).

The focus of this proposal is purely whether moving a sequence of bytes (once) produces a valid object rep-
resentation, modelling move-then-destroy for movable types, but also allowing relocation of immovable types
with the right properties. Such relocation functionality is essential for maintaining performance in types like
std: :pmr: :vector holding allocator aware types that are not no-throw movable, such as std: :pmr::vector
itself, and std::pmr::string, where the container maintains the invariant that all elements have the same
allocator. Note that no-throw movable types are already optimized by the current library vector, but pmr types
are mot no-throw movable.

One of the underlying assumptions of this paper is that trivial relocation is a fundamental operation in the
abstract machine, and trivial swap would be a similar fundamental primitive, much as the library continually
runs into the design constraint that swap is essentially a primitive operation, which the standard library expresses
as a compound operation through multiple moves.

We observe that relocate and swap have very different interfaces, where relocate starts with one valid object, and
a region of memory where no object exists. Its end state is the same, but which region of memory holds an actual
object has changed. Swap starts and ends with two live objects, and it is only their values that are exchanged.

16

https://wg21.link/intro.object

There are no extensions to the object lifetime model of the abstract machine needed to support (trivial) swap,
and indeed, it is valid to implement the “trivial swap” optimization today for trivially copyable types, relying
on 6.7.3 [basic.life]p8 notion of transparently replaceable objects, although that would risk undefined behavior
when one or both of the objects were subobjects of some other complete objects. We believe [P1144R6] has this
same problem swapping subobjects.

It is also worth noting that all trivially swappable types are trivially relocatable, as we can effectively perform
a trivial swap, and then end the lifetime of the original object without running its destructor, per the trivial
relocate semantics where destructors do not run. The converse is not true though, as we are concerned with
a variety of types that would satisfy a primitive trivial relocation specification, but not a primitive trivially
swappable specification.

While this proposal does not tackle the problem of std: : swap, we suggest that it would be better solved by a sep-
arate is_trivially_swappable trait, that would be defined as the conjunction of is_trivially_relocatable
and another trait indicating that move-assignment is equivalent to destroy-then-move-construct. We do not
have a catchy name for that “sensible” type trait yet though. We believe that the movability trait would be
best implemented with another feature like the trivially_relocatable specification in order to better deduce
the property for common types, according to their base classes and non-static data members. Note that the
is_trivially_swappable trait would be implemented entirely in terms of the other two traits, and not require a
third markup of its own. This approach would properly deconstruct the concerns into their separate dimensions.
As a further extension, a trivially_swappable specification could imply both trivially_relocatable and
predictable move semantics.

10 Alternative designs

10.1 Smarter default for dependent templates

An alternative design we considered for the trivially_relocatable specifier lacking a predicate is that, rather
than defaulting to true, the predicate would default to (std::is_trivially_relocatable_v<PACK> && ...)
where PACK would be a template parameter pack comprising the (potentially empty) set of types of any dependent
bases and non-static data members. Hence, trivially_relocatable would be a “make me trivially relocatable
if possible” request for class templates, rather than forcing an error on instantiation. It would still be an error
to mark a class template having non-depended bases or non-static data members that were, in turn, not trivially
relocatable.

We rejected this design as likely to be confusing, ascribing multiple possible meanings to the simple
trivially_relocatable specifier.

10.2 Ignoring trivially_relocatable like constexpr

To simplify working with class templates, we considered treating a trivially_relocatable specifier that evalu-
ates to true, including the default case where the predicate is implicitly true, like constexpr where it is simply
ignored at instantiation time if that class template cannot be made trivially relocatable. This would still be
expected to diagnose non-dependent reasons for failure eagerly though, like static_assert.

We rejected this direction for additional complexity, and breaking the principle of least astonishment where the
value of a trivially_relocatable specifier can be relied on as accurate.

11 FAQ

11.1 Is void trivially relocatable?

No, and it is not trivially copyable either.

17

https://wg21.link/basic.life

11.2 Are reference types trivially relocatable?

No, and they are not trivially copyable either.

11.3 Why not?!

It is not possible to take the address of a reference to pass it to relocate. How the compiler implements
references is entirely unspecified, and may not need physical storage if the reference never leaves a local scope.
As it is not meaningful to ask about copying/relocating a naked reference, rather than the entity it refers to,
these trivial properties are false.

