CS&
Preface CU

Doc. no. P2816R0

Date: 2023-02-16

Project: Programming Language C++
Audience: All

Reply to: Bjarne Stroustrup (Bjarne@stroustrup.com)

* These are the slides | (Bjarne Stroustrup) Eresented to the Safety Study Group (SG23) and the
Evolution Working Group (EWG) at the February 2023 C++ Standard Committee (ISO SC22/WG21)
meeting in Issaquah, Washington State, USA.

* The purpose of my talks was to build a consensus for a direction to allow dramatically improved safety
for C++ programs without damaging performance, flexibility, or compatibility where needed. The
resulting vote was 47 for and 2 against.

* Please note that this presents a direction/strategy, rather than a completed product. However, it is
based %n S|gnll1:|cant previous work; see the references. More experiments and more documentation
are in the works.

* Asafety profile is a set of guarantees enforced by an implementation. A profile presents the
programmer with a set of rules and library components that together delivers the desired guarantees.

mailto:Bjarne@stroustrup.com

Safety Profiles:
Type-and-resource Safe
programming in ISO Standard C++

Bjarne Stroustrup

Columbia University

www.stroustrup.com

Gabriel Dos Reis

Microsoft

http://www.stroustrup.com/

CSde
Abstract — Safety Profiles CU

* Type-and-resource Safe programming in ISO Standard C++
* You can write C++ with no violations of the type system, no resource leaks, no memory

corruption, no garbage collector, no limitation of expressiveness or performance degradation
compared to well-written modern C++.

* We must develop ways of guaranteeing that where guarantees make sense.

* This can be achieved — and guaranteed — by the applying the strategy from the C++ Core
Guidelines: coding rules, simple supporting libraries (mostly the ISC C++ standard library), and
enforcement through static analysis.

* Doing this well requires some standardization and some standardized support: Safety Profiles.

» Often, this can be done with code that’s dramatically simpler than older C++ (and C) code.

* Examples: RAIl, pointer safety, span, range checking, nullptr, initialization, invalidation, casting
and variants.

Stroustrup - Safety - Issaquah 2023 3

CSw

A cause for concern (not panic) CU

* The overarching software community across the private sector, academia, and
the U.S. Government have begun initiatives to drive the culture of software
development towards utilizing memory safe languages.

* NSA advises organizations to consider making a strategic shift from
programming languages that provide little or no inherent memory protection,
such as C/C++, to a memory safe language when possible. Some examples of
memory safe languages are C#, Go, Java, Ruby™, and Swift®.

* NSA: https://www.open-std.org/jtcl/sc22/wg21/docs/papers/2023/p2739r0.pdf

Stroustrup - Safety - Issaquah 2023 4

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2739r0.pdf

To contrast (not a cause for complacency)

* February Headline: C++ still unstoppable

CSez
CU

e Last month, C++ won the TIOBE programming language of the year award for 2022. C++ is continuing its
success in 2023 so far. Its current year-over-year increase is 5.93%. This is far ahead of all other programming

languages, of which the most popular ones only gain about 1%.

Feb 2023

1

2

3

e But what does Tiobe measure?

Feb 2022

1

2

4

Change

Programming Language

A

C,
<

C
Vel

Python

C

C++

Java

C#

Visual Basic

Ratings

15.49%

15.39%

13.94%

13.21%

6.38%

414%

e But this implies that what we do matters to billions of people — for good and bad

Change

+0.16%

+1.31%

+5.93%

+1.07%

+1.01%

-1.09%

CSde
We must address the “safety” issue CU

There is a real, serious problem for many uses and users
* Incl. diversion of resources to other languages
* Incl. discouraging people from learning C++

Massive improvements are possible in many areas

C++ has a massive image problem (“C/C++")
* And it is getting worse

Governments and large corporations can coerce

lgnoring the safety issues would hurt large sections of the C++ community and
undermine much of the other work we are doing to improve C++.

* So would focusing exclusively on safety

CSw

References CU

M. Wong, H. Hinnant, R. Orr, B. Stroustrup, D. Vandevoorde: DG Opinion on Safety for ISO C++ . P2759R1. 2023-01-22.
B. Stroustrup: A call to action: Think seriously about “safety”; then do something sensible about it. P2739R0 2022-12-6.
B. Stroustrup and G. Dos Reis: Design Alternatives for Type-and-Resource Safe C++. P2687R0. 2022-20-15

B. Stroustrup: Type-and-resource safety in modern C++. P2410r0. 2021-07-12.

B. Stroustrup, H. Sutter, and G. Dos Reis: A brief introduction to C++'s model for type- and resource-safety. Isocpp.org.
October 2015. Revised December 2015.

B. Stroustrup: Writing Good C++14 CppCon 2015.

The C++ Core Guidelines

The Core Guidelines Support Library (GSL)

H. Sutter: Lifetime safety: Preventing common dangling. P1179R1. 2019-11-22.
A Microsoft guide to using the Core Guidelines static analyzer in Visual Studio.

