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Are Inherently Incompatible 
ABSTRACT 
A contract in the C++ Standard Library, is a specification, for a given function, 
of what subset of syntactically valid input and accessible state is required to 
invoke that function so as to have defined (i.e., not undefined) behavior and, in 
particular, the essential behavior that function promises to deliver when 
invoked in contract. Functions having at least one syntactically valid input-and-
state combination for which the behavior is undefined are said to have narrow 
contracts. As of C++11, a new keyword, noexcept, was added to the language. 
When used as a function specifier, this keyword effectively codifies essential 
behavior for the entire syntactically valid domain of the function to be, in 
addition to any other explicitly specified requirements, “throws nothing” — a 
contradiction. Since C++11, the Lakos Rule, as reflected in the Standard 
Library, effectively prohibits placing the noexcept specifier on any function 
that would otherwise have a narrow contract. This paper explains why that rule 
was, is, and likely always will be a solid best practice, especially in the C++ 
Standard Library. 
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0 REVISIONS 
R0: Initial paper submission 

1 INTRODUCTION 
The use of narrow contracts — those having one or more preconditions — has 
been an integral part of practical, efficient software engineering since long 
before the first “C with Classes” program was even on the drawing board. In the 
1980s, legends like Barbara Liskov and Bertrand Meyer were focused on how 
to structure hierarchies of telescoping preconditions. 
 
In particular, the first edition of the C programming language, published 
February 22, 1978, shows the classic program to print "hello, world": 

main() { 

    printf("hello, world\n");  // well-defined behavior  

} 

The function printf is not valid with every syntactically valid input. Even 
ignoring the lax type safety in classic C, adding a simple percent sign (%) in the 
quoted string would result in undefined behavior: 

main() { 
    printf("hello, worl%d\n");  // undefined behavior 
} 

Hence, printf had a narrow contract. Even today in C++, printf has a narrow 
contract but not as narrow as it was in the early days. Over the years, behavior 
that was previously undefined, such as %x, %Lx, and %LLx has taken on 
meaning where previously there was none. This sort of backward-compatible 
extensibility over time is what makes truly narrow contracts inherently 
essential to the effective maintainability and enhancement of virtually every 
successful, widely used library we write. 
 
In what follows, we'll start by precisely defining important terms that we use 
routinely when discussing contracts, which will include two kinds of undefined 
behavior (UB) — library UB and language UB (the distinction between which is 
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not yet properly reflected within the Standard). At this point, we'll restate the 
formal proof that functions having a nonthrowing exception specification — by 
definition — cannot have a narrow contract, culminating in the Lakos Rule. 
 
We'll then explore the value of extending a particular narrow contract — one 
that initially throws nothing — over several versions of a library but this time 
from a C++ perspective. After that, we'll examine the tangled web we would 
have woven had we added noexcept to that first nonthrowing function on its 
first version. 
 
Next, we'll take a look how narrow contracts interact with contract checking 
and justify the general need, at least for some, for throwing contract-violation 
handlers. In particular, we'll explore throwing on a contract-violation as the 
primary means of (1) temporary continuation, if not full recovery, and (2) 
maximally effective, efficient, and portable negative testing. 
 
Then, we will turn our attention the adverse interaction that liberal application 
of noexcept specifiers has on software designs that make use of exceptions to 
communicate uncommon or unexpected (e.g., logic) errors. After that, we'll take 
a look at various practical ways the noexcept specifier can be used (and 
misused) to achieve superior algorithmic performance when called from a 
generic context that demands more than just the basic exception-safety 
guarantee, along with some other niche use cases.  
 
Importantly, although widespread systemic use of the noexcept specifier can 
somewhat reliably reduce generated code size, no legitimate theory or empirical 
evidence suggests that runtime performance is ever measurably, let alone 
significantly, improved; copious experimental data and basic common sense, 
however, suggest otherwise. 
 
At this point, we’ll change gears and talk about the Standard Library’s role as 
the foundation for virtually all C++ development worldwide. As such, the 
Standard cannot reasonably support any one particular set of design principles 
(i.e., one developer's universe) and must instead and to the extent practicable 
support all of them without undue judgment. 
 