11.4 Why can a class with a reference member be trivially relocatable?

For the same reason such a class can be trivially copyable. Strictly speaking, reference members are not non-
static data members, and you cannot create a pointer-to-data-member to one. They deliberately fall through the
relevant wording by not appearing in the list of disallowed entities, despite not being trivially copyable/relocatable
as a distinct type in their own right. This is subtle wording for the unwary, but has been standard practice for
many a year.

11.5 Are cv-qualified types, notably const types, trivially relocatable?

Yes, if the unqualified type is trivially relocatable.

11.6 Can const-qualified types be passed to trivially_relocate?

No, see Relocating const-objects. While const-qualified types are trivially relocatable, and so do not inhibit
the trivial relocatability of a wrapping type, they are typically not safe to relocate due to leaving behind a
dead object that cannot be replaced using well-defined behavior. Hence, the trivially_relocate function is
constrained to exclude const-qualified types. This can be worked around using const_cast if doing so would
not introduce undefined behavior

11.7 Can non-implicit-lifetime types be trivially relocatable?

Yes. See New semantics

11.8 Why are virtual base classes not trivially relocatable?

As they are not trivially copyable either. We believe it is possible to implement virtual bases such that trivial
copy and relocatability would not be a concern, as all the runtime fix-ups can be resolved in the initial object
construction. However, it is not clear that all implementations use such a layout, and forcing trivial operations
may be an ABI break.

We would love to remove this restriction, but this should be kept consistent with the corresponding restriction on
trivially copyable. If no current ABIs are affected we might consider normatively allowing, or even encouraging,
such an implementation (for both trivialities) as conditionally supported behavior on platforms that would not
incur an ABI break.

11.9 Why do deleted special members inhibit implicit trivial relocatability?

Initially we considered allowing trivial relocation of types with these special members functions deleted, based on
the notion that we are familiar with the idea since C++17, where “mandatory copy elision” started propagating
non-copy/movable return values. However, relocation is not the same as the initial construction occurring at a
different location (copy elision), so there were objections to the idea that when a user deliberately removes an
operation, we should not silently re-enable it by a back door. Note that this changes only the default, preventing
accidental relocation of non-copyable non-movable types for which relocatability was neither considered nor

18

intended — if trivial relocatability is desired, such classes can be made explicitly_ trivially_relocatable by
means of the trivially_relocatable keyword.

This design also follows that of the core language for trivial copyability, which was changed to exclude types
that deleted all copying operations in C++17 ([CWG1734]).

12 Proposed wording

All changes are relative to [N4928].
Editors’ note: Uncompleted wording tasks:

— complete specification for trivially_relocate (currently a half-specified mess)
— specify support for overlapping ranges in the “equivalent to” wording of the non-trivial relocate function

12.1 Feature macros

In 15.11 [cpp.predefined] add the following macro:
_cpp_trivial_relocatability TBD

Amend 17.3.2 [version.syn] with the following macro to the header <version>.

#define __cpp_lib_trivially_relocatable TBD // also in <memory>, <type_traits>

12.2 Specification of trivial relocatability
Append to 6.8.1 [basic.types.general]p9:

Scalar types, trivially relocatable class types, and arrays of such types, are collectively called trivially relocat-
able types.

Add a new paragraph to 11.2 [class.prop]:
A trivially relocatable class is a class that:

— has no base classes that are not of trivially relocatable type,
— has no non-static non-reference data members whose type is not a trivially relocatable type,
— has no virtual base classes,
has no user-provided or deleted destructors,
— either has no trivially_relocatable predicate, or has a trivially_relocatable predicate that evalu-
ates to true,
— and either
— has a move constructor that is neither user-provided nor deleted, or
— has no move constructor and has a copy constructor that is neither user-provided nor deleted.

[Note: accessibility of the special member functions is not relevant — end note]

[Note: trivially copyable class types are implicitly trivially relocatable unless they have a trivially_relocatable
predicate that evaluates to false — end note]

[Note: a type with const-qualified or reference members can be trivially relocatable — end note]

[Note: lambdas are trivially relocatable if and only if their closure type is a trivially relocatable class type —
end note]

Design note: It is possible, by means of the trivially_relocatable(true) specification, to declare a class as
trivially relocatable even if that class has user-provided special members (see proposal).