We didn’t start yesterday

T. Ramananandro, G. Dos Reis, and X. Leroy: A mechanized semantics for C++ object construction and destruction, with
applications to resource management. ACM/SIGPLAN Notices 2012/01/18.

B. Stroustrup: Thriving in a crowded and changing world: C++ 2006-2020. ACM/SIGPLAN History of Programming
Languages conference, HOPL-IV. London. June 2020.

B. Stroustrup: C++ -- an Invisible Foundation of Everything. ACCU Overload No 161. Feb21.

Stroustrup - Safety - Issaquah 2023 7

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2759r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2739r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2687r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2410r0.pdf
https://www.stroustrup.com/resource-model.pdf
https://www.youtube.com/watch?v=1OEu9C51K2A
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/microsoft/gsl
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf
https://docs.microsoft.com/en-us/cpp/code-quality/using-the-cpp-core-guidelines-checkers?view=msvc-160
https://www.researchgate.net/publication/220997597_A_mechanized_semantics_for_C_object_construction_and_destruction_with_applications_to_resource_management
https://www.researchgate.net/publication/220997597_A_mechanized_semantics_for_C_object_construction_and_destruction_with_applications_to_resource_management
https://dl.acm.org/doi/abs/10.1145/3386320
https://accu.org/journals/overload/29/161/overload161.pdf#page=10

Complete type-and-resource safety

* |s anideal (aim) of C++

* From very early on (1979)
e Also for C: “C is a strongly-typed, weakly checked language” a — DMR

II)

* “Being careful” doesn’t scale

* Requires judicious programming techniques
* Supported by libraries
* Enforced by language rules and static analysis

* The basic model for achieving that can be found in A brief introduction to C++'s model for
type- and resource-safety (2015) and Type-and-resource safety in modern C++ (2021).

* Does not imply limitations of what can be expressed or run-time overhead
 Compared to traditional C and C++ programming techniques

Stroustrup - Safety - Issaquah 2023

CSez
CU

https://www.stroustrup.com/resource-model.pdf
https://www.stroustrup.com/resource-model.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2410r0.pdf

CSaz
How? CU

e Every object is accessed according to the type with which it was defined (type safety)
e Every object is properly constructed and destroyed (resource safety)

e Every pointer either points to a valid object or is the nullptr (memory safety)

e Every reference through a pointer is not through the nullptr (often a run-time check)

e Every access through a subscripted pointer is in-range (often a run-time check)

e Thatis

* just what C++ requires (also C)
* what most programmers have tried to ensure since the dawn of time

e The enforcement rules are more deduced than invented

Enforcement rules are mutually dependent.
Don’t judge individual rules in isolation

CSi
Many notions of safety CU

Logic errors: perfectly legal constructs that don’t reflect the programmer’s intent, such as using < where
a <= or a > was intended.

Resource leaks: failing to delete resources (e.g., memory, file handles, and locks) potentially leading to
the program grinding to a halt because of lack of available resources.

Concurrency errors: failing to correctly take current activities into account leading to (typically) obscure
problems (such as data races and deadlocks).

Memory corruption: for example, through the result of a ran%e error or by accessing and memory
through a pointer to an object that no longer exists thereby changing a different object.

Type errors: for example, using the result of an inappropriate cast or accessing a union through a
member different from the one through which it was written.

Overflows and unanticipated conversions: For example, an unanticipated wraparound of an unsigned
integer loop variable or a narrowing conversion.

Timing errors: for example, delivering a result in 1.2ms to a device supposedly responding to an external
event in 1ms.

Termination errors: a library that terminates in case of “unanticipated conditions” being part of a
program that is not allowed to unconditionally terminate.

CSw

Constraints on a solution CU

C++ must serve wide variety of users/areas
* One size doesn’t fit all

e C++is (also) a systems programming language — we can’t “outsource” dangerous operations to some
other language

We can’t just break billions of lines of existing code
* Even if we wanted to - major users would insist on compatibility (probably compatibility by default)

We can’t just “upgrade” millions of developers
* And teaching material, courses, videos, books, articles

If you want a shiny new language, please go ahead
* But it won’t be C++ or the job of WG21

But we must improve

CSde
Strategy: Safety Profiles CU

e We can succeed only if we have a strategy/framework
* A framework for “details” to fit into

* Ad hoc, independent “patches” won’t add up to a coherent, complete solution (“Safety”)
* Even if those “patches” can be immensely useful

* We —WG21 — must be seen to work towards a coherent solution
* A complete solution will take significant time
e Until then then, we must be able to point to steady progress
e Until then then, we must deliver partial solutions

CSde
Strategy: Safety Profiles CU

Our approach is “a cocktail of techniques” not a single neat miracle cure

Static analysis)
to verify that no unsafe code is executed.
Coding rules
to simplify the code to make industrial-scale static analysis feasible.
Libraries

to make such simplified code reasonably easy to write (¢

to guarantee run-time checks where needed.

