
Functions having a narrow contract should not be noexcept

Timur Doumler (papers@timur.audio)
Ed Catmur (ed@catmur.uk)

Document #: P2831R0
Date: 2023-05-15
Project: Programming Language C++
Audience: Library Evolution Working Group

Abstract

The Lakos Rule is a long-standing design principle in the C++ Standard Library. It stipulates
that a function having a narrow contract should not be declared noexcept, even if it is known
to not throw when called with valid input. In this paper, we demonstrate why the Lakos Rule is
still useful and important today and should not be removed.

1 Introduction
C++ functions — in the C++ Standard Library or in other places — can have preconditions, which
are a form of contract. A function that has no preconditions on its input (parameter) values or on
the state (object state or global state) accessible from it — i.e., a function that has defined behaviour
for any combination of input values and accessible state — is said to have a wide contract. Examples
of such functions in the C++ Standard Library are std::vector::at and std::vector::size.
If such a function is required to never throw an exception (or if it is somehow known that it will
never throw an exception), it may be declared noexcept (conditionally or unconditionally). This is
the case for std::vector::size.
By contrast, a function that has preconditions — i.e., a function whose behaviour is unde-
fined1 for some combination of input values and accessible state, which we can call invalid —
is said to have a narrow contract. Examples of such functions in the C++ Standard Library are
std::vector::operator[] and std::vector::front. Invoking the former with an out-of-bounds
index or invoking either function on an empty vector will result in undefined behaviour.
A long-standing design principle in the C++ Standard Library has been that a function having a
narrow contract should not be declared noexcept, even if it is known to never throw an exception for
a valid combination of input values and accessible state. When a function having a narrow contract
is obliged to not throw, the function should nevertheless not be declared noexcept but merely
specified as Throws: nothing. This design principle allows for highly effective testing strategies that
involve throwing exceptions as a way of diagnosing contract violations — i.e., bugs introduced by

1It is sometimes useful to distinguish between library undefined behaviour or soft UB (violating the preconditions
of a function), which might be recoverable if the violation is detected at the time of the call, and language undefined
behaviour or hard UB (hitting core undefined behaviour — see [P1705R1] — inside the implementation of the function),
which is unrecoverable, although the C++ Standard itself does not make such a distinction.

1

mailto:papers@timur.audio
mailto:ed@catmur.uk

calling the function with an invalid combination of input values and accessible state (calling the
function out of contract). This design principle is also known as the Lakos Rule.
The Lakos Rule was first proposed in [N3248] and adopted with [N3279]. An updated version of
the rule was codified into policy in [P0884R0]. See [O’Dwyer2018] for a more detailed summary.
More recently, [P1656R2] argued that the Lakos Rule should be abandoned as a design principle.
According to this paper, functions that are known to never throw an exception for a valid combination
of input values and accessible state should always be declared noexcept, regardless of whether they
have a wide or a narrow contract. Further, [P2148R0] proposed adopting a new standing document
with design guidelines for the evolution of the C++ Standard Library that move away from the
Lakos Rule.
This paper makes the case that the Lakos Rule is still useful and important today and must
be retained as a design principle for the C++ Standard Library. In section 2, we compare the
various known techniques for negative testing, demonstrating that the Lakos Rule is essential for
implementing negative testing effectively. In section 3, we present case studies from real-world
codebases where the Lakos Rule is central to maintaining an effective testing strategy. In section 4,
we argue why the Lakos Rule is not only important in such third-party codebases, but also for the
C++ Standard Library itself. In section 5, we discuss why the urge to excessively use noexcept

— often the reason why C++ developers do not follow the Lakos Rule — is misguided and what
the actual use case for noexcept is. Finally, in section 6, we consider recent developments for
standardising a C++ Contracts facility and discuss why the Lakos Rule is still needed if we have
such a facility.

2 Negative testing
Unit tests are an established engineering practice to ensure software quality and a crucial part of
the software test pyramid. Let us consider how we would unit test a function having a narrow
contract, such as std::vector::front.
Writing unit tests for cases in which front is being called in contract and therefore has defined
behaviour is straightforward. We establish valid combinations of input values and accessible state
and test whether the function gives the expected output in each case:

std::vector<int> v = {1};
REQUIRE(v.front() == 1);
// etc.

Here, REQUIRE is some macro provided by the unit test framework to verify that the given predicate
evaluates to true, report success or failure, and continue the execution of the test suite.
Now, what happens if we call front out of contract, i.e., on an empty vector? In this case, the
behaviour is undefined. Calling front on an empty vector is therefore unconditionally a bug. This
specification is necessary to achieve maximum performance, e.g., in a release build, where we cannot
afford to check the precondition at run time. In a debug build, however, such a precondition check
is possible and is in fact critically important to prevent the introduction of such bugs.
Since C++23 lacks a language-level Contracts facility (see section 6), we need to use a library-based
solution to write the precondition check. Typically, this check will be implemented with some kind
of assertion macro at the beginning of the function body:

T& front() {
ASSERT(!empty());
// implementation

}

2

Precondition checks are code and, just like any other code, ought to be tested. We therefore need to
write a unit test to ensure that the precondition check has in fact been added. This kind of testing
is sometimes called negative testing:

std::vector<int> v; // empty
REQUIRE_ASSERT_FAIL(v.front());

Negative testing is critically important: without a negative test, we cannot be sure that the developer
of the front function considered this case and added a check that will alert users of front about
out-of-contract calls and prevent them from introducing bugs. But how do we write such a negative
test? How do we implement REQUIRE_ASSERT_FAIL in our testing framework?
Once we hit the ASSERT macro and the contract check fails, continuing to execute the body of the
function is no longer meaningful; the code will either crash or exhibit some other form of undefined
and potentially harmful behaviour. To continue running our unit test suite, we therefore need a way
to exit the function — other than by returning a value — at the point where the contract violation
occurred and communicate detailed information about the contract violation back to the testing
framework. Below we discuss the known strategies to achieve such a controlled function exit.

