
Destructor Semantics Do Not Affect Constructible Traits
Addressing LWG#2116 and LWG#2827

Document #: P2842R0
Date: 2023-05-11
Project: Programming Language C++
Audience: Library Working Group
Revises: N/A
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>
Harold Bott Jr.
<hbott1@bloomberg.net>

Contents
1 Abstract 2

2 Revision History 2
2.1 R0: Varna 2023 . 2

3 Introduction 2

4 Wording History 2
4.1 Specified in terms of the constructor alone . 2
4.2 Attempts to implement the noexcept traits purely in the library 3
4.3 Renamed to final form . 3
4.4 Specified in terms of an invented variable declaration . 3
4.5 Wording applied to trivial constructor traits too . 4

5 History of Library Behavior 4

6 Resolving the Issues 5
6.1 Motivation to retain original intent . 5
6.2 Motivation to retain the current semantics . 6

7 Proposed Resolution (NAD) 6
7.1 Close the issue as NAD . 6
7.2 Clarify the Standard so the interpretation is clear . 6

8 Alternate Resolution 7
8.1 Option A . 7
8.2 Option B . 7
8.3 Option C . 7
8.4 Option D . 8

9 Summary 8

10 Acknowledgements 8

11 References 8

1

mailto:ameredith1@bloomberg.net
mailto:hbott1@bloomberg.net

1 Abstract
For type traits that deal with constructors, the Standard’s wording was carefully drafted to avoid invoking
destructors in determining the ::value of the trait, as would occur if querying an expression using a temporary.
LWG issue 2116 raised concerns that this formulation still required an accessible destructor, and subsequently
implementations treated the specification as-if that destructor were indeed part of the query’s semantics.

This paper presents the history and motivation for the wording and the competing history of the implementations
and provides alternative resolutions to make the Standard and implementations agree.

2 Revision History
2.1 R0: Varna 2023
Initial draft of the paper.

3 Introduction
Type traits were introduced to C++ in 2003 by [N1424] for the Library Extensions TR1 [N1836] and were
subsequently added to the C++11 draft when the Library Extensions TR1 was merged into the C++ working
draft at the 2006 Berlin meeting.

NB comments addressed by [N3142] changed the clear wording that considered only constructors for these traits,
to consolidated wording relying on an invented variable declaration that was intended to have the same meaning.

Following [N3142], the interpretation adopted by the Standard Library vendors (with regard to the destructors)
was the opposite of that originally intended meaning. Vendors treat the invented variable declaration as if it
were an expression rather than a statement.

Meanwhile, [LWG2116] raised concerns about the is_nothrow_constructible trait requiring an accessible
destructor; subsequently, [LWG2827] raised similar concerns for the is_trivially_*_constructible traits.

This paper details a number of ways to resolve those two issues, correcting the Standard’s wording, the Library
implementations, or both.

4 Wording History
To understand the issues at hand, we will look into the history of how the current specification evolved.

4.1 Specified in terms of the constructor alone
Type traits were originally introduced in [N1836] where the predicate for a trait named has_trivial_copy is
specified as

The copy constructor for T is trivial

Similarly, the predicate for a trait named has_nothrow_copy is specified as

The copy constructor for T has an empty exception specification or
can otherwise be deduced never to throw an exception

Note that in C++03, an empty exception specification refers to throw(), not to the absence of any exception
specification, i.e., equivalent to a noexcept(true) exception specification today.

These traits were renamed to has_trivial_copy_constructor and has_nothrow_copy_constructor to clarify
the intent in their name as part of the subsequent C++0x work and would be renamed again before C++11 was
complete.

2

4.2 Attempts to implement the noexcept traits purely in the library
The original specification for has_nothrow_copy_constructor required a compiler intrinsic to implement, and
it was thought that when we added noexcept to the language in [N3050], we should be able to provide a pure
library solution with something like
has_nothrow_copy_constructor<T>::value = noexcept(T{declval<T const &>()});

The problem with this formulation is that the expression inside the noexcept operator includes the destruc-
tion of the temporary T object. At that time, destructors without an exception specification were implicitly
noexcept(false), with work in EWG to independently address this noexcept behavior as part of a larger issue
in the design of the language.

4.3 Renamed to final form
A variety of NB comments were filed against these traits for the C++11 FCD, and all were resolved in the omnibus
issue paper [N3142]. The first part of that was to rename the has_*_constructor traits to is_*_constructible
traits.

4.4 Specified in terms of an invented variable declaration
In addition to changing the names of traits, the omnibus issue paper [N3142] changed the way constructible
traits were specified, i.e., consistently in terms of the is_constructible trait.