19

https://wg21.link/cpp.predefined
https://wg21.link/version.syn
https://wg21.link/basic.types.general
https://wg21.link/class.prop

12.3 Grammar for trivially_relocatable

Add trivially_relocatable to the list of Table 5: Identifiers with special meaning ([tab:lex.name.special] in
5.10 [lex.name])

Change the grammar in 11.1 [class.pre] to add class-context-seq, class-context-keyword, class-triv-reloc-
spec and class-triv-reloc-expr as follows:

class-head:
- class-key attribute-specifier-seq,,, class-head-name class-virt-specifier,,, base-clause,
- class-key attribute—specifier—seqopt base-clause,

+ class-key attribute-specifier-seq,,, class-head-name class-context-seq,, base-clause,
+ class-key attribute-specifier-seq,, class-triv-reloc-expr base-clause,

pt

pt

opt pt

+ class-context-seq:
+ class-context-keyword class-context-seq,,

+ class-context-keyword:
+ class-virt-specifier
it class-triv-reloc-spec

+ class-triv-reloc-spec:
+ trivially_relocatable
+ class-triv-reloc-expr

+ class-triv-reloc-expr:
+ trivially_relocatable (constant-expression)

Add the following paragraph before 11.1 [class.pre|p5:

Each form of class-context-keyword shall appear at most once in a complete class-context-seq.

In a class-triv-reloc-expr,, the constant-expression, if supplied, shall be a contextually converted constant
expression of type bool (7.7 [expr.const]). The class-triv-reloc-spec, trivially_relocatable without a
constant-expression is equivalent to the class-triv-reloc-spec,,; trivially_relocatable(true).

EDITORS’ NOTE: We probably need to add something similar to p5, or revise p5 to use the new
grammar term class-context-seq instead, and extend the example.

Add the following paragraphs to 11.2 [class.prop]:

A class type having class-triv-reloc-spec,,, trivially relocatable or class-triv-reloc-expr,;
trivially_relocatable with value true specifies that it shall be considered trivially relocatable per
the proposed definition in 6.8.1 [basic.types.general].

It shall be a reportable error and the program shall be ill-formed if a type T is declared with the
trivially_relocatable class-triv-reloc-spec,y or the trivially_relocatable class-triv-reloc-expr,,
with value true where one or more of the following is true:

— T has a virtual base class,
— T has a (non-static non-reference) member that is not trivially relocatable, and
T has a base class that is not trivially relocatable.

12.4 New type trait
Add to the <type_traits> header synopsis in 21.3.3 [meta.type.synop]:

template< class T >
struct is_trivially_relocatable;

20

https://wg21.link/lex.name
https://wg21.link/class.pre
https://wg21.link/class.pre
https://wg21.link/expr.const
https://wg21.link/class.prop
https://wg21.link/basic.types.general
https://wg21.link/meta.type.synop

template< class T >
inline constexpr bool is_trivially_relocatable_v = is_trivially_relocatable<T>::value;

Add a new entry to table 47 in 21.3.5.4 [meta.unary.prop]

Template Condition Preconditions
template<class T> struct T is a trivially relocatable type remove_all_extents_t<T> shall
is_trivially_relocatable; be a complete type or cv-void

12.5 Relocation functions
12.5.1 trivially_relocate

Add to the <memory> header synopsis in 20.2.2 [memory.syn|p3:

// 20.2.6, explicit lifetime management template<class T>

T+ start_lifetime_as(void* p) noexcept;
template<class T>

const T* start_lifetime_as(const void* p) noexcept;
template<class T>

volatile T* start_lifetime_as(volatile void* p) noexcept;
template<class T>

const volatile T* start_lifetime_as(const volatile void* p) noexcept;
template<class T>

T+ start_lifetime_as_array(void* p, size_t n) noexcept;
template<class T>

const T* start_lifetime_as_array(const void* p, size_t n) noexcept;
template<class T>

volatile T* start_lifetime_as_array(volatile void* p, size_t n) noexcept;
template<class T>

const volatile T* start_lifetime_as_array(const volatile void* p,

size_t n) noexcept;

template <class T>
requires (is_trivially_relocatable_v<T> && !is_const_v<T>)
T+ trivially_relocate(T* begin, T* end, T* new_location) noexcept;

template <class T>
requires ((is_trivially_relocatable_v<T> && !'is_const_v<T>) ||
is_nothrow_move_constructible_v<T>)
T* relocate(T* begin, T* end, T* new_location);

template <class Inputlterator, class NoThrowForwardIterator>
requires move_constructible<iter_value_t<NoThrowForwardIterator>>
NoThrowForwardIterator move_and_destroy(InputIterator first, InputIterator last,
NoThrowForwardIterator destination);

Append to 20.2.6 [obj.lifetime]:

template <class T>
requires (is_trivially_relocatable_v<T> && !is_const_v<T>)
T* trivially_relocate(T* begin, T* end, T new_location) noexcept;

Preconditions: end is reachable from begin

21

https://wg21.link/meta.unary.prop
https://wg21.link/memory.syn
https://wg21.link/obj.lifetime

[new_location, new_location + begin - end) denotes a region of allocated storage that is a subset of the
region of storage reachable through (6.8.4 [basic.compound]) new_location and suitably aligned for the type T.