Stroustrup - Safety - Issaquah 2023 13

CSde
Strategy: Safety Profiles CU

* This is a strategy
* Not a finished product

* Based on significant previous work
* The C++ Core guidelines (on GitHub)
 Static checkers
* Library design
* and more

CSw

s this strategy “too novel”? CU

* “People are afraid of new things.
You should have taken an existing product and put a clock in it.”
— Homer Simpson

* Parts have been tried each individual approach many times before

* Succeeded for specific tasks
e E.g., smart pointers, libraries, static analyzers
* Failed as general solutions
 Static analysis — doesn’t scale to complete safety
* Guidelines/rules — aren’t followed without enforcement
* Foundation libraries — doesn’t give full access to the machine and system
* Language subsetting — the most dangerous language features are essential (e.g., subscripting of pointers)

* A combined approach is necessary

e Similar to Ada’s safety profiles: https://docs.adacore.com/gnathie ug-
docs/html/gnathie ug/gnathie ug/the predefined profiles.html#the-predefined-profiles
Stroustrup - Safety - Issaquah 2023 15

https://docs.adacore.com/gnathie_ug-docs/html/gnathie_ug/gnathie_ug/the_predefined_profiles.html#the-predefined-profiles
https://docs.adacore.com/gnathie_ug-docs/html/gnathie_ug/gnathie_ug/the_predefined_profiles.html#the-predefined-profiles

CSw

The C++ Core GUldEllneS Caveat: The Core Guidelines CU

does a good, but not complete, job

o This talk discusses potential improvements
For any reasonable definition of safe to gain guarantees

* We cannot accept arbitrarily complex code while maintaining conventional good performance.

* Legal != provably safe

Use a carefully crafted set of programming techniques
» supported by library facilities

e enforced by static analysis.

Available on GitHub
e https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

Many rules checked by the Visual Studio static analyzer and other checkers (Clang, Clion)

Safety Profiles must go beyond the CG
* We need some standardization of what’s to be checked

* We need some annotations in the code to specify what is to be checked
Stroustrup - Safety - Issaquah 2023 16

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

CSw

C++ Core Guidelines CU

* You can write type-and-resource-safe C++

No leaks

No memory corruption

No garbage collector

No limitation of expressibility

No performance degradation
ISO C++ How to complete the enforcement

Tool enforced (eventually) «————— Isthekeytopichere

* some checking in Visual Studio, Clang tidy, Clion, ...
* Ajob for the tools SG? For the new Safety SG? Both!

For guaranteed type safety, we need range checking and nullptr checking

Safety Profiles go beyond the CG,

e.g., safety requirements in code (slide 24)

Stroustrup - Safety - Issaquah 2023 17

CSez
CU

Not covered in this talk

e Narrowing conversions and overflow
e E.g., signed and unsigned mess-ups

e Data races and deadlocks

e Logic errors

e Including error-prone constructs; e.g., misspelling, missing breaks, and overly complex code

e Performance bugs

e E.g., copying of large objects, allocations in time-critical code

e Some of this is covered by the Core Guidelines and in existing checkers
e Rarely systematically

e Guarantees require systematic checking

Stroustrup - Safety - Issaquah 2023 18

CSw

Fundamental ideas CU

Don’t destroy maintainability
e Core Guidelines fg;o:l\:zzlgf(;cfhg abstraction level

e P.1: Express ideas directly in code

* P.9: Don't waste time or space

e P.11: Encapsulate messy constructs, rather than spreading through the code

» Safety Profiles: Beyond (current) Core Guidelines
* If (local) static analysis cannot prove a construct safe, it’s banned
* Annotations and run-time checks to enforce guarantees

* Rules should help, not hinder

* No non-essential restrictions on coding style Suggestions and help
most welcome

Stroustrup - Safety - Issaquah 2023 19

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-direct
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-waste
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-library

High-level rules — “Philosophy” CU

* Provide a conceptual framework
* Primarily for humans

 Many can’t be checked completely or consistently

P.1: Express ideas directly in code

P.2: Write in ISO Standard C++

P.3: Express intent

P.4: Ideally, a program should be statically type safe
P.5: Prefer compile-time checking to run-time checking
P.6: What cannot be checked at compile time should be checkable at run time
P.7: Catch run-time errors early

P.8: Don't leak any resource

P.9: Don't waste time or space

P.10: Prefer immutable data to mutable data

P.11: Encapsulate messy constructs, rather than spreading through the code
P.12: Use supporting tools as appropriate

P.13: Use support libraries as appropriate
Stroustrup - Safety - Issaquah 2023 20

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-philosophy

Lower-level rules

Provide enforcement
* Many rely on static analysis
* Some beyond our current tools
e Often easy to check “mechanically”

Primarily for tools (static analysis)
* To allow specific feedback to programmer

Help to unify style

Not minimal or orthogonal

 F.16: Use T* or owner<T*> to designate a single object
* C.49: Prefer initialization to assignment in constructors
* ES.20: Always initialize an object