After that, we’ll revisit the Lakos Rule and discuss its implications. We’ll then 
postulate what an exception to the Lakos Rule might look like and then test 
our hypothesis on what were initially deemed possible exceptions to the Lakos 
Rule to see if they meet a set of four criteria by which all potential exceptions 
are to be validated. At the conclusion of this section, we’ll then exhibit the only 
known exception to the Lakos Rule, i.e., the exception that proves the rule. 
 
Finally, in that light, we provide recommendations and justification for effective 
practical use of the noexcept specifier for (1) the C++ Standard Library 
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(specification), (2) concrete implementations of the Standard Library, (3) third-
party libraries, and (4) end-user libraries. Spoiler alert: Absent a vanishingly 
rare and compelling engineering reason to do otherwise, deviating from the 
Lakos Rule is invariably and absolutely a terribly bad idea, especially within 
the C++ Standard Library specification. 

2 SYNOPSIS 
This paper is tutorial in nature, and thus is long with many supporting 
examples. To facilitate a much quicker read, we provide here a quick synopsis 
of the paper.  
 
In Section 3, we start by defining some key terms. 

• Precondition — a requirement (expressed or implied) that limits the 
circumstances under which a contract can be considered binding. 

• Essential behavior — that which must result from a properly 
implemented function provided all preconditions for that function are 
met. 

• Contract — a bilateral agreement (typically written in a natural language) 
between a function's implementation and any caller of that function. It 
must incorporate at least (1) any nonobvious preconditions necessary for 
successfully invocation and (2) the essential behavior that the function 
promises to deliver, provided that all preconditions (even implicit ones) 
are met. 

• Narrow contract — a contract with preconditions. 
• Wide contract — a contract without preconditions. 
• Conforming implementation — one that accurately implements the 

contract. 
• Undefined behavior (UB) — behavior for which there are no 

requirements. 
• Library UB — behavior resulting from invoking a nonstandard library 

function in violation of one (or more) preconditions. 
• Language UB — behavior resulting from a failure to satisfy the 

constraints of the language or the Standard Library. 
 
We point out, in Section 4, that by adding a noexcept specifier to a function 
with a narrow contract, we are effectively widening that contract by imposing 
essential behavior on all possible syntactically valid input combinations. We 
discuss the importance of functions with narrow contracts and revise both the 
Liskov Substitutability Principle and Bertrand Meyer’s Design-by-Contract. We 
then show that, where a function is declared noexcept, we cannot override 
that function with one that can throw. Similarly, we cannot subsequently 
modify a function’s contract with one that is permitted to throw without 
breaking backward compatibility. The final point of Section 4 is that many 
libraries perform defensive input checks when built in debug mode, throwing 
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an exception if called out of contract, and skip those checks when built in 
release mode. Marking those functions noexcept would prevent library 
implementations from providing such checks. 
 
In section 5, we consider interactions with the upcoming Contracts MVP facility 
in C++. A number of other languages currently have contract checking and, in 
the event of contract violation, use an exception to indicate the fact. This 
enables an application to recover from the problem (e.g., retrying an operation 
that timed out), to gracefully degrade (e,g., in the rendering of a video game), or 
to shut down in a controlled manner (e.g., closing any open orders in a stock 
market trading system). When the checked function is declared noexcept, the 
remaining options are to ignore the fact or to terminate, both of which can be a 
serious problem in many environments. Having a noexcept specifier on a 
narrow-contract function with a Contracts MVP check would also remove the 
only viable means of thoroughly testing the function’s contracts check, namely 
to have a handler that throws an exception. 
 
Section 6 reprises some of the potential pitfalls of noexcept, described in 
Embracing Modern C++ Safely,1 namely overly strong contract guarantees and 
accidental termination. 
 
Section 7 then looks at some of the common uses and misuses of the noexcept 
specifier. 

• Use: declaring move operations nonthrowing, which enables algorithms 
offering exception safety guarantees to perform additional optimizations 
when it is known that an exception cannot be emitted. This legitimate 
use is the reason noexcept was introduced into the language in C++11. 

• Use: wrapping a type to force the Standard Library to apply its noexcept 
optimizations even though, in reality, that type can throw on move. 

• Borderline misuse: to avoid writing exception handler functions in 
callback frameworks. 

• Misuse: as a form of documentation or as a substitute for documenting 
possible exceptions in the contract. 

• Misuse: reducing object code size on the (typically false) assumption of 
faster performance. 