Effects: Implicitly creates objects (6.7.2 [intro.object]) within the denoted region consisting of an object a of
type T whose address is p, and objects nested within a, as follows: The object representation of a is the contents
of the storage prior to the call to trivially_relocate. The value of each created object o of trivially-relocatable
type U is determined in the same manner as for a call to bit_cast<U>(E) (22.15.3 [bit.cast]), where E is an lvalue
of type U denoting o, except that the storage is not accessed. The value of any other created object is unspecified.

Returns: A pointer to the a defined in the Effects paragraph.
Throws:: Nothing.

Remarks: The active member of any union objects or subobjects in the relocated range [new_location, new_location + beg:
is the active member of the corresponding union objects or subobjects from the original range [begin, end).

Ends the lifetime of the objects in the range [begin, end) without running their destructors, as if the storage
were reused by another object (6.7.3 [basic.life]).

[Note: A likely implementation will simply call a compiler intrinsic that calls memmove and updates its notion of
the object lifetime. —end note]

EDITOR’S NOTE: THIS IS A LIGHTLY MASSAGED COPY OF start_lifetime_as SPEC AND
NEEDS MORE WORK, IN PARTICULAR WRT USING BIT_CAST TO MAGICALLY IMBUE
LIFE INTO NEW OBJECTS

12.5.2 relocate

We are also proposing a new “convenience” function template that uses trivial relocatability where available:

template <class T>
requires ((is_trivially_relocatable_v<T> && !is_const_v<T>) ||
is_nothrow_move_constructible_v<T>)
T* relocate(T* begin, T* end, T* new_location);

Effects: Equivalent to:

if constexpr (is_trivially_relocatable_v<T>) {
return std::trivially_relocate(begin, end, new_location);
+
else if (ranges-do-not-overlap && is_nothrow_move_constructible_v<T>) {
uninitialized_move(begin, end, new_location);
destroy(begin, end);
return new_location;

3

else {
// relocate-and-destroy each member in the appropriate order
return new_location;

b

Throws: Nothing.

12.5.3 move_and_destroy

We are also proposing a new “convenience” function template that never uses trivial relocatability, even where
available:

template <class Inputlterator, class NoThrowForwardIterator>
requires is_nothrow_move_constructible_v<iter_value_t<NoThrowForwardIterator>>

22

https://wg21.link/basic.compound
https://wg21.link/intro.object
https://wg21.link/bit.cast
https://wg21.link/basic.life

NoThrowForwardIterator move_and_destroy(InputIterator first, InputIterator last,
NoThrowForwardIterator destination);

Precondition: the ranges do not overlap. [Editors’ note: sloppy phrasing.]
Effects: Equivalent to:

for (; first != last; ++destination, (void)++first) {
::new (voidify(xdestination)) iter_value_t<NoThrowForwardIterator>(*first);
destroy_at (addressof (xfirst));

}

return destination;

Throws: Nothing, unless an exception is thrown by a move constructor.
Remarks: If an exception is thrown, all objects in both the source and destination ranges are destroyed.
Editors’ note: Review voidify in light of C++23 changes.

Editors’ note: Preconditions and throws clause implicit from Effects:, but stated for clarity while
in Evolutionary groups.

Design note: What do we do about InputIterators that return proxies? The addressof to destroy
will not work. Do we add more constraints? Is there a better pattern?

13 Appendix: Comparison with [P1144R6]

Here we perform a detailed comparison of this proposal with [P1144R6], highlighting the large degree of overlap,
and describing the differences.

The two papers agree to a large extent on the design space, and largely quibble on the details, sometimes
cosmetically, and in a few places technically.

13.1 A Common Basis

Both papers introduce a trivially relocatable type as a new type category, and even agree on spelling. Both
papers define that category in a way that can be implicitly deduced for many existing types, notably scalars and
arrays, and that can recursively deduce that property in classes comprising only trivially relocatable types,
and without user-provided special member functions. Both papers provide an explicit markup, using the
trivially_relocatable token, for users to mark their own classes with user-provided special member func-
tions as retaining this new property. Both markups allow for a boolean predicate for a class to conditionally
opt-in to the new property when it is not inferred. Both papers agree that it is undefined behavior to mark
up a class whose move constructor and destructor maintain an invariant that does not support simple bitwise
movement, such as an internal pointer.