Stroustrup - Safety - Issaquah 2023

21

CSde
Subset of superset CU

e Simple sub-setting doesn’t work

* We need the low-level/tricky/close-to-the-hardware/error-prone/expert-only features
* For implementing higher-level facilities efficiently

STL

* Many low-level features can be used well
* We need the standard library Use:

* Extend language with a few abstractions
e Use the STL

e Add a small library (the GSL)
* Messy/dangerous/low-level features can be used to implement the GSL

* For complete memory safety, enforce range-checking
* Then subset

* What we want is “C++ on steroids”

No change of meaning:
* Simple, safe, flexible, and fast s ©

Stroustrup - Safety - Issaquah 2023 The resumng code is ISO C++

CSw

Some rules rely on libraries CU

* The ISO C++ standard library

* E.g., vector<T> and unique_ptr<T>

* The Guideline Support Library

* E.g., span<T> and not_null<T>

STL
GSL

* Some rules using the GSL and STL
e [.11: Never transfer ownership by a raw pointer (T*)
* Use an ownership pointer (e.g., unique_ptr<T>) or owner<T*>
» |.12: Declare a pointer that may not be the nullptr as not_null Ideally,
* E.g., not_nullint*> absorb the GSL functionality

* .13 Do not pass an array as a single pointer into the standard
* Use a handle type, e.g., vector<T> or span<T>

CSiz
Static analysis CU

For safety

/ guidelines only warns

* If local static analysis cannot prove a construct safe, it’s banned

* To scale, static analysis must be local
e Constructors and destructors must be considered together

 We need rules to simplify to allow local analysis
* |tis easy to write messy code that cannot be statically determined to be safe
* Classify: safe, not safe, not sure
* Reject if not sure (“call a human”)

A problem, given multiple analyzers:
How clever should an analyzer required to be?

See also Sunny Chatterjee’s CppCon’21 talk on static analysis of C++

Stroustrup - Safety - Issaquah 2023 24

CSw

Profile controls CU

* The (current) Core Guidelines are controlled using compiler/build options

* Some users and some organizations insist on annotations in the code

e E.g., “This code type-and-resource safe.”
* Must be enforced

* E.g., “this is unverified, trusted code”
e Something like that is in every “safe” language

* Maybe also compiler/build options

* How do we handle programs composed out of fragments with different requirements?
* Very difficult problem
e Unavoidable (in any language)
* See P2687R0 (Stroustrup and Dos Reis 2022)

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2687r0.pdf

Examples

Type safety

* |nitialization, construction, destruction

Pointer safety
* Every pointer points to a valid object or is the nullptr

Ownership
* No littering

Invalidation
e Aliases

Run-time checks
e Span, not_null, not_end

* Memory pools
e Atricky set of problems

e Concurrency rules

CSez
CU

For a much more detailed paper:

P2687R0 and in particular P2687R1 (in the works)

Stroustrup - Safety - Issaquah 2023 26

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2687r0.pdf

CSw

Every object is accessed Cl
according to the type with which it was defined

 ES.20: Always initialize an object

« To a meaningful value
e Just “zero out all objects” isn’t enough

* Prevent

* Unsafe casting
» Restrict casting to converting untyped data (bytes) into typed objects
* dynamic_cast is safe and accepted
* Unsafe uses of unions
* Use alternatives, e.g., variant
* Unsafe use of pointers
e E.g., subscripting
e Use alternatives, e.g., span

Stroustrup - Safety - Issaquah 2023 27

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-always

CSw

Always initialize an object CU

Yes, we could be more clever,

int f(int x) but simplicity is valuable
inty; // Not OK: uninitialized
if (x) y = g(x);
returny;,
}
Message read(int n) /[we need buffers for low-level input: std::byte
{
[[uninitialized]] std::byte buf[n]; // uninitialized buffer
return fill_message(buf,n); // fill and convert to correct type
// (had better check the value of n)
) Yes, we could close all loopholes,

but for real-world problems we can’t be purists
One pOSSIbIlIty Stroustrup - Safety - Issaquah 2023 28

CSw

Every object is properly constructed and destroyed CU

P.8: Don't leak any resources

Resources — Entities that must be acquired and later released
* represented as objects with destructors doing the release
» often with constructors that do the acquisition as part of establishing an invariant (RAIl)

* This scope-based resource management ensures predictability and minimizes resource retention

The language guarantees that destructors are invoked

* Except for objects pointed to only by static variables

Using copy elision or move operations, objects can be safely moved between scopes.
* Moved objects will be destroyed in their new scope or moved further

* The CG insist that a moved-from object be assignable

Prevent the creation of uninitialized objects

» Buffers of uninitialized unsigned chars are acceptable

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-leak

CSw

Every pointer either points to an object or is the nullptr CU

e Aka “no dangling pointers”

* When | say “pointer” | mean anything that refers to an object

* References

Containers of pointers

Smart pointers
Lambda captures of pointers

Turning simple logical rules
into detailed enforceable rules
is a lot of hard work