2.1 Exception based

The most natural, portable, and effective way to exit the function without continuing to execute
the function body (which would invoke undefined behaviour) is to throw an exception at the point
where the contract violation occurred. We can define our ASSERT macro as follows2:

#if TEST_ASSERTIONS
#define ASSERT(expr) if (!expr) throw AssertFail();

#else
// other possible actions: ignore, assume, log and continue, log and terminate

#endif

Then, in TEST_ASSERTIONS mode (which will often, but not always, correspond to debug mode),
we can define our REQUIRE_ASSERT_FAIL to verify that an exception of type AssertFail has been
thrown, report success or failure, and continue the execution of the test suite. This is efficient,
portable, and straightforward: every modern C++ testing framework provides a way to check for a
thrown exception of a particular type, and if necessary it is easy to write such a check by hand.
Another important advantage of exception-based negative testing is that we can communicate an
arbitrary amount of information about the contract violation back to the testing framework via the
thrown exception object. [P1656R2] repeats the canard that stack unwinding destroys information.
This claim might be true in the naïve case, but any sophisticated implementation will collect the
relevant information before stack unwinding, either immediately before throwing the exception or
(for more general benefit) at the end of the search phase, under the control of the catch block but
before stack unwinding begins.
The only issue with exception-based negative testing as described above is that it no longer works if
the function under test is declared noexcept. Throwing an AssertFail out of a noexcept function
would immediately result in std::terminate, bringing down the whole test suite.

2.1.1 Following the Lakos Rule

The obvious way to solve the noexcept problem is to not declare a function with a narrow contract
noexcept, even if we know that the function will never throw when called in contract. In other
words, exception-based negative testing is straightforward if we just follow the Lakos Rule.

2At Cradle, we have a slightly more sophisticated definition: when debugging locally, i.e., if a debugger is attached,
the ASSERT macro will trigger a breakpoint on contract violation, using utilities like the ones proposed in [P2514R0];
otherwise (that is, when running the test suite on CI or locally but without a debugger attached), it will throw an
AssertFail exception as shown here.

3

If the Standards committee abandons the Lakos Rule as a design principle (as proposed in [P1656R2]
and [P2148R0]), functions such as std::vector::front might be specified as noexcept in a future
standard. This new direction would make writing negative tests (and, therefore, preventing bugs
from being introduced because of out-of-contract calls and missing contract checks) much harder.
In the remainder of this section, we discuss various workarounds and their shortcomings compared
to the straightforward exception-based technique that the Lakos Rule enables.

2.1.2 Conditional noexcept macro

A workaround used by some libraries is to introduce a macro along the lines of
#if TEST_ASSERTIONS

#define MY_NOEXCEPT
#else

#define MY_NOEXCEPT noexcept
#endif

Then, we can annotate all functions having a narrow contract with MY_NOEXCEPT instead of noexcept
proper. Thus functions having a narrow contract can be noexcept in production, and at the same
time, we can use exception-based negative testing on them when compiled in TEST_ASSERTIONS
mode.
This option, however, is unsatisfactory because we effectively end up unit testing not our actual code
but code compiled with a different specification, which may result in different behaviour: switching
the noexcept specification of a function depending on the build mode can trigger different code
paths being taken. This is observable by users (for example, turning moves into copies) and causes
confusion. Software engineering best practice fairly demands that we test the actual code that is
built for production, which is not possible with this technique. That is why libc++ ultimately
decided against this approach after having introduced it; see 4.1. See also [P2834R0] which explains
from first principles why this approach is such a bad idea.

2.2 setjmp and longjmp

Another way to exit the function from our ASSERT macro on contract violation is to use setjmp and
longjmp. However, this technique does not work for negative testing. With most compilers,3 when
using setjmp and longjmp instead of throw and catch, the stack is not unwound and destructors
of objects on the stack are not called. The C++ Standard specifies in [csetjmp.syn]:

The contents of the header <csetjmp> are the same as the C standard library header
<setjmp.h>.
The function signature longjmp(jmp_buf jbuf, int val) has more restricted behavior in
this document. A setjmp/longjmp call pair has undefined behavior if replacing the setjmp
and longjmp by catch and throw would invoke any nontrivial destructors for any objects
with automatic storage duration.

The specification above means that in practice, we will immediately run into undefined behaviour
when performing negative testing of any C++ code involving objects having nontrivial destructors.
Most real-world C++ code calls such destructors. But even if the behaviour were defined, if we run
thousands of unit tests involving data structures that allocate significant amounts of memory on
the heap, we end up with an unacceptable number of memory leaks (and memory usage is often an
integral part of thorough unit testing). We also break the program logic in the presence of other
resources that rely on RAII, such as std::lock_guard. For all these reasons, this approach is not
viable.

3Notably, Microsoft’s implementation of setjmp and longjmp does perform stack unwinding with local object
destruction, as is done for throw and catch (see [MSVCDocLongjmp]), while GCC and Clang do not.