Both papers agree that memmove alone is not sufficient to perform an in-memory relocation, as the C++ abstract
machine tracks object lifetimes independently of the object representation in memory. Both papers propose
standard library APIs to perform a bitwise relocation in a way that is exposed to the abstract machine, and
both papers expect that function to be implemented simply as memmove at runtime. Both papers provide at
least one library API that will safely relocate a range of objects, yet neither adds overloads in the std: :ranges
namespace that rely on range concepts.

Both papers defer on a detailed analysis of the standard library, leaving adoption as an optimization throughout
the library as a Qol detail for library implementers.
13.2 Difference in tone

Note that this point is entirely subjective and the opinion of the authors this paper, and not necessarily the
author of [P1144R6].

23

[P1144R6] has a focus on delivering a high-level library interface to users of the language, and proceeds with
the minimal level of detail with regard to core specification to make those library APIs implementable. This is
evidenced by language talking about the absence of side effects to infer that certain code transformations are
possible, spread across a number of functions, and a library API that works with iterator ranges as the most
useful approach that fits within the standard library design.

This paper starts from the principle that a change in the abstract machine is necessary, so starts with a core
specification that explicitly handles changes to the rules of object lifetimes, and puts all of that abstract machine
magic in exactly one function that is available to library implementers and users of the library alike. The broader
library support is then built on top of this function, which may be reflected in the design of the library APIs
themselves.

13.3 Interface vs. semantics

In [P1144R6], a type supports relocation based upon the public interface of its bases and non-static data members,
whereas this proposal is based upon the semantics of its bases and non-static data members, following the same
principles as trivial copyability. For example, a type with a const-qualified non-static data member may be
trivially relocatable under this proposal, but not under [P1144R6] as the const data member would use copy
rather than move semantics. Note that in some (common) cases, such as scalar types, there is no distinction
between move and copy semantics, and both proposals agree on the behavior of such types.

Another way this principle applies is that in [P1144R6] it is an error to explicitly mark a type as trivially
relocatable if it does not have a public interface that supports regular move semantics; conversely, while this
proposal does not automatically infer trivial relocatability for types with deleted move operations (nor does
[P1144R6)), it explicitly allows the user to specify trivial relocatability, overriding the default, as long as all of
its bases and members are trivially relocatable in turn.

An alternative way to present this is that [P1144R6] provides a library led destructive-move semantic, that is
supported only for movable types. This paper proposes a low level language primitive to relocate objects in
memory, regardless of their movability.

13.4 Trivial copyability implies trivial relocatability

Both papers explicitly state that a trivially copyable type would be trivially relocatable by default. However
the inverse is specifically not true, i.e., a trivially relocatable type is not necessarily trivially copyable.

Only this paper provides a means to mark a trivially copyable type as not trivially relocatable. This
design decision follows from the principle of least astonishment; if the user requests something, absent a good
(astonishing!) reason, they should get what they requested. See also smarter default for our inspiration for why
this is the correct choice, even with the absence of specific motivating use cases.

13.5 Implicit trivial relocatability
The conditions for a type to be trivially relocatable by default are similar, but with several notable differences:

— [P1144R6] requires that the copy constructor not be user provided, where this proposal does not care about
the copy constructor unless it also serves as the move constructor.

— [P1144R6] requires that there be no user-provided move or copy assignment operators, whereas this pro-
posal does not care about assignment operators. This turns out to be more significant than the authors of
this paper first thought, see Trivially relocatable is not trivially swappable.

— [P1144R6] requires that the relevant move/copy constructor and/or destructor be publicly accessible,
whereas this proposal states there should be no accessibility restrictions. This difference arises from
[P1144R6] explicitly treating relocate as move-then-destroy, while this paper leans recursively into the
semantics of bases and members, as for trivially copyable types.

— [P1144R6] supports deleted special member functions, whereas this proposal requires a user explicitly
declare their type as trivially relocatable if the relevant members are deleted. This difference comes from

24

this paper trying to follow the users’ intent declared by their syntax in this case, where [P1144R6] is aims
to create a user-friendly facility that does not require excessive markup.

— [P1144Re6] specifies that relocation attributes are not relevant if a type would be trivially relocatable by
default, i.e., the attribute is only opt-in and never opt-out; this proposal requires the compiler to respect a
trivially_relocatable(false) specification, i.e., the user specification dominates the default semantics.