Stroustrup - Safety - Issaquah 2023 30

CSiz
Dangling pointers — the worst problem CU

* One nasty variant of the problem

void f(X* p)
{

// ..
delete p; // looks innocent enough (not OK)

}

void g()
{

X*g=newX; //looksinnocent enough (not OK)

f(a);
// ... do a lot of work here ...

g->use(); // Ouch! Read/scramble random memory

} Stroustrup - Safety - Issaquah 2023 31

Dangling pointers

* We must eliminate dangling pointers or
* type safety is compromised
* memory safety is compromised
* resource safety is compromised

* Eliminated by a combination of rules

* Distinguish owners from non-owners
* Annotation gsl::owner<int*>
* Something that holds an owner is an owner
* Don’t forget malloc(), etc.

e Assume raw pointers to be non-owners

e Catch every attempt for a pointer to “escape” into a scope enclosing its owner’s scope
* return, throw, out-parameters, lambda captures, long-lived containers, ...

Stroustrup - Safety - Issaquah 2023 32

CSiz
Dangling pointer rules CU

* A pointer can be returned from a scope iff

* It was passed into the scope (e.g., as an argument or retrieved from an object external to the scope)
* It points to an object external to the scope (e.g., it was initialized by new)

* |f static analysis cannot prove that, the pointer cannot be returned

e This implies limitations to the complexity of the flow of control leading to the return of a pointer value

A problem, given multiple analyzers:
How clever should an analyzer required to be?

*Ownership and invalidation rules guarantee that pointers points to an object or are the nullptr

Stroustrup - Safety - Issaquah 2023 33

CSiz
Example: Pointer to deleted object CU

int* f()
{
int* p =new int {7};
int* q = p;
delete p;
*q=09; // not OK: detected by local static analysis
return q; // not OK: returning pointer to deleted object

We need to address aliasing in general

Static analysis must involve flow analysis

Stroustrup - Safety - Issaquah 2023 34

CSw

Example: Escaping pointers CU

intglob=9;

int* glob2 = &glob;

int* confused(int i, int* arg)

{
int loc =0;
switch (i) {
case 1: return &loc;
case 2: return new int{7};
case 3: return &glob;
case 4: return arg;
case 5: return glob2;
}

// OK: global pointer to global

// not OK: pointer to local

// OK: pointer to free-store object (but ownership problem)
// OK: pointer to global

// OK: returning what we received as an argument

// OK: returning what someone stored globally

CSw

ES.65: Don't dereference an invalid pointer CU

* A pointer can be made not dereferenceable in several ways:

Uninitialized
* Forget to initialize a pointer
Dangling pointer
* Point to an object after it has gone out of scope (e.g., return a pointer to a local variable from a function)
* Retain a pointer to a deleted object.
* Violate the type system by placing a value that does not refer to an object into a pointer (e.g., a cast,
misuse of union, or range error)
Invalidation
* Retain a pointer to an object that has been deleted or moved (so that the object pointed to have been
deleted or now hold a value that is logically different from the one expected).
Be the nullptr.

Point to one-past-the-end of a sequence (such a pointer may not be dereferenced).

Stroustrup - Safety - Issaquah 2023 36

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-deref

CSiz
Ownership CU

* An owner is something responsible for invoking a destructor
* Ascope
* An object

* Something holding an owner is an owner
» Container (vector, map, array, pointer to pointer, ...)

e operator new returns an owner

* Ownership annotation
* template<typename T> using owner =T,;
* Used by static analysis
* Useful in code reviews
* Doesn’t affect ABI

Stroustrup - Safety - Issaquah 2023 37

CSw

Prefer ownership abstractions CU

e Such as
e vector, map, unique_ptr, fstream, jthread, ...

e owher annotations is for

* Implementation of ownership abstractions
* E.g., vector, map, unique_ptr, fstream, jthread, ...

* Avoiding ABI breaks
e E.g., C-style functions with pointers

* owners in application code is a sign of a problem
e Usually, C-style interfaces

* “|ots of annotations” doesn’t scale
e Becomes a source Of errors

CSw

Low-level ownership rules CU

* To keep static analysis local, use gsl::owner annotations
* A pointer returned by new is an owner and must be deleted
* unless stored in static storage to ensure that it lives “forever”
* Only a pointer known to be an owner can be deleted

* a pointer passed into a scope as an owner must be deleted in that scope or passed to another scope as an
owner.

* A pointer passed to another scope as an owner and not passed back as an owner is invalidated

e cannot be used again in its original scope (since it will have been deleted).

Example: Ownership

void f(int™* pp)

{
// ...
delete pp;

// ..
}

void use();

{
int* p = new int{99};
// ...
f(p);

// ...
*p=7;

// Not OK: can’t delete non-owner

// Not OK: assigns owner to non-owner

// dangling pointer; but we’ll never get here

CSez
CU

CSi
Example: Ownership CU

void f(owner<int*> pp)

{
// ...
delete pp; // OK: f() must delete owner (or pass it along)

// ..
}

void use();

{

owner<int*> p = new int{99}; // OK: assigns owner to owner

// ...
f(p); // OK: pass owner along

/l ..