4

2.3 Child threads

Another strategy for negative tests that does not involve throwing exceptions or performing death
tests is to invoke the function under test in a child thread. On contract violation, the ASSERT macro
can save some information about the violation and then lock the thread (by putting it to sleep
indefinitely, or perhaps spinning in an infinite loop). REQUIRE_ASSERT_FAIL can then verify that
this has happened.
This approach is slightly more comprehensible than setjmp and longjmp and does not suffer from
the undefined behaviour issue but still has all the other drawbacks of setjmp and longjmp, such as
leaking memory (invalidating unit tests that track such leakage) and breaking any program logic
relying on RAII. This approach also leaks one thread for every test case.

2.4 Stackful coroutines

Ville Voutilainen recently suggested yet another approach for negative testing without throwing
exceptions or performing death tests. While this approach is in many ways a thought experiment,
and we are not aware of any testing framework or codebase successfully using this approach, it has
been successfully prototyped4.
The idea is that on contract violation, the ASSERT macro would yield to a cooperative scheduler.
The tests would have to be written in such a way that the run of a subsequent test would be
triggered by the event loop in conjunction with triggering the previous test’s result verification. A
failed test will run a nested event loop (which is the scheduler yield) and get stuck there, without
proceeding to run the body of the function called out of contract. A successful test will just run its
code and then call the nested event loop. In both the failed and the successful cases, the event loop
will subsequently run the test result verification of the test, and then the event loop will run the
next test. The sequence of tests thus becomes a sequence of recursive calls, and each failed test
behaves effectively like a suspended stackful coroutine.
Just like the setjmp/longjmp and child thread approaches, this approach would never call destructors
of any parameters or objects created by the test call, therefore leaking memory (invalidating unit
tests that track such leakage) and breaking any program logic relying on RAII. In addition, the call
stack would keep growing with every test call, consuming a large and unbounded amount of stack
space. Finally, the whole test suite would have to be arranged in a very particular way in order to
make this technique work, and would require a testing framework that offers the required event
loop machinery.

2.5 Signals

Signals have been suggested as another way to exit the function from our ASSERT macro. However,
signals do not help us here either. First of all, although synchronous signals are available on
POSIX platforms, they are not available on Windows and are therefore not viable for cross-platform
development. More importantly, if, on contract violation, we raise a signal in ASSERT and then
install a custom signal handler to handle it, we can do only one of two things at the end of such a
signal handler: either return control back to the function that raised the signal, or terminate the
program. Using signals is therefore no different from using any other callback-based approach (see
above).

2.6 Death tests

If we cannot continue executing the body of the function under test but have no practical way
to exit the function other than by terminating the entire process, the only remaining option for

4For a prototype implementation in standard C++ that can be experimented with on Compiler Explorer, see
https://godbolt.org/z/obsfvzrqh.

5

negative testing is to implement it as a death test. In a death test, the code under test is run in a
separate process. A contract violation in the ASSERT macro leads to termination of this process
with some error message. REQUIRE_ASSERT_FAIL verifies that the process has been terminated and
that an error message has been triggered. In principle, this approach works, but several drawbacks
make it a nonviable solution for many codebases.
We are aware of three ways to implement death tests: fork based, clone based, and spawn based.

2.6.1 Fork based

In a fork-based death test, each negative test is run in a forked process. This kind of test works
reasonably well on platforms having a fast, reliable fork(). In practice, use of this fork-based
approach limits us to UNIX-like platforms, such as Linux and macOS. Fork-based death tests can
therefore be a viable strategy if your C++ library targets only these platforms.
When targeting Windows, embedded platforms, or the browser, this approach either does not scale
due to a much higher runtime overhead or is outright impossible due to lack of multiprocess support:
this is a major reason why most C++ unit test frameworks do not support death tests. From the
five most popular C++ unit test frameworks, only GoogleTest supports death tests, while Catch2,
Boost.Test, CppTest, and DocTest do not.
Another drawback is that even on platforms where death tests can be implemented efficiently, they
can carry only a small amount of information about the contract violation; by using std::_Exit
instead of std::abort, one can communicate up to 8 bits of information. This amount of diagnostic
information is very meagre compared to the unlimited amount of information (such as the source
location and, in advanced usage, the values of operands) available to be carried on an exception
from a failed assert handler. Some more information can be carried through standard streams, but
this approach is fragile and requires the rigmarole of serialisation and deserialisation.

2.6.2 Clone based

On Linux, clone() can be used instead of fork(). This approach has the advantage that clone()
is less likely than fork to cause the child to hang when the parent process has multiple threads (see
[GTestDocDeathTests]). However, clone() is even less portable than a fork-based death test, since
it works only on Linux.

2.6.3 Spawn based

A different flavour of death test that does not depend on fork() or clone() is a spawn-based death
test, where the testing framework spawns a new process for each negative test. But spawn-based
death tests have several drawbacks compared to fork-based and clone-based death tests: typically,
they require adoption of an external, usually non-C++, testing framework (DejaGNU, lit, CTest,
make); they require moving test code into other source files, making it more difficult to track; and
they require building the state for each test from scratch. On the other hand, fork-based death
tests (and exception-based negative tests) can build up and reuse state. All this makes spawn-based
negative tests orders of magnitude more cumbersome to write and the adoption of such tests much
less likely, leading to worse software quality.
Like fork-based death tests on non-UNIX-like platforms, spawn-based death tests also suffer from
a very high performance overhead. A mid-sized test suite may have several thousand negative
tests. The overhead of spawning that many processes, even on platforms where that is relatively
fast, is enough to turn a test suite that runs in under a second into one that takes minutes.
That performance degradation alone precludes test-on-save, red-green-refactor, and other modern
development processes.