13.6 Detecting miscategorization

This paper makes it a diagnosable error to attempt to declare a type as trivially relocatable if any of its bases
or non-static data members are not, in turn, trivially relocatable. This approach is intended to avoid silently
introducing undefined behavior where the compiler cannot see that all moving parts are trivially relocatable

types.

[P1144R6] allows users to mark any class as trivially relocatable, as long as it supports public move semantics,
even if comprises bases or data members that are not themselves trivially relocatable. This approach is intended
to support integration with third party libraries, where the user believes that it would be safe to move the bytes
of all the relevant 3rd party data types.

We believe the difference in approach is that the authors of this proposal are familiar with the Bloomberg
ecosystem where a significant portion of the code is home grown, and detecting errors (especially those leading
to UB) is important. Conversely, [P1144R6] is targeting the wider C4++ ecosystem where users will not want to
wait on all of their 3rd party libraries to adopt the feature before they can.

13.7 Moved object lifetime and destruction

[P1144R6] describes its proposed relocate functions as “equivalent to a move and a destroy”, with permission
to elide any side effect of move construction and the destructor. The library wording for “equivalent to” is doing
a lot of heavy lifting for unspecified compiler magic, spread across many functions:

— How are objects relocated if not by move-and-destroy? (We will assume bitwise copy from here on)
— How are non-trivially copyable objects brought to life after a bitwise relocation?
— How do we signify to the compiler that the originally moved objects lifetime has ended?

This is leaving a lot to library implementers and users to figure out, and hits problems in the abstract machine
similar to the motivations for std::launder. Although “the standard is not a tutorial”, it is good to have a
common understanding when relying on implicit specification. This proposal is therefore explicit and predictable,
not deferring to Qol:

— The standard library relocate function is explicitly stated to be a memmove call to copy the bytes of the
object representation

— The trivial relocation is mandated, not optional

— The lifetime of an object ends once it is trivially relocated from

— The destructor of such an object shall not be called

— The compiler magic to imbue life into the relocated objects is limited to a single function

— The user can explicitly request a trivial relocation as the “magic” function is specified and publicly
available

— No claim is made as to any equivalence between trivial relocation and “move and destroy”. As an
example the following non-movable class would be trivially relocatable in this proposal but not [P1144R6],
assuming the unique_ptr type is trivially relocatable:

class X

{

private:

25

const unique_ptr<SomeObject> d_ptr;
public:
X : d_ptr(new SomeObject) {}
s

13.8 Support for const data members

This proposal has full support for const-qualified non-static data members, where [P1144R6] has limited support.
Consider the following example:

#include <type_traits>
#include <string>

struct ConstInt {
const int i;
I8

static_assert(std::is_trivially_relocatable_v<ConstInt>);

struct ConstString {
const std::string s;
Irg
static_assert(std::is_move_constructible_v<ConstString>);
static_assert(std::is_trivially_relocatable_v<ConstString>);

struct ConstPmrString {
const std::pmr::string p;
Irg
static_assert(std::is_move_constructible_v<ConstString>);
static_assert(std::is_trivially_relocatable_v<ConstString>);

Note that this all seems to compile in the [P1144R6]-enabled Clang compiler, as well as under the model proposed
by this paper. However, let us now write a test driver:

#include <type_traits>

#include <string>

#include <memory_resource>

#include <cassert>

struct PmrString {
std::pmr::string s;

s

struct ConstPmrString {
const std::pmr::string p;

};

int main() {
using Alloc = std::pmr::polymorphic_allocator<>;

std: :pmr: :monotonic_buffer_resource buffer;

// Non-const member moves under move
PmrString af{std::pmr::string{&buffer}};

assert(a.s.get_allocator() == Alloc{&bufferl});

26

PmrString b = std::move(a);

assert(a.s.get_allocator() == Alloc{&buffer});
assert(b.s.get_allocator() == Alloc{&bufferl});

// const member /copies/ under move
ConstPmrString x{std::pmr::string{&bufferl}};

assert(x.p.get_allocator() == Alloc{&buffer});
ConstPmrString y = std::move(x);

assert(x.p.get_allocator() == Alloc{&bufferl});
assert(y.p.get_allocator() == Alloc{&bufferl}); // fail
}

This example demonstrates that the regular move construction behavior of ConstPmrString is a non-trivial copy.
That is not a problem for trivial relocatability under this proposal, which does not make a strict correspondence
between trivial relocatability and move-and-destroy. However, this test driver demonstrates the subtlety that
users must be prepared for before using the [[trivially_relocatable]] trait in [P1144R6].