*p=7; // dangling pointer; but we’ll never get here

CSw

Example: ownership abstraction implementati&aU

* How do we implement ownership abstractions?
template<semiregular T>
class vector {
public:
// ...

private:

owner<T*> elem; // this anchors the allocated memory
T* space; // just a position indicator
T* end; // just a position indicator

// ..

b
e owner<T*> is just an alias for T*

Stroustrup - Safety - Issaquah 2023 42

Invalidation

* Any operation that may reallocate the elements of a container invalidates all

operations on it

* Deleting a container invalidates all operations on it
* See “ownership”

* Container: anything that holds a pointer
* Classes with pointer members
* Lambdas (they are classes, and remember capture-by-reference)
* Pointers to pointers
» References to pointers
* Arrays of pointers

* unique_ptr and shared_ptr

* Threads with pointer arguments

intx=17;

int* p = &x;
int** pp = &p;
cout << **pp;
p = nullptr;
cout << **pp;

CSez
CU

/17

// not OK

CSw

Example: Invalidation CU

void f(vector<int>& vi)

{
vi.push_back(9); // may relocate vi’s elements
}
void g()
{
vector<int>vi{1,2 };
auto p = vi.begin(); // point to first element of vi
f(vi);
*p=7; // not OK, may appear to work correctly

CS&
Invalidation CU

e Currently

* Any non-const member function invalidates (see [Sutter’19])
* Any function with a non-const pointer argument invalidates
* Note: Con.2: By default, make member functions const

e Suggested (not implemented)

* The current rule is simple and safe, but overly conservative
 Some important functions are not non-const yet don’t invalidate
* E.g., vector::swap() and vector::operator[]().
* Mark those [[not_invalidating]]
* [[not_invalidating]] is a testable optimization of a safe default
* ES.2x: Don’t use pointers to pointers or references to pointers

Stroustrup - Safety - Issaquah 2023 45

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rconst-fct

CSw

Example: Invalidation CU

* Aliasing problems are subtle
* Best left to tools (compilers, static analyzers)

 Consider

* vec.insert(vec.begin(), vec.front()); // OK, guaranteed by standard
// (may have to copy *vec.front())

 vec.insert(vec.begin(), {4,5,6})); // OK, add a range
 vec.insert(vec.begin(), vec.begin(),vec.end()); // likely disaster: for some allowed implementations

// allocate more space for elements
// copy old elements

// delete old allocation

// copy elements from old allocation

// caught by CG invalidation check
* |st.insert(Ist.begin(), Ist.begin(), Ist.end()); // OK (lists don’t relocate elements)

Stroustrup - Safety - Issaquah 2023 46

CSiz
Library support CU

 gsl::dynarray
* Like vector, but no resizing
* No invalidation

e std::unique_ptr (and std::shared_ptr)
e Use static analysis to prevent get() or introduce gsl::unique_ptr
* Prevent unnecessary aliasing

* In general, we may need restricted versions of library facilities to
simplify static analysis

CSw

Low-level code CU

e C++is extensively used for low-level manipulation of memory and other system resources
* Making C++ safe by eliminating all direct access to “raw” memory is not an option

* Languages that ban such unsafe access, typically have ways of allowing unsafe code
or delegate such manipulation to code written in C or C++.

e Currently

* Selective use of static analysis
* E.g., CG “profiles”

e Suggestion (unimplemented)

* Annotate necessarily messy code [[unverified]]
* E.g., fundamental data structures, concurrency primitives, etc.
* Possibly using “profiles” [[unverified lifetime]]

* Discourage use of [[unverified]]
* It will be overused

CSw

Some run-time checks are unavoidable CU

* Access that depend on values not known until run time
* nullptr
e Use gsl::not_null
* Range errors
* Use gsl::span
* One-past-the-end pointers

Run-time checks are allowed by the standard,
but needs to be enforced for safety guarantees

Stroustrup - Safety - Issaquah 2023 49

CSw

Example: range checks CU

* Use raw pointers only for pointing
* F.22: Use 1* or owner<T*> t0o designate a single object

* Then what?
* ES.71: Prefer a range-for-statement to a for-statement when there is a choice
* F.24: Use a span<T> Or a span p<T> to designate a half-open sequence
* R.14: Avoid [| parameters, prefer span
e SL.con.l: Prefer using STL array or vector instead of a C array

* For example:
void f(int* p, span<int> s)

{ Note: using span is simpler than
pl7]=9; /] not OK (pointer,count) argument pairs
s[7]1=9; // OK (might throw)
for (int x : s) x=f(x); // better: no runtime check

Stroustrup - Safety - Issaquah 2023 50

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-ptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-for-range
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-range
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-ap
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rsl-arrays

Example: nullptr problems

Mixing nullptr and pointers to objects
* Causes confusion
* Requires (systematic) checking

Caller
void f(char*);

f(nullptr); // OK?
Implementer
void f(char* p)

{
if (p==nullptr) // necessary?

