Planning to Revisit the Lakos Rule

The Lakos Rule is Foundational for Contracts

Document #: P2837R0

Date: 2023-05-10

Project: Programming Language C++
Audience: LEWG

Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>
Harold Bott Jr.
<hbott1@bloomberg.net>

Contents
1 Abstract 1
2 Revision History 1
2.1 2023 May mailing e e 1
3 Introducing the Lakos Rule 2
4 The Lakos Rule Since 2011 2
5 The Lakos Rule for C++426 and Onward 2
6 Conclusion 2
7 References 2
1 Abstract

C++11 introduced the noexcept specifier and the noexcept operator to retain the existing strong exception-
safety guarantees promised by various types within the Standard Library when adding support for move seman-
tics. With minimal opportunity to use a working implementation of such new language features, the Lakos Rule
— described in [N3279] and [N3248] — was adopted as a simple, minimal set of design rules to follow until we
gained sufficient practical experience. We now have over a decade of such experience, and our library designers
have frequently suggested revising those guidelines.

With the pending arrival of Contracts in C++26, the need to revisit the Lakos Rule is clear. We make our case
to defer such a review until that feature has landed.

2 Revision History

2.1 2023 May mailing
Initial draft of this paper.

mailto:ameredith1@bloomberg.net
mailto:hbott1@bloomberg.net

3 Introducing the Lakos Rule

When C++11 introduced the noexcept specifier to support the strong exception-safety guarantees in the Stan-
dard Library in the presence of move semantics, we had no experience to guide our usage. The Lakos Rule
was adopted as a simple set of design rules to follow — which would not impact client code written using the
Standard Library — until we gained sufficient practical experience.

4 The Lakos Rule Since 2011

[N3279] introduced some essential vocabulary for talking about contracts on functions and the Lakos Rule to
guide the Library Working Group in its adoption of this new feature. After more than a decade of practical
experience, [P2861R0] provides an update to the original paper. It revisits the motivations, restates the guidelines,
and illustrates up-to-date usage of these guidelines. [P2831R0] is an independent affirmation of the importance
of the Lakos Rule in practice.

5 The Lakos Rule for C++426 and Onward

Now that we have over a decade of such experience, our library designers have frequently suggested revising
these library guidelines (e.g., see [P1656R2]). Meanwhile, we anticipate that C4+426 will include a Contracts
facility being developed by SG21, incorporating contract checking annotations (CCAs) for narrow contracts.

Once the initial Contracts proposal is complete and ready to merge into the C++ working draft, we will need
to address whether vendors have freedom to add CCAs to their library implementations in 16.4.6 [conforming].
We will also want a design guideline about how we would use CCAs in the library specification itself, much like
Walter Brown’s [P1369R0], which guides the modern specification for library clauses, with the trade-off between
concepts in signatures and Constraints: clauses.

Meanwhile, each vendor can decide whether they adopt this rule in their implementation. We note that writing
non-Lakos-Rule software on top of a library that adheres to the Lakos Rule is simple; writing software that
adheres to the Lakos Rule on top of a library that does not is impossible. Since the Standard Library is
fundamental to software written in C+++, we have reinforced our belief that the Standard Library specification
should continue to follow this fundamental design rule.

The current Lakos Rule has preserved the baseline behavior of the C++ Standard Library. Given the inevitable
need to readdress this design space in the presence of Contracts, we should defer revisiting this rule until we
have the complete context, expected in the next 12-18 months.

6 Conclusion

The original Lakos Rule was deliberately conservative so that programs built on top of the Standard Library
would not be constrained against its use by external factors, such as use in a nonterminating production environ-
ment. Those principles hold as strongly today and will become only more relevant as C++26 looks to support
a contract checking facility.

When Contracts are added to the Standard, we expect to codify something like the Lakos Rule that recognizes
the incompatibility of narrow contracts and contract checking annotations. We should defer further discussion
of such rules until either the Contracts facility lands in 12-18 months or we clearly see it will not land in this
Standards cycle.

7 References

[N3248] A. Meredith, J. Lakos. 2011-02-28. noexcept Prevents Library Validation.
https://wg21.link/n3248

https://wg21.link/conforming
https://wg21.link/n3248

[N3279] A. Meredith, J. Lakos. 2011-03-25. Conservative use of noexcept in the Library.
https://wg21.link /n3279

[P1369R0] Walter E. Brown. 2018-11-25. Guidelines for Formulating Library Semantics Specifications.
https://wg21.link/p1369r0

[P1656R2] Agustin Bergé. 2020-02-14. “Throws: Nothing” should be noexcept.
https://wg21.link /p1656r2

[P2831R0] Timur Doumler, Ed Catmur. 2023-05-15. Functions having a narrow contract should not be noexcept.
https://wg21.link /p2831r0

[P2861R0] John Lakos. 2023-05-15. Narrow Contracts and noexcept are Inherently Incompatible.
https://wg21.link/p2861r0

https://wg21.link/n3279
https://wg21.link/p1369r0
https://wg21.link/p1656r2
https://wg21.link/p2831r0
https://wg21.link/p2861r0

	Abstract
	Revision History
	2023 May mailing

	Introducing the Lakos Rule
	The Lakos Rule Since 2011
	The Lakos Rule for C++26 and Onward
	Conclusion
	References