Quoting the rationale for this change to the is_nothrow_constructible trait:

is_constructible<T, Args...>::value is true and the variable definition for
is_constructible, as defined below, is known not to throw any exceptions
(5.3.7 [expr.unary.noexcept]).

[Rationale: We rely on the core language meaning here and therefore suggest
to add a reference to 5.3.7 [expr.unary.noexcept], because this allows us to
implicitly point to the noexcept operator as a tool to recognize this property
in situations where expressions are involved. Some type traits are defined in
terms of variable definitions and we therefore cannot directly use the operator
for them. A correct implementation will be based on a compiler-intrinsic here,
simulating implementations will typically partition into different expressions,
each of them could be checked via noexcept.

Referring to 5.3.7 [expr.unary.noexcept] has the advantage that this sub-clause
directly refers to 15.1 [except.throw] where we find

Throwing an exception transfers control to a handler.

In the context we use the term it is clear that this means that the final
handler is not located within the expression or definition that is the result
of an exception.]

You will note that none of this rationale refers to execution of destructors; however, the well-formed constraints
and checking for side effects would include checking for the accessibility of the destructor. (This is the origin of
LWG issue 2116.) The interpretation of

is known not to throw any exceptions (5.3.7 [expr.unary.noexcept])

is explicitly delegated to the core language describing how the noexcept operator is required to make the same
determination.

The hidden issue is the interpretation of

3

… the following variable definition would be well-formed for some invented
variable t:

T t(create<Args>()...);

The phrasing here is chosen very deliberately to exclude the destructor that is executed at the end of the lifetime
of t; otherwise, we would have more clearly written this same condition as

… the following statement would be well-formed for some invented
variable t:

{ T t(create<Args>()...); }

That the variable declaration ends at the ; and that the destructor does not run until after the } that ends the
block scope were well known at the time; that is why such a scope is deliberately absent in the invented variable
form.

If the current interpretation that includes the call of the destructor were the intended meaning, we would not
need to call into some invented language requiring a compiler intrinsic (as observed in the rationale) to decouple
the lifetime from the construction. We could simply write an expression that creates a temporary using the
appropriate constructor, and the execution of the destructor is then implied:

is_constructible<T, Args...>::value is true and the variable definition
for is_constructible, as defined below, is known not to throw any exceptions
(5.3.7[expr.unary.noexcept]).

noexcept(T(declval<Args>)...) is true

4.5 Wording applied to trivial constructor traits too
Once the specification for is_nothrow_move_constructible was rephrased in terms of an invented vari-
able (through the dependency on the is_constructible trait), the same formulation was applied to
is_trivially_copy_constructible. Given the original intent of the “invented variable declaration” wording,
this change should not have impacted implementations, which would still require the same compiler intrinsic as
has_trivial_copy_constructor to obtain information about the triviality of copy constructors.

5 History of Library Behavior
The following program was tested with Godbolt Compiler Explorer against a range of Standard Libraries, build-
ing in C++11 mode (or later where there are no earlier versions available):
#include <type_traits>

struct Test {
Test() = default;
Test(Test const&) = default;

~Test() noexcept(false) {} // non-trivial, potentially throwing
};

static_assert(std::is_trivially_copy_constructible<Test>::value, "non-trivial");
static_assert(std::is_nothrow_copy_constructible<Test>::value, "may throw");

To the best of the authors’ knowledge, all libraries that support the traits by the is_*_constructible
name fail both of the static assertions. If the exception specification is removed from the destructor, then
the is_nothrow_copy_constructible assertion passes. If the destructor is defaulted or removed, then the
is_trivially_copy_constructible assertion passes as well.

4

Older GCC compilers shipped with implementations of the earlier traits too, so they were tested with the
following program, which would be equivalent to the one above even on compilers too old for experimental
support for noexcept:
#include <type_traits>

struct Test {
Test() = default;
Test(Test const&) = default;

~Test() throw(int) {} // non-trivial, potentially throwing
};

static_assert(std::has_trivial_copy_constructor<Test>::value, "non-trivial");
static_assert(std::has_nothrow_copy_constructor<Test>::value, "may throw");

This program passes both assertions with GCC compilers from 4.4 to 4.6, after which the has_nothrow_copy_constructor
trait was removed.

Finally, the hybrid program below was tested with later versions up to GCC 6.4 (after which the pre-Standard
has_trivial_copy_constructor trait was removed):
#include <type_traits>

struct Test {
Test() = default;
Test(Test const&) = default;

~Test() noexcept(false) {} // non-trivial, potentially throwing
};

static_assert(std::has_trivial_copy_constructor<Test>::value, "non-trivial");
static_assert(std::is_trivially_copy_constructible<Test>::value, "non-trivial");
static_assert(std::is_nothrow_copy_constructible<Test>::value, "may throw");

Here, the is_*_constructible traits consistently fail the assertions, as in our first test, and the
has_trivial_copy_constructor assertion continues to pass.