6

3 Case studies
A well-known codebase that uses exception-based negative testing, which in turn relies on the Lakos
Rule as a design principle, are Bloomberg’s BDE libraries. However, Bloomberg is by no means the
only company relying on this strategy. In fact, both authors of this paper work at companies that
are entirely unrelated to Bloomberg and whose codebases make extensive use of exception-based
negative testing, rely on the Lakos Rule, and would be unable to effectively test their code without
it. In this section, we discuss our own experience with using the Lakos Rule in practice.

3.1 Timur Doumler: Cradle
In 2018, I cofounded the music technology company Cradle (https://cradle.app) and became
its CTO. I was in the enviable position of being able to start a brand new codebase from scratch,
following the latest and best engineering practices and hiring a new team of developers that shared
our vision.
From the start, the core guiding principle for building Cradle’s software stack and engineering
culture was a strong focus on code quality. One of the principles we introduced to achieve this goal
was to aim for a very good unit test coverage. For whatever reason, focusing on automated testing
in general and unit testing in particular tends to be less common in music production software than
in other industries. We learned in practice that, by having a strong culture of unit testing and
test-driven development (TDD), we were able to deliver software at a higher quality standard, with
far fewer bugs and crashes reported by users.
The parts of our codebase where TDD proved to be particularly effective were the foundational,
generic C++ libraries that the rest of the codebase relied upon. In particular, testing our code for
contract violations (i.e., negative testing) has proven to be an important part of keeping our code
quality high and reducing the number of newly introduced bugs.
As we started practicing negative testing, however, we immediately ran into the problems discussed
in section 2 above. We experimented with death tests (which our chosen unit testing framework
didn’t offer), POSIX signals, setjmp and longjmp, and making noexcept conditional on whether
we are in unit test mode. We found that exception-based negative testing, when combined with
the Lakos Rule as a library design principle, is the most straightforward and effective method for
our use case (i.e., C++ libraries for cross-platform audio software that should run — and therefore
be tested on — macOS, Linux, and Windows). All alternative approaches we explored had worse
tradeoffs and were ultimately nonviable for our use case.
While researching this topic, I asked C++ developers from other companies, including the maintainer
of the unit testing framework we were using at the time, about negative testing. According to many
of them, negative testing was “not a thing”, “outside of the realm of unit testing”, and so on. I
found this attitude surprising, as I had proof from my own experience that negative testing can be
very effective at preventing real bugs. The only explanation I can think of is that, with the Lakos
Rule not being as widely used outside of the C++ Standard Library, many C++ developers have
been taught to sprinkle noexcept all over their codebase (see also section 5), which makes negative
testing very difficult, slow, and cumbersome. This abuse of the noexcept specifier, in turn, means
that many developers never get to discover the benefits of practicing negative testing and thus are
unaware of them. Consider also that many C++ developers work in smaller companies or startups
that do not have the resources to develop their own unit testing frameworks (and ideally should not
have to).

3.2 Ed Catmur: Maven
At Maven Securities (https://www.mavensecurities.com/), we use C++ to develop in-house
software for trading on financial markets. The codebase has always been written to a high level

7

of quality, but as the company has grown and broadened geographically, testing has become ever
more crucial to maintaining a low defect rate while enabling programmers from a wide diversity of
backgrounds to contribute to shared libraries in a spirit of open collaboration.
The unique requirements of the finance industry often require us to write specialised versions of
Standard components (such as containers, having fine-tuned performance, latency, or memory
characteristics) yet retain API compatibility (as closely as possible) with Standard and open-source
libraries. This approach allows us to perform drop-in replacement of our code such that it stays
readily comprehensible to coworkers, other teams, and new hires.
While negative testing is particularly prevalent in our foundational libraries, we also find it useful in
higher-level components. In our line of business, warranting that bugs in market-facing code can be
quickly detected and addressed during development is essential. Should defects reach production,
we must also guarantee that the behaviour in the presence of defects is predictable and fail-safe and
that diagnostics resulting from failure are genuinely useful to front-line support.
In particular, we approach noxecept in a spirit of wariness; while it has some algorithmic performance
benefits in theory, the most performance-sensitive code is inlined and allocation-free and thus is
highly unlikely to benefit in practice (see also section 5). On the other hand, the potential for
noexcept to convert an exception to program termination makes widespread use of noexcept highly
unsafe; a trading program that encounters a fault, throws an exception out to the main I/O loop,
and shuts down safely is much preferred to a process that terminates immediately. Such abrupt
termination potentially leaves connections in an open state and open orders on the exchange, along
with exposure to financial hazard and regulatory penalties. In this context, the Lakos Rule feels
entirely natural: functions having narrow contracts are either inlined, in which case noexcept is
largely irrelevant, or they are not, in which case — even if exception-free initially — the code is
unlikely to stay that way through development.
Although we use death tests where unavoidable, we find the overhead (roughly 1000-fold for fork-wait
on Linux compared to throw-catch) to be a considerable impediment to achieving the code coverage
and the rapid test-develop cycle to which we aspire. Additionally, the impracticality of fork-wait on
Windows means that code using such tests lacks full coverage across the compilers and platforms
we target.
In my experience, developers arriving at Maven and encountering our codebase for the first time are
at least appreciative of the low defect rate that negative testing allows us to achieve and usually,
whether from a background in the finance industry or from outside, keenly adopt the tooling that
our framework provides for negative testing. To me, this anecdotal evidence indicates that the
Lakos Rule is readily comprehensible, at least to developers who have seen the benefits it enables.