13.9 New relocation functions
The proposed interface is very different between this and the [P1144R6] proposals.

— [P1144R6] proposes a “one function fits all” relocate_at function which can, internally, make
use of trivial relocatability for optimization. It also proposes convenience functions relocate and
uninitialized_relocate.

— This proposal has two different functions, trivially_relocate, suitable for only trivially relocatable
objects, and a convenience function, relocate, suitable for nothrow movable objects.

27

Table 2: Usage examples for the two styles of relocation function.
For ease of formatting the ‘end’ parameter has been omitted from

the function calls.

This proposal

[P1144R6]

TriviallyRelocatable *tr =
new TriviallyRelocatable;

NonTriviallyRelocatable *ntr =
new NonTriviallyRelocatable;

TriviallyRelocatable *trd =
malloc(sizeof TriviallyRelocatable) ;

NonTriviallyRelocatable *ntrd =
malloc(sizeof NonTriviallyRelocatable);

// The following %s wvalid and WILL ALWAYS
// use memcpy:
static_assert(
std::is_trivially_relocatable_v<
TriviallyRelocatable>) ;
std::relocate(*tr, trd);

// The following is wvalid and will
// use move+destroy:
static_assert(
I'std::is_trivially_relocatable_v<
NotTriviallyRelocatable>);
std::relocate(*ntr, ntrd);

// The following is not wvalid:
static_assert(
std::is_trivially_relocatable_v<
NotTriviallyRelocatable>);

28

TriviallyRelocatable *tr =
new TriviallyRelocatable;

NonTriviallyRelocatable *ntr =
new NonTriviallyRelocatable;

TriviallyRelocatable *trd =
malloc(sizeof TriviallyRelocatable) ;

NonTriviallyRelocatable *ntrd =
malloc(sizeof NonTriviallyRelocatable) ;

// The following <s wvalid, and MAY OR
// MAY NOT use memcpy "under the hood":
static_assert(
std::is_trivially_relocatable_v<
TriviallyRelocatable>);
std: :relocate_at(*tr, trd);

// The following ts walid, and will
// use movetdestroy:
static_assert(
I'std::is_trivially_relocatable_v<
NotTriviallyRelocatable>) ;
std: :relocate_at (*ntr, ntrd);

// The following is mot wvalid:
static_assert(
std::is_trivially_relocatable_v<
NotTriviallyRelocatable>) ;

This proposal

[P1144R6]

TriviallyRelocatable *tr =
new TriviallyRelocatable;

NonTriviallyRelocatable *ntr =
new NonTriviallyRelocatable;

TriviallyRelocatable *trd =
malloc(sizeof TriviallyRelocatable) ;

NonTriviallyRelocatable *ntrd =
malloc(sizeof NonTriviallyRelocatable);

// The following %s wvalid and WILL ALWAYS
// use memcpy:
static_assert(
std::is_trivially_relocatable_v<
TriviallyRelocatable>);
std::trivially_relocate(*tr, trd);
// The following is wvalid and will
// use movetdestroy:
static_assert(
!std::is_trivially_relocatable_v<
NotTriviallyRelocatable>);
std::trivially_relocate(*ntr, ntrd);

// The following is not wvalid:
static_assert(
std::is_trivially_relocatable_v<
NotTriviallyRelocatable>);

TriviallyRelocatable *tr =
new TriviallyRelocatable;

NonTriviallyRelocatable *ntr =
new NonTriviallyRelocatable;

TriviallyRelocatable *trd =
malloc(sizeof TriviallyRelocatable) ;

NonTriviallyRelocatable *ntrd =
malloc(sizeof NonTriviallyRelocatable) ;

// The following is wvalid, and MAY OR
// MAY NOT use memcpy "under the hood":
static_assert(
std::is_trivially_relocatable_v<
TriviallyRelocatable>) ;
std: :relocate_at(*¥tr, trd);

// The following <s wvalid, and will
// use movetdestroy:
static_assert(
!'std::is_trivially_relocatable_v<
NotTriviallyRelocatable>);
std: :relocate_at (*ntr, ntrd);

// The following is not wvalid:
static_assert(
std::is_trivially_relocatable_v<
NotTriviallyRelocatable>);

13.10 Cosmetic differences
13.10.1 Attributes or keywords to specify trivial relocatability

Both papers propose a new token, trivially_relocatable, to specify that a type is trivially relocatable. How-
ever, this proposal prefers a contextual keyword whereas [P1144R6] prefers an attribute syntax. The difference
is mostly cosmetic and a matter of taste.