Hence, we conclude that the is_*_constructible traits have always been implemented with the semantics they
have today, which was clearly a change from the implementation of the preceding has_*_constructor traits.

6 Resolving the Issues
Due to the disconnect between the intended meaning of the current specification and the current implementations
of that specification, we need to decide which to prefer, and amend the Standard to clarify accordingly.

6.1 Motivation to retain original intent
The traits, as specified with their original intent and naming, offer a type query users cannot write themselves,
since it is not possible to decouple constructor calls from all other language features in a SFINAE-able expression.
That is, invoking a constructor is not possible without implicitly invoking at least one more expression; without
the “if a declaration were well-formed” clause, we would have to choose between an expression involving a
temporary (and so invoking the destructor) or an expression involving new (which is an overloadable operator
with a larger set of failure modes).

When we consider the current implementations of the is_trivially_*_constructible traits, they become es-
sentially redundant since the difference between is_trivially_copyable and is_trivially_copy_constructible
is negligible; the missing constraint for the predicate for is_trivially_copy_constructible is that the copy
assignment operator, and any eligible move constructor or move assignment operator, are also trivial. Observe

5

that trivially copy constructible types are not necessarily trivially copyable types, as such types can violate the
missing constraint.

Requiring a destructor to be accessible and have the same queried property as the selected constructor turns
these traits into compound traits with a confusing name; since there is no intuitive connection between
is_constructible and is_destructible, they are independent behaviors.

6.2 Motivation to retain the current semantics
The semantics that all current libraries provide (at the time this paper is being written) assume the object ends
its lifetime at the end of the declaration. This has always been the case under the current name, so it might be
too late to change the implementations.

The main concern with this approach is that the trivial traits serve no purpose. They do not guarantee a type
is trivially copyable, enabling some bit-manipulating optimizations. On the other hand, they no longer provide
reflection on the queried operation.

We see two simple ways to address these concerns.

1 We can deprecate the is_trivially_* traits other than the trait that maps to language support,
is_trivially_copyable.

2 Rather than requiring a trivial destructor, we require a trivially copyable type, which would enable the
bitwise manipulations and ensure that the appropriate call is satisfied by the public interface of that type.

Of these two directions, we prefer the second.

In any event, a note should be added to the Standard to clarify the intent that the destructor semantics are
intended as part of the invented variable declaration.

7 Proposed Resolution (NAD)
The proposed resolution is to close these issues as NAD, indicating that bug reports should be filed against the
existing library implementations, contrary to the rationale currently recorded in the issues.

7.1 Close the issue as NAD
Add the following rationale to the issue(s):

Varna, 2023:

The trait correctly relies on an accessible destructor, which is strictly correct according
to the language. While an entity may be initialized with dynamic storage duration
without an accessible destructor and allowed to leak, such use is possible only through
the use of the new operator, which opens up a variety of additional overloads that might
affect the result and so should be considered as a different trait.

7.2 Clarify the Standard so the interpretation is clear
21.3.5.4 [meta.unary.prop] Type properties

9 The predicate condition for a template specialization is_constructible<T, Args...> shall be satisfied if and
only if the following variable definition would be well-formed for some invented variable t:

T t(declval<Args>()...);

[Note 7: These tokens are never interpreted as a function declaration. —end note]

Access checking is performed as if in a context unrelated to T and any of the Args. Only the validity of the
immediate context of the variable initialization is considered.

6

https://wg21.link/meta.unary.prop

[Note X: The accessibility of the destructor is checked as part of a variable declaration but the destructor is not
called until later, so no other aspects such as whether the destructor is trivial or noexcept are relevant. —end
note]

[Note 8: The evaluation of the initialization can result in side effects such as instantiation of class template
specializations and function template specializations, the generation of implicitly-defined functions, and so on.
Such side effects are not in the “immediate context” and can result in the program being ill-formed. —end note]

8 Alternate Resolution
If we were to canonize the existing library implementations’ behavior, then the wording should be updated as
follows, relative to [N4944].

8.1 Option A
Change the invented variable declaration into a temporary expression, which also removes any ambiguity of the
declaration being interpreted as a function declaration by a vexing parse.

8.1.1 Proposed changes

21.3.5.4 [meta.unary.prop] Type properties
9 The predicate condition for a template specialization is_constructible<T, Args...> shall be satisfied if and

only if the following variable definition expression T(declval<Args>()...) would be well-formed for some
invented variable t:.