4 Why we need the Lakos Rule in the C++ Standard Library
Despite the usefulness of the Lakos Rule in real-world codebases, [P1656R2] argues that it should
no longer be applied to the specification of the C++ Standard Library itself because existing major
implementations of the C++ Standard Library do not actually use exception-based negative testing.
This is an unreasonable argument, as we will demonstrate in this section.

4.1 Major C++ Standard Library implementations

Let us consider the three major implementations of the C++ Standard Library: libstdc++, libc++,
and the Microsoft STL. libstdc++ and libc++ both use death tests for negative testing, while the
Microsoft STL does not appear to negative test narrow contract preconditions at all.
libstdc++ chose to use death tests based on the DejaGnu framework. They have considered
exception-based tests but found that they would break backward compatibility.

8

libc++ initially chose to use exception-based tests for ease of testing and other reasons but ran into
the familiar issue that they could not apply this technique to functions declared noexcept. Since
they could not remove noexcept due to backward compatibility, they introduced the conditional
noexcept macro _NOEXCEPT_DEBUG, as described in section 2.1.2. They later found that _NOEXCEPT_-
DEBUG was a “horrible decision” (see [LLVMReviewD59166]) because it was observable to the user
and changed the behaviour of the program. Left with no other option, they switched to fork-based
death tests, which are much slower and run only on UNIX-like platforms.
This anecdote does not demonstrate that exception tests are a bad thing but rather that if they
are to be used, the library should be designed for their use from the start. The corollary is that
if library implementors (especially any other than the three major ones) are restricted to using
death tests, as would be the result of [P1656R2], they would be able to fully test only on UNIX-like
platforms (no Windows, no bare metal, no browser). Adopting [P1656R2] would do irreversible
damage: if we were to reverse such a decision in the future, drawing any benefit would be difficult
since users would have already come to depend on functions having narrow contracts being declared
noexcept.

4.2 Nonmajor and non-Standard implementations

In addition to the three major implementations, a number of nonmajor implementations as well as
quasi-implementations are available: libraries that do not implement the C++ Standard Library in
its entirety, but a subset of it, or a superset of a subset. Libraries like Bloomberg’s BSL, Electronic
Arts’ EASTL, NVIDIA’s C++ Standard Library, and others fall into this category.
Beyond that, many more C++ libraries do not claim to be “standard” libraries but implement drop-
in replacements for certain parts of the C++ Standard Library. Often, they differ in implementation
to account for industry-specific requirements but follow the Standard API as closely as possible for
compatibility. We have such libraries at Cradle, providing alternative implementations of containers,
algorithms, allocators, and more; many companies relying on C++ have similar libraries.
Many of these libraries use exception-based testing and rely on the Lakos Rule. If the C++ Standard
Library changes its design guideline in this regard, those libraries will have the choice between
either having an API that is no longer following the design of the Standard or moving away from
exception-based negative testing. In practice, the latter means either switching to death tests
(which, as discussed, introduces a lot more complexity and overhead and, in many cases, is outright
impossible) or giving up on negative testing entirely (which significantly reduces test coverage and
compromises code quality).

4.3 Throws: nothing vs. noexcept as a design guideline

Note that the C++ Standard allows implementations to unilaterally tighten Throws: nothing to
noexcept if they so choose — and some do so — and still be conforming. Therefore, abolishing the
Lakos Rule in the C++ Standard Library specification would do all the aforementioned damage
to users relying on it, while not actually benefitting anyone. If declaring functions having narrow
contracts noexcept provides a positive tradeoff for a particular implementation of the C++ Standard
Library, it can continue to do so without changing the status quo.
[P1656R2] claims that the difference between specifying Throws: nothing in the C++ Standard
and specifying noexcept in a particular implementation that chooses to tighten the specification
is surprising to users and somehow compromises the design of the C++ Standard. This claim is
unfounded. If the difference causes confusion, clarity can and should be provided through consistency,
QoI, documentation, and education. The Lakos Rule is highly motivated and straightforward to
explain and understand. One of several ways to motivate it, “so we can throw exceptions to
test debug-mode asserts”, contains just ten words. We should not compromise the ability to test

9

implementations on diverse platforms — a real benefit that prevents bugs in production software —
for a perceived cleanliness of design.
Other ways to motivate the Lakos Rule are completely unrelated to negative testing and contract
checking. A function having a wide contract that is known to never throw (given that it is
implemented correctly) can be declared noexcept. In contrast, the behaviour of a function having
a narrow contract is undefined when called out of contract; the C++ Standard does not place
any restrictions on the behaviour in this case, including any restriction to not throw. We can
therefore conclude that it is not logically sound to declare such a function noexcept: Doing so would
implicitly define behaviour beyond the current domain of the function and, hence, that extended
behaviour would no longer be undefined (according to the letter of the Standard). The concept of a
narrow contract and that of a noexcept function therefore contradict each other (see [P2861R0] for
a detailed discussion).
This has direct consequences for software design. It follows that once a function having a narrow
contract (for example, std::span::operator[], which has undefined behaviour when called out of
bounds), is declared noexcept, it can never be backward-compatibly extended to having a wide
contract (for example, be made bounds-safe in a future version by throwing when called out of
bounds) due to the implicitly defined behaviour of the noexcept specifier.
The C++ Standard Library should be an example of sound C++ library design. Abandoning the
Lakos Rule would go directly against this goal.