The authors of this proposal find the extra 4 characters enclosing the identifier with brackets ugly and distracting,
admittedly very subjective. They prefer the specifier following the class name, rather than following the class
keyword.

Conversely, the attribute works without modification on unnamed classes, and as part of feature adoption, may
be silently ignored on recent compilers if they do not understand it when compiling in an older C++ dialect,
whereas the contextual keyword would likely be replaced by a feature macro in code that supports a variety of
C++ standards, until some future point where older standards no longer matter to a given user base.

13.10.2 Naming

Naming is always cosmetic. Both proposals lean into the term “trivially relocatable” in the same way, in the core
language specification and the corresponding type trait. The choice of names for functions varies considerably
more.

29

13.10.3 Focus on different examples

As this paper is focused on a tight core language specification and detecting errors, the examples focus on
technical issues on how the feature is used correctly, and errors the compiler is expected to detect. Notably,
template interactions are shown in some detail.

[P1144R6] has less to say (by design) about well-formed programs and misuse, and its examples look toward
user experience and use cases.

14 Acknowledgements

This document is written in markdown, and depends on the extensions in Pandoc and mpark/wg21.

The authors would also like to thank Joshua Berne for his assistance in proof reading this paper, especially
the proposed Core wording. Also, this paper is greatly improved by feedback from Arthur O’Dwyer, author
of [P1144R6], who corrected many bad assumptions we made about his paper, and helped bring the technical
differences into focus. We also benefited from several examples he shared to help illustrate those differences and
misunderstandings.

15 References

[CWG1734] James Widman. 2013-08-09. Nontrivial deleted copy functions.
https://wg21.link/cwgl1734

[N4928] Thomas Koppe. 2022-12-18. Working Draft, Standard for Programming Language C++.
https://wg21.link /n4928

[P1029R3] Niall Douglas. 2020-01-12. move = bitcopies.
https://wg21.link/p1029r3

[P1144R6] Arthur O’Dwyer. 2022-06-10. Object relocation in terms of move plus destroy.
https://wg21.link /p1144r6

[P2685R0] Alisdair Meredith, Joshua Berne. 2022-10-15. Language Support For Scoped Allocators.
https://wg21.link /p2685r0

30

https://pandoc.org/MANUAL.html#pandocs-markdown
https://github.com/mpark/wg21
https://wg21.link/cwg1734
https://wg21.link/n4928
https://wg21.link/p1029r3
https://wg21.link/p1144r6
https://wg21.link/p2685r0

	Abstract
	Revision history.
	R0: Issaquah 2023

	Introduction
	Motivating use cases
	Efficient vector growth
	Moving types without empty states
	pmr types are often trivially relocatable
	Future proposal for language support for allocators

	Experience at Bloomberg
	Key differences between the proposals
	Trivial implies semantics, not syntax
	Predictable specification without deference to QoI
	Can std::swap be implemented as three relocates?
	Support for pmr types

	Proposed changes
	New terms and definitions
	New type category
	New semantics
	New type trait
	New syntax
	Diagnosable errors
	Relocation functions

	Design choices
	No library support is mandated
	Contextual keyword vs. attribute
	Type trait vs. concept
	trivially_relocate as the single place for compiler magic

	Known concerns
	Separately managed objects
	Internal pointers to members
	Active element of a union
	ABI compatibility
	Relocating const-objects
	Trivially relocatable is not trivially swappable

	Alternative designs
	Smarter default for dependent templates
	Ignoring trivially_relocatable like constexpr

	FAQ
	Is void trivially relocatable?
	Are reference types trivially relocatable?
	Why not?!
	Why can a class with a reference member be trivially relocatable?
	Are cv-qualified types, notably const types, trivially relocatable?
	Can const-qualified types be passed to trivially_relocate?
	Can non-implicit-lifetime types be trivially relocatable?
	Why are virtual base classes not trivially relocatable?
	Why do deleted special members inhibit implicit trivial relocatability?

	Proposed wording
	Feature macros
	Specification of trivial relocatability
	Grammar for trivially_relocatable
	New type trait
	Relocation functions

	Appendix: Comparison with [P1144R6]
	A Common Basis
	Difference in tone
	Interface vs. semantics
	Trivial copyability implies trivial relocatability
	Implicit trivial relocatability
	Detecting miscategorization
	Moved object lifetime and destruction
	Support for const data members
	New relocation functions
	Cosmetic differences

	Acknowledgements
	References