• Misuse: attempting to increase performance (despite that noexcept will, 
on its own, make no difference whatsoever). 

 
Section 8 points out that the C++ Standard must cater to the multiverse, i.e., 
all the industries that use C++, each with their own needs and priorities. The 
Standard should, without any value judgement, ratify the widest set of use 
cases without overly inconveniencing the typical case. The limitations that 

 
1 [Lakos22a] 
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would be imposed by the removal of the Lakos Rule are in conflict with this 
principle. 
 
Section 9 defines the Lakos Rule as “Narrow contracts and noexcept are 
inherently incompatible.” It also discusses possible exceptions to the rule, a set 
of key tests that should be applied when considering any exception, and how 
swap is the only valid exception (noting that move operations are a legitimate 
use for noexcept, which does not break the Lakos Rule). 
 
Section 10 states that application of the Lakos Rule is beneficial for third-party 
and end-user libraries in addition to the Standard Library and its 
implementations. 

3 TERMINOLOGY 
 
A contract governing the behavior of a function, member function, operator, 
constructor, or lambda — henceforth referred to collectively as function — is a 
bilateral agreement (typically written in a natural language) between that 
function's implementation and any caller of that function. A function's contract 
must, at a minimum, incorporate (1) any nonobvious preconditions necessary 
for successfully invoking that function and (2) the essential behavior that the 
function promises to deliver, provided that all preconditions (even implicit ones) 
are met. 

3.1 Essential and Implementation-Defined Behaviors 
We define essential behavior to be that which must result from a properly 
implemented function provided that all preconditions for that function are met. 
 
Consider a function average that takes two integers, a and b, and returns 
their mean rounded up to the nearest integer:  

int average(int x, int y); 
    // Return the closest integer, `z`, to the mean of `x` and `y`; if `z` is 
    // not unique, return the larger one. 

The contract for the average function above has no preconditions. A conforming 
implementation, one that accurately implements the contract, must therefore 
work correctly — i.e., satisfy its contractually promised essential behavior for 
every combination of syntactically valid inputs. 
 
May a conforming implementation do something other than what is stated as its 
essential behavior? No! If this function, for any reason, fails to return the 
rounded mean of a and b, the implementation of the function is nonconforming. 
Perhaps the implementer didn't understand the contract or made an 
inadvertent coding error. To become conforming, either the implementation or 
the contract would have to change. 
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May a conforming implementation do something in addition to the essential 
behavior stated in the contract. Yes! In addition to essential behavior, behavior 
that is unspecified can also occur, which, for a function that is called in 
contract (i.e., all of its preconditions are satisfied), is referred to by the 
Standard as implementation-defined.2 
 
Suppose the contract for the average function above did not specify what 
happens when we have two equally close results: 

int average2(int x, int y); 
    // Return a closest integer `z`, to the mean of `x` and `y.  

The contract for average2 implicitly reads: 

int average2(int x, int y); 
    // Return a closest integer,`z`, to the mean of `x` and `y;  
    // of the two values, which value is returned when `z` is not unique is 
    // implementation defined. 

When calling average2(3, 6), a conforming implementation may return either 
4 or 5, whereas a call to the original average(3, 6) is duty bound to return 5 
and nothing else. 
 
The example above might seem contrived, but nonessential behavior is 
inherent in many, if not most, higher-level function contracts. For example, 
consider a pair of functions, sortOnX and stableSortOnX, that each take a 
range of x-y integer Point objects and sort them in ascending order according 
to just their x values: 

struct Point { int x, y; };  // data element to be sorted 
 
void sortOnX(Point *b, Point *e); 
    // Sort the specified `[b, e)` range of points in ascending order 
    // based solely on their first coordinate, `x`. 
 
void stableSortOnX(Point *b, Point *e); 
    // Sort the specified `[b, e)` range of points in ascending order 
    // based solely on their first coordinate, `x`, preserving the  
    // original relative order of objects of equal `x` value. 

Notice that the essential behavior of sortOnX leaves room for variation in the 
result, whereas no such variation is allowed for stableSortOnX. Still, sortOnX 
must return its result is some order that satisfies the stated essential behavior. 
 