5 When should we use noexcept?

5.1 Code size and performance

The Lakos Rule stipulates that functions having a narrow contract should not be declared noexcept,
even if they are known to never throw an exception when called in contract. Part of the resistance
to this rule is a widespread practice to declare as many functions as possible noexcept, often for no
good reason.
In some cases, noexcept can measurably reduce the size of the generated binary code. Such a
reduction might occur when the compiler cannot otherwise reason about the function not throwing
(for example, because its definition is in another translation unit). In particular, when calling a non-
noexcept function f from a noexcept function, the compiler has to ensure that std::terminate
gets called when an exception gets thrown (and escapes the calling function). In general, that means
that instead of f(), the compiler generates

try { f(); } catch (...) { std::terminate(); }

On the other hand, when calling a noexcept function from another noexcept function, the compiler
can emit just the function call (if we ignore inlining). In addition, for a noexcept function, the
compiler does not have to generate unwind information because such a function never participates
in unwinding.
Older platforms do exist, notably including 32-bit Windows, for which generating unwind information
has a runtime cost (see [TR18015] section 5.4, where such platforms are said to use the “code”
approach). On most platforms however, generating unwind information happens at compile time
(the “table” approach). This is also known as the zero-overhead exception model and has become
the de facto standard for essentially all modern 64-bit architectures (see [Mortoray2013]).
On such platforms, the differences in codegen between noexcept and non-noexcept typically lead to
no measurable (let alone significant) difference in runtime performance (for a detailed discussion, see
“Unrealizable runtime performance benefits” within the “noexcept Specifier” section of [EMC++S]).
In fact, we are unaware of any study showing a measurable speedup in real-world code on any modern
platform due to noexcept. Similarly, we are unaware of any study showing that exception-handling

10

codegen has any penalty to compiler optimisations (as is sometimes claimed). [Mahaffey2017] and
[Dekker2019] even found that noexcept can cause a net performance loss in certain cases. This loss
is typically due to code motion across cache lines that can produce noise in either direction; this
noise usually far outweighs any other impact of noexcept on performance.
More compact codegen can, of course, be a benefit in itself, even if there is no speedup whatsoever,
particularly on embedded platforms where small binary size is an important concern. But on such
platforms, C++ is typically compiled with exceptions disabled anyway, which removes any potential
benefit from adding noexcept to function declarations.
Note also that in performance-critical code the affected functions in the hot path will typically
be inlined. Even if exceptions are enabled, and if there are optimisations that the compiler can
perform based on the function not throwing, it will be able to perform these optimisations anyway
if the function is inlined, even if it is not declared noexcept.

5.2 The actual use case for noexcept

There is one genuine reason to declare a function noexcept: When a C++ program programmatically
queries whether a function can throw, using the noexcept operator, and then chooses a different
algorithm depending on the return value of that operator.
An example of an algorithm where such a query occurs is std::vector::push_back. Typically,
in the presence of noexcept, copies will be turned into more efficient moves, which is both an
observable change in behaviour and a measurable difference in performance. This is the original
motivation for introducing noexcept in C++11 (see [N2855] and [N3050]), and its introduction
is tightly linked to the introduction of move semantics. The functions being queried with the
noexcept operator are nearly always copy, move, or swap operations. Hence, we would expect use
of noexcept to be limited to copy and move constructors, copy and move assignment operators, and
implementations of swap. Of these, only swap has a narrow contract (it requires equal allocators).
It follows that swap is the only bona fide exception to the Lakos Rule. We do not see a good
reason to deviate from the Lakos Rule in any other cases, even in performance-sensitive code, unless
a measurement can prove otherwise. This way, we can continue to enable usage of the effective
exception-based negative testing strategy for the vast majority of functions having narrow contracts
and require a fallback to death tests or other alternatives only in those vanishingly few cases (e.g.,
copy, move, and swap) where there is a sound engineering reason to declare the function under test
noexcept.
Looking beyond negative testing, we should make sure that exceptions continue to be well supported
and optimised by the platforms and libraries we depend on. noexcept has a tendency to be overused,
and if exceptions keep hitting arbitrary noexcept barriers, they are likely to rapidly reduce in
usability.

6 Can Contracts make the Lakos Rule obsolete?
SG21 is currently working on standardising a Contracts facility — i.e., a new language feature to be
added to the C++ Standard — that allows the user to express preconditions, postconditions, and
assertions in C++ code. Having a language-based Contracts facility would have many advantages
over current library-based approaches such as the ASSERT macro that we used in section 2 above.
Attempts to standardise a Contracts facility have a long history. The design in [P0542R5], sometimes
called “C++20 Contracts”, almost made it into C++20 but was removed from the working draft at
the last minute because of lack of consensus on some aspects of the design. After this failure to
standardise Contracts for C++20, SG21 was established and is currently aiming to get a Contracts