/l ..
}

Can you trust the documentation?
Compilers don’t read manuals, or comments

Complexity, errors, and/or run-time cost
Stroustrup - Safety - Issaquah 2023

CSw

CU

-

« = Problem Occurred l = | & |£hr

= Javalang.MullPointerException

'| An error has cccurred. See error log for more details.

0K || << Details

An error has cccurred. See error log for more details.
java.lang.MullPointerException

51

CSw

Example: not_null<T> use CU

* not_null in interfaces
void f(not_null<char*> p)

{
if (p==nullptr) *p="'c'; // OK (but redundant — warn)
*p='c; /1 OK
// ..
}
void user(char* q)
{
f(nullptr); // not OK: detected or throws
f(q); // OK: might throw

if (q) f(q); // OK: won’t throw

CSw

Example: not_null<T> use CU

* Not using not_null implies that tests are required
void f(char* p)

{
*p=17; // not OK
if (p!=nullptr) *p=7 // OK
// ..
}
void user(char* q)
{
f(nullptr); // OK: f() is supposed to check
f(q); // OK: g might be nullptr but f() is supposed to check
if (q) f(q); // OK: redundant check

CSiz
One-past-the-end pointers CU

* Can be formed, but not dereferenced

vector<int> v; // fill v
auto p = find(v,42); // p becomes v.end()
*p=9; // disaster

if (p!=v.end()) *p=9; // allowed

* Hard for static analyzers
* Exactly what pointers are one-past-the-end — not just std

* Suggestion (not implemented)

* Introduce gsl::not_end(p,v) overloaded on p (pointer) and v (container)
* to help analyzers and human readers

*p=09; // not OK
if (not_end(p,v)) *p=9; // OK

CSiz
Memory pools CU

* Not all memory is directly managed by new and deleted by delete
* E.g., malloc()/free()

* We must handle user-managed “memory pools”
* Problem: there is no standard memory pool abstraction
 <memory_resource> is not yet widely used

* Alternative strategies (for using pointers to members of a pool)
 Disallow members to be deleted or relocated
» Requires [[not_invalidating]] annotations unless all pointers to elements are const
 Disallow pointers to members to escape
 Invalidate all pointers to elements if a potentially deleting or relocating operation is invoked
« std::vector is an example
« Must be communicated to the static analyzer: non-const and [[not_invalidating]]

CSw

Example of memory pools: Graphs CU

* Consider a general graph:

struct Tree_node { // a node owns its subnodes
Value val;
unique_ptr<Tree_node> left;
unique_ptr<Tree_node> right;

[]
’

struct Tree {
unique_ptr<Tree_node> head;

// ..
b
* Not OK: can lead to loops, implying resource leaks
* Conservative strategy: reject Tree_node because ownership loops and leaks are possible
* Shared_ptr would not solve this

e Extracting Tree_node*s from unique_ptr<Tree_node>s would cause a lot of invalidation

CSw

Example of memory pools: Graphs CU

* One solution: separate ownership from access

struct Tree_node2 { // a node doesn’t own any other node; it just points
Value val;
Tree_node2* left;
Tree_node2* right;

5

struct Tree2 {
vector<unique_ptr<Tree_node2>> nodes;
Tree_node2* head;

// ..
b5

* Accessor loops are acceptable
* Ownership loops are not OK (and detectable)

CSw

Concurrency CU

* The Core Guideline rules are incomplete (but still helpful)

e CP.20: Use RAIl, never plain lock()/unlock()

e CP.21: Use lock() or scoped lock to acquire multiple mutexes

* CP.22: Never call unknown code while holding a lock (e.g., a callback)

* CP.23: Think of a jthread as a scoped container

* CP.24: Think of a thread as a global container (implies invalidation checks against aliasing)
e CP.25: Prefer jthread over thread

* CP.26: Don't detach() a thread

 std::jthread is a “joining thread”, obeying RAII

For more suggested CG concurrency rules see Michael Wong’s CppCon’21 MISRA C++ talk

Stroustrup - Safety - Issaquah 2023 58

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rconc-raii
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rconc-lock
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rconc-unknown
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rconc-join
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rconc-detach
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rconc-joining_thread
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rconc-detached_thread

CSw

Why not enforcement exclusively through Cl
language rules?

e Stability/compatibility

e Billions of lines of code

» Different domains have different definition of “safety”
* Basic type-and-resource safety should be common

* Gradual adoption
* Essential
* Many of the Core Guidelines checks are in use “at scale”

* Most desirable
* Platform-independent static analyzer
* Uniform adoption of the basic type-and-resource safety rules
* Compiler and build options for invoking the static analyzer

CSi
Many notions of safety CU

Logic errors: perfectly legal constructs that don’t reflect the programmer’s intent, such as using < where
a <= or a > was intended.