T t(declval<Args>()...);

[Note 7: These tokens are never interpreted as a function declaration. —end note]

Access checking is performed as if in a context unrelated to T and any of the Args. Only the validity of the
immediate context of the variable initialization expression is considered.

[Note 8: The evaluation of the initialization expression can result in side effects such as the destruction of the
temporary, instantiation of class template specializations and function template specializations, the generation
of implicitly-defined functions, and so on. Such side effects are not in the “immediate context” and can result
in the program being ill-formed. —end note]

Editor’s note: “temporary” rather than “temporary object” is correct, to allow for the initialization of
references.

8.2 Option B
Change the invented variable declaration into a temporary expression, which also removes any ambiguity of the
declaration being interpreted as a function declaration by a vexing parse; move the wording directly into the
type traits table.

8.2.1 Proposed changes

Take the wording of Option A and place it directly into the type traits tables, as there is no need for special
wording describing an invented variable any more.

8.3 Option C
Introduce braces around the invented variable declaration for the minimal change that makes the “includes
destructor” interpretation clear:

7

https://wg21.link/meta.unary.prop
alt.opt.A

8.3.1 Proposed changes

21.3.5.4 [meta.unary.prop] Type properties
9 The predicate condition for a template specialization is_constructible<T, Args...> shall be satisfied if and

only if the following variable definition would be well-formed for some invented variable t:
{ T t(declval<Args>()...); }

[Note 7: These tokens are never interpreted as a function declaration. —end note]

Access checking is performed as if in a context unrelated to T and any of the Args. Only the validity of the
immediate context of the variable initialization is considered.

[Note 8: The evaluation of the initialization can result in side effects such as instantiation of class template
specializations and function template specializations, the generation of implicitly-defined functions, and so on.
Such side effects are not in the “immediate context” and can result in the program being ill-formed. —end note]

[Note 9: The block scope makes it clear that the destructor is part of the semantic, and the reference to
initialization means the requirements are tested only against the declaration of the destructor for type T, which
is enough to verify its triviality and noexcept behavior without requiring its definition. —end note]

8.4 Option D
We could fix the two library issues by adding wording to explicitly ignore the accessibility of the destructor,
which was the original intent of the first issue, [LWG2116]. Such a change would require support in any compiler
intrinsic.

9 Summary
NAD remains the preferred resolution as the current constraint seems be the preferred one; in order to construct
an object with dynamic lifetime that can leak without running its destructor, it is necessary to use some form of
new expression, and that should be a different trait that concerned users can write for themselves if they believe
they really need it — noting that new operators can be overloaded.

10 Acknowledgements
Thanks to Michael Parks for the pandoc-based framework used to transform this document’s source from Mark-
down.

Thanks again to Matt Godbolt for maintaining Compiler Explorer, the best public resource for C++ compiler
and library archaeology!

11 References
[LWG2116] Dave Abrahams. is_nothrow_constructible and destructors.

https://wg21.link/lwg2116

[LWG2827] Richard Smith. is_trivially_constructible and non-trivial destructors.
https://wg21.link/lwg2827

[N1424] John Maddock. A Proposal to add Type Traits to the Standard Library.
https://wg21.link/n1424

[N1836] Matt Austern. 2005-06-24. Draft Technical Report on C++ Library Extensions.
https://wg21.link/n1836

8

https://wg21.link/meta.unary.prop
https://wg21.link/lwg2116
https://wg21.link/lwg2827
https://wg21.link/n1424
https://wg21.link/n1836

[N3050] D. Abrahams, R. Sharoni, D. Gregor. 2010-03-12. Allowing Move Constructors to Throw (Rev. 1).
https://wg21.link/n3050

[N3142] J. Merrill, D. Krügler, H. Hinnant, G. Dos Reis. 2010-10-15. Adjustments to constructor and assignment
traits.
https://wg21.link/n3142

[N4944] Thomas Köppe. 2023-03-22. Working Draft, Standard for Programming Language C++.
https://wg21.link/n4944

9

https://wg21.link/n3050
https://wg21.link/n3142
https://wg21.link/n4944

	Abstract
	Revision History
	R0: Varna 2023

	Introduction
	Wording History
	Specified in terms of the constructor alone
	Attempts to implement the noexcept traits purely in the library
	Renamed to final form
	Specified in terms of an invented variable declaration
	Wording applied to trivial constructor traits too

	History of Library Behavior
	Resolving the Issues
	Motivation to retain original intent
	Motivation to retain the current semantics

	Proposed Resolution (NAD)
	Close the issue as NAD
	Clarify the Standard so the interpretation is clear

	Alternate Resolution
	Option A
	Option B
	Option C
	Option D

	Summary
	Acknowledgements
	References