11

MVP into C++26. See [P2695R1] for the current SG21 roadmap as well as [P2521R3] and references
therein for a summary of the current state of this effort.
The current Contracts MVP proposes two build modes: No_eval, in which the precondition is
ignored, and Eval_and_abort, in which the precondition is checked; if the predicate evaluates to
false, std::terminate is called. Note that such an MVP does not yet give us anything useful for
the purposes of negative testing. Calling std::vector::front out of contract in No_eval mode
is not diagnosable at run time; in Eval_and_abort mode, an out-of-contract call will result in
std::terminate being called, which leaves death tests as the only method to write tests for such a
call.
However, the Contracts MVP is a work in progress. SG21 is currently working on adding violation
handling to the Contracts MVP. A recent proposal, [P2811R3], allows the user to install a custom
violation handler at link time. Among other things, such a violation handler might be specified to
throw an exception. This would give us a standard mechanism to perform exception-based negative
testing.
While this would be a great outcome, note that according to all current proposals in this space
(see [P2698R0], [P2811R3], and [P2834R0]), neither a violation handler nor the contract-checking
predicate itself should be allowed to throw through a noexcept boundary. An attempt to do so
would call std::terminate as is the case today. On platforms where death tests are nonviable (see
section 2.6), the Lakos Rule will therefore still be required to conduct negative testing, even after
adding a Contracts facility to the C++ Standard. We should therefore not remove the Lakos Rule
as a design guideline for the C++ Standard Library.

7 Conclusion
Testing code for contract violations (negative testing) is an important part of keeping code quality
high and reducing the number of introduced bugs. This approach is well proven in practice. Out
of all implementation strategies for negative testing, we found that exception-based testing in
combination with the Lakos Rule is the most straightforward, effective, and portable.
We have considered alternatives that do not require the Lakos Rule, such as a conditional noexcept
macro, setjmp and longjmp, using child threads, signals, and three different flavours of death
tests. All of them have unfavourable tradeoffs: they either do not scale due to an unacceptable
performance overhead, are not implementable on all relevant platforms, or are outright incapable of
providing the necessary functionality. In particular, the only alternatives to the Lakos Rule that
seem to be somewhat viable are fork-based and clone-based death tests but only for UNIX-like
platforms (and at reduced efficiency); for other platforms, there are none.
Some C++ Standard Library implementations choose to flout the Lakos Rule and declare nonthrow-
ing functions having narrow contracts noexcept. This practice is due to a combination of having to
maintain backward compatibility, not caring about non-UNIX-like platforms (which means they
can use death tests instead of exception-based tests, albeit at the price of higher complexity, worse
performance, and other tradeoffs), or not caring about testing for contract violations at all. For
these implementations, being unable to use exception-based testing is a choice they are free to make:
replacing Throws: nothing by noexcept is perfectly Standard-conforming, and they can continue to
do so without changing the status quo.
Removing the Lakos Rule as a design guideline, however, would preclude the entire C++ community
from using exception-based testing for Standard-conforming APIs. This regression would affect not
only the major implementations of the C++ Standard Library, but also minor implementations,
partial or modified implementations that are industry-specific or platform-specific, and the many
non-Standard libraries that implement drop-in replacements with Standard-conforming APIs. Thus,
removing the Lakos Rule would irreparably break existing testing strategies or make the affected APIs

12

no longer Standard-conforming, while not providing any practical benefit to anyone. Bloomberg’s
BDE libraries are one well-known example of a codebase that would be negatively affected but are
certainly not the only one: In this paper, we have shown case studies from two separate companies
(unrelated to Bloomberg) that would suffer the same fate, and we are aware of others.
If we look beyond negative testing and consider the actual use case for noexcept, we arrive at the
conclusion that specifying a function as Throws: nothing and declaring it noexcept are conceptually
different and serve entirely different purposes (specifying a narrow contract on the one hand and
choosing the most efficient algorithm that uses a copy, move, or swap operation on the other hand).
More broadly, from a software design perspective, the definition of a narrow contract and that of a
noexcept function are fundamentally incompatible (the former specifies that for some input, the
behaviour is undefined, while the latter specifies that for all input, the function is defined to not
throw). This causes real issues with library design: declaring a function with a narrow contract
noexcept makes it impossible to widen the contract later without breaking backward-compatibility.
Removing the Lakos Rule would mean abandoning the idea that the C++ Standard Library should
follow sound, consistent design principles.
We have also considered the ongoing work toward standardising a C++ Contracts facility. We
conclude that Standard Contracts could become a powerful new tool for testing code but does not
make the Lakos Rule any less necessary because a language-based Contracts facility will not change
the fact that an exception cannot be thrown through a noexcept boundary.
The Lakos Rule is a long-standing design principle of the C++ Standard Library and is highly
motivated and straightforward to explain and understand. Changing such an established principle
requires reaching a high bar of justification. For all the reasons discussed in this paper, this bar for
removing the Lakos Rule is clearly unmet. We therefore urge the C++ Standards Committee to
maintain the status quo, that is, to retain the Lakos Rule.

Acknowledgements
We would like to thank Lori Hughes, John Lakos, and Mungo Gill for thoroughly reviewing this
paper and providing useful feedback; to Ville Voutilainen for describing his idea of negative testing
with stackful coroutines; and to Jonathan Wakely for providing additional useful comments.

References

[Dekker2019] Niels Dekker. noexcept considered harmful. https://www.youtube.com/watch?v=
dVRLp-Rwg0k, CppOnSea 2019.

[EMC++S] John Lakos, Vittorio Romeo, Rostislav Khlebnikov, and Alisdair Meredith. Embracing
Modern C++ Safely. Addison-Wesley, 2021.

[GTestDocDeathTests] Advanced GoogleTest Topics — Death Tests. https://github.com/
google/googletest/blob/main/docs/advanced.md#death-tests, 2023-03-24.