Resource leaks: failing to delete resources (e.g., memory, file handles, and locks) potentially leading to
the program grinding to a halt because of lack of available resources.

Concurrency errors: failing to correctly take current activities into account leading to (typically) obscure
problems (such as data races and deadlocks).

Memory corruption: for example, through the result of a ran%e error or by accessing and memory
through a pointer to an object that no longer exists thereby changing a different object.

Type errors: for example, using the result of an inappropriate cast or accessing a union through a
member different from the one through which it was written.

Overflows and unanticipated conversions: For example, an unanticipated wraparound of an unsigned
integer loop variable or a narrowing conversion.

Timing errors: for example, delivering a result in 1.2ms to a device supposedly responding to an external
event in 1ms.

Termination errors: a library that terminates in case of “unanticipated conditions” being part of a
program that is not allowed to unconditionally terminate.

CSiz
Why Safety Profiles? CU

» Arbitrary C or C++ code is too complex for static analysis
e Halting problem
* Dynamic linking
* Cost of global analysis

* Arbitrary C or C++ forces us to deal with too low an abstraction level
* Ends up chasing complexities in messy old-style code
e Backwards looking

* We care about performance as well as type-and-resource safety

e Eventually much higher productivity

Stroustrup - Safety - Issaquah 2023 61

CSiz
Why Safety Profiles? CU

* \We need a coherent set of rules
* Not just a lot of unrelated tests

* Profile: a coherent sets of rules yielding a guarantee
e Current: bounds, type, memory

* E.g., type-and-resource-safe, safe-embedded, safe-automotive, safe-medical, performance-
games, performance-HPC, EU-government-regulation

 Must be visible in code
* To indicate intent
e To trigger analysis

CSde
Strategy: Safety Profiles CU

Our approach is “a cocktail of techniques” not a single neat miracle cure

Static analysis)
to verify that no unsafe code is executed.
Coding rules
to simplify the code to make industrial-scale static analysis feasible.
Libraries

to make such simplified code reasonably easy to write (¢

to guarantee run-time checks where needed.

Stroustrup - Safety - Issaquah 2023 63

	Slide 1: Preface
	Slide 2: Safety Profiles: Type-and-resource Safe programming in ISO Standard C++
	Slide 3: Abstract – Safety Profiles
	Slide 4: A cause for concern (not panic)
	Slide 5: To contrast (not a cause for complacency)
	Slide 6: We must address the “safety” issue
	Slide 7: References
	Slide 8: Complete type-and-resource safety
	Slide 9: How?
	Slide 10: Many notions of safety
	Slide 11: Constraints on a solution
	Slide 12: Strategy: Safety Profiles
	Slide 13: Strategy: Safety Profiles
	Slide 14: Strategy: Safety Profiles
	Slide 15: Is this strategy “too novel”?
	Slide 16: The C++ Core Guidelines
	Slide 17: C++ Core Guidelines
	Slide 18: Not covered in this talk
	Slide 19: Fundamental ideas
	Slide 20: High-level rules – “Philosophy”
	Slide 21: Lower-level rules
	Slide 22: Subset of superset
	Slide 23: Some rules rely on libraries
	Slide 24: Static analysis
	Slide 25: Profile controls
	Slide 26: Examples
	Slide 27: Every object is accessed according to the type with which it was defined
	Slide 28: Always initialize an object
	Slide 29: Every object is properly constructed and destroyed
	Slide 30: Every pointer either points to an object or is the nullptr
	Slide 31: Dangling pointers – the worst problem
	Slide 32: Dangling pointers
	Slide 33: Dangling pointer rules
	Slide 34: Example: Pointer to deleted object
	Slide 35: Example: Escaping pointers
	Slide 36: ES.65: Don't dereference an invalid pointer
	Slide 37: Ownership
	Slide 38: Prefer ownership abstractions
	Slide 39: Low-level ownership rules
	Slide 40: Example: Ownership
	Slide 41: Example: Ownership
	Slide 42: Example: ownership abstraction implementation
	Slide 43: Invalidation
	Slide 44: Example: Invalidation
	Slide 45: Invalidation
	Slide 46: Example: Invalidation
	Slide 47: Library support
	Slide 48: Low-level code
	Slide 49: Some run-time checks are unavoidable
	Slide 50: Example: range checks
	Slide 51: Example: nullptr problems
	Slide 52: Example: not_null<T> use
	Slide 53: Example: not_null<T> use
	Slide 54: One-past-the-end pointers
	Slide 55: Memory pools
	Slide 56: Example of memory pools: Graphs
	Slide 57: Example of memory pools: Graphs
	Slide 58: Concurrency
	Slide 59: Why not enforcement exclusively through language rules?
	Slide 60: Many notions of safety
	Slide 61: Why Safety Profiles?
	Slide 62: Why Safety Profiles?
	Slide 63: Strategy: Safety Profiles