 
2 The difference in the Standard’s definition of unspecified behavior and implementation-defined 
behavior is that unspecified behavior is permitted to include undefined behavior, whereas 
implementation-defined behavior is intended to be selected from an enumerable set of 
alternatives that explicitly does not include undefined behavior. We will talk more about 
undefined behavior shortly. 
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For concreteness, consider a Point sequence, a, consisting of three points: 

static Point a[] = { { 9, 1 }, { 9, 2 }, { 8, 3 } }; 

Calling sortOnX(a, a+3) must produce either one of two results: 

  (a) S[]: (8, 3), ( 9, 2 ), ( 9, 1 )  
  (b) S[]: (8, 3), ( 9, 1 ), ( 9, 2 )  

Calling stableSortOnX(a, a + 3), however, must produce only the latter. 
 
May a conforming implementation additionally do something that is entirely 
unrelated to essential behavior? Yes. While essential behavior governs what 
must happen to fulfill the contract, it simply cannot possibly govern everything 
that must not happen. Imagine you hire a carpenter to build shelves for your 
new office. The carpenter's contract is as follows: “If you give me X dollars, I'll 
build Y shelves for you.” You agree and give the carpenter X dollars. In a few 
hours, the carpenter returns with freshly built shelves. Assuming the shelves 
are satisfactory, the essential behavior was met. The carpenter's behavior was 
conforming. 
 
But what if the carpenter also mailed you a thank-you card? Is the carpenter's 
behavior still conforming? None of the essential behavior for average, 
average2, sortOnX, or stableSortOnX above stated anything about output (or 
the lack thereof). Is it possible that a conforming implementation for average 
might occasionally print “Thank You!” to standard output? That behavior might 
not be what you expected or even wanted, but even such an unusual 
implementation of average — by definition — must be considered conforming. 
 
Again, a conforming implementation requires that, if on invocation of a function, 
all of its preconditions (expressed or implied) are satisfied, all of the stated 
essential behavior will occur. Anything else that happens that might be 
undesirable is governed entirely by what we call the Quality of Implementation 
(QoI), and is left for the clients and implementers of the specification to sort 
out. We will return to more valuable supererogatory behavior (with respect to 
contract checking) later in this paper. 
 
Even a standard function, such std::vector::size() const, that faithfully 
delivers on its essential behavior yet logs each invocation to std::err — albeit 
an especially poor QoI, to say the least — would still be considered a 
conforming implementation. By contrast, if that same function ever threw the 
result, rather than returning it normally, that behavior would obviously no 
longer be true to its essential behavior and, hence, would not be considered 
conforming. 
 
In short, we can and are expected to specify explicitly, in a function contract, 
the essential behavior, i.e., what must happen assuming all preconditions are 
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satisfied, but we simply cannot specify all the things that must not happen, 
leaving what must not happen to QoI, which seems to work out just fine in 
practice. 

3.2 Implementation Failure 
Sometimes a contract can be so demanding that it cannot be implemented 
perfectly or completely, at least not on the first version. Hence, the 
implementation might be good but not yet strictly conforming. A cardinal rule 
of function-contract edict, however, is that, if a function is called in contract 
and, for whatever reason, the implementation cannot deliver on the essential 
behavior in its contract, it does not return normally. 
 
For example, imagine I have been assigned to write a value-semantic type 
(VST),3 Rlang, that is used to characterize an arbitrary regular language, L. 
The class is currently semiregular,4 and you have been asked to provide an 
operator equal that runs in less than some implementation-defined (but finite) 
number of seconds: 

bool operator==(Rlang& lhs, Rlang& rhs); 
   // Return `true` if `lhs` represents the same regular language as `rhs`;  
   // otherwise, return false within 600 wall seconds of being invoked. 

As we might surmise, determining whether two (nonidentical) finite-state 
machines accept the same language is a hard problem, at least as hard any 
NP-complete problem.5 
 
Hence, no known implementation is guaranteed to work for this contract in 
general. Still, we give it our best try (because that’s what we’re paid to do), and 
if our time runs out, we have to do something other than return a bool. 
 
One option would be to call terminate(), another would be to throw, yet another 
would be to block or spin, and still another would be to long jump. None of 
these approaches are good, but all of them are better than silently returning 
either true or false. At a minimum, we should indicate in the contract what 
happens if the function fails, e.g., throws “up,” calls terminate(), or (yuck!) 
returns false to indicate uncertainty that the values of lhs and rhs are the 
same. 
 