[LLVMReviewD59166] Remove exception throwing debug mode handler support. https://reviews.
llvm.org/D59166, 2019-03-08.

[MSVCDocLongjmp] Microsoft Visual Studio 2022 Documentation — longjmp. https:
//learn.microsoft.com/en-us/cpp/c-runtime-library/reference/longjmp?
view=msvc-170, 2022-02-12.

[Mahaffey2017] Terry Mahaffey. Please, Please Help the Compiler. https://github.com/
TriangleCppDevelopersGroup/TerryMahaffeyCppTalk, 2017-12-09.

13

https://www.youtube.com/watch?v=dVRLp-Rwg0k
https://www.youtube.com/watch?v=dVRLp-Rwg0k
https://github.com/google/googletest/blob/main/docs/advanced.md#death-tests
https://github.com/google/googletest/blob/main/docs/advanced.md#death-tests
https://reviews.llvm.org/D59166
https://reviews.llvm.org/D59166
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/longjmp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/longjmp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/longjmp?view=msvc-170
https://github.com/TriangleCppDevelopersGroup/TerryMahaffeyCppTalk
https://github.com/TriangleCppDevelopersGroup/TerryMahaffeyCppTalk

[Mortoray2013] Edaqa Mortoray. The true cost of zero cost exceptions. https://mortoray.com/
2013/09/12/the-true-cost-of-zero-cost-exceptions/, 2013-09-12.

[N2855] Douglas Gregor and David Abrahams. Rvalue References and Exception Safety. https:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2855.html, 2009-03-23.

[N3050] David Abrahams, Rani Sharoni, and Doug Gregor. Allowing Move Constructors to
Throw (Rev. 1). https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/
n3050.html, 2010-03-12.

[N3248] Alisdair Meredith and John Lakos. noexcept Prevents Library Validation. https:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3248.pdf, 2011-02-28.

[N3279] Alisdair Meredith and John Lakos. Conservative use of noexcept in the Library. https:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3279.pdf, 2011-03-25.

[O’Dwyer2018] Arthur O’Dwyer. The Lakos Rule. https://quuxplusone.github.io/blog/2018/
04/25/the-lakos-rule/, 2018-04-25.

[P0542R5] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, and B. Stroustrup. Support
for contract based programming in C++. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2018/p0542r5.html, 2018-06-08.

[P0884R0] Nicolai Josuttis. Extending the noexcept Policy, Rev0. https://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2018/p0884r0.pdf, 2018-02-10.

[P1656R2] Agustín Bergé. “Throws: Nothing” should be noexcept. https://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2020/p1656r2.html, 2020-02-11.

[P1705R1] Shafik Yaghmour. Enumerating Core Undefined Behavior. https://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2019/p1705r1.html, 2019-09-28.

[P2148R0] CJ Johnson and Bryce Adelstein Lelbach. Library Evolution Design Guidelines. https:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2148r0.pdf, 2020-09-23.

[P2514R0] René Ferdinand Rivera Morell and Isabella Muerte. std::breakpoint. https://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2514r0.html, 2021-12-30.

[P2521R3] Gašper Ažman, Joshua Berne, Bronek Kozicki, Andrzej Krzemieński, Ryan McDougall,
and Caleb Sunstrum. Contract support – Record of SG21 consensus. https://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2521r3.html, 2023-02-10.

[P2695R1] Timur Doumler and John Spicer. A proposed plan for Contracts in C++. https:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2695r1.pdf, 2023-02-09.

[P2698R0] Bjarne Stroustrup. Unconditional termination is a serious problem. https://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2698r0.pdf, 2022-11-18.

[P2811R3] Joshua Berne. Contract-violation handlers. https://isocpp.org/files/papers/
P2811R3.pdf, 2023-05-04.

[P2834R0] Joshua Berne and John Lakos. Semantic Stability Across Contract-Checking Build
Modes. https://isocpp.org/files/papers/P2834R0.pdf, 2023-05-08.

[P2861R0] John Lakos. Narrow Contracts and noexcept Are Inherently Incompatible: The Lakos
Rule. https://wg21.link/p2861r0, 2023-05-15.

[TR18015] Technical Report on C++ Performance. https://www.open-std.org/jtc1/sc22/
wg21/docs/TR18015.pdf, 2006-02-15.

14

https://mortoray.com/2013/09/12/the-true-cost-of-zero-cost-exceptions/
https://mortoray.com/2013/09/12/the-true-cost-of-zero-cost-exceptions/
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2855.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2855.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3050.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3050.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3248.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3248.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3279.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3279.pdf
https://quuxplusone.github.io/blog/2018/04/25/the-lakos-rule/
https://quuxplusone.github.io/blog/2018/04/25/the-lakos-rule/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0884r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0884r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1656r2.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1656r2.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1705r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1705r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2148r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2148r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2514r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2514r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2521r3.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2521r3.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2695r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2695r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2698r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2698r0.pdf
https://isocpp.org/files/papers/P2811R3.pdf
https://isocpp.org/files/papers/P2811R3.pdf
https://isocpp.org/files/papers/P2834R0.pdf
https://wg21.link/p2861r0
https://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf

	1 Introduction
	2 Negative testing
	3 Case studies
	4 Why we need the Lakos Rule in the C++ Standard Library
	5 When should we use noexcept?
	6 Can Contracts make the Lakos Rule obsolete?
	7 Conclusion
	References