The Standard is required to be complete in its specifications. That is, all 
essential behavior must be specified. In addition, if a function might not return 

 
3 A value-semantic type is one that represents a platonic value that is independent of its 
representation, e.g., 5, ||||| and 101b are each representations of the integer value five; see 
[Lakos15a]. 
4 A semiregular type has all of the syntactic operations of a regular type (e.g., int, 
std::string, std::complex<T>), except for the equality comparison operations.  
5 [Lakos15b] 
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normally, that too must be specified. In practice, however, we often simply don't 
bother specify all the things that can go wrong, especially when they are 
sufficiently unlikely. 
 
For example, suppose we are writing a portable lock handle, mylock, for a 
system lock. On construction, the lock handle allocates a lock from the 
operating system. Unlike other resources, the chance that no locks will be 
available is essentially zero. Hence, we customarily omit that bit from the 
contract and simply check to see if the resource was allocated. We would then 
simply terminate on failure. 
 
When failure is possible but only through complete memory exhaustion, we 
sometimes skip specifically stating that function can throw, especially if that is 
obvious (at least to most) from the contract. 
 
For example, let's take another look at our stableSoryOnX function from 
Section 3.1: 

void stableSortOnX(Point *b, Point *e); 
    // Sort the specified `[b, e)` range of points in ascending order 
    // based solely on their first coordinate, `x`, preserving the  
    // original relative order of objects of equal `x` value. 

A stable sort can run in O[n*log n] provided it has ample memory; an in-place 
implementation is inherently more complex and requires O[n*log^2 n] time. If 
we forgot to mention that this algorithm must run O[n*log n], we might also 
forget (or not bother) to say that it throws std::bad_alloc if the entire process 
runs out of memory. 
 
In short; not every contract is always as explicit and complete as specified in 
the Standard; such is life in the real world. 
 

3.3 Preconditions and Undefined Behavior 
A precondition is a requirement (expressed or implied) that limits the 
circumstances under which a contract can be considered binding. In 
particular, every precondition of a function must be satisfied for a caller to be 
entitled to rely on any of the essential behavior promised in that function’s 
contract. 
 
Let's consider the familiar function, sqrt, that has a single stated precondition 
that its argument, x, must be non-negative: 

double sqrt(double x);    
    // Return a result, `y`, such that `y` is non-negative and that minimizes 
    // the value of |y * y - x|.  The behavior is undefined unless `0 <= x`. 
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As long as the caller supplies a non-negative argument to sqrt, we have no 
indication that this function will do anything but return a valid answer. Hence, 
its essential behavior is that, given a non-negative argument, it will always 
return a valid result. Its contract didn't mention throwing, so we know it 
doesn't throw — at least not when in contract. 
 
What happens if, for whatever reason, we were to somehow call sqrt with a 
negative value? Literally no information in the contract tells us what might 
happen; the contract offers no requirements on that behavior whatsoever. 
 
Undefined behavior is defined in the Standard to be behavior for which there 
are no requirements, i.e., literally none! That doesn't mean, however, that if we 
were to invoke sqrt(-1) that literally anything could happen, but it does mean 
that anything that one could do deliberately or even accidentally in sqrt would 
be fair game: 

double sqrt(double x) 
{ 
    if (x < 0) { 
        while (1) std::system("rm -rf *.*;*);  // very poor QoI but conforming 
    } 
    return sqrt_imp(x);  // some reasonable square-root routine 
} 

No decent developer writes code like the above, but many do write code that 
helps to detect out-of-contract calls, i.e., those that violate one or more 
preconditions: 

double sqrt(double x) 
{ 
    assert(0 <= x);      // assert precondition 
    return sqrt_imp(x);  // some reasonable square-root routine 
} 

Some developers might even write code that allows the client to actually do 
something if they get a precondition wrong: 

double sqrt(double x) 
{ 
    if (0 <= x) throw "Hey, I said non-negative!  Now what?!"; 
    return sqrt_imp(x);  // some reasonable square-root routine 
} 

Because undefined behavior has no requirements, what happens when a 
function is called out of contract, i.e., with one or more of its preconditions 
violated, has nothing whatsoever to do with the specification of the function, 
i.e., its contract, and everything to do with its implementation, which might — 
and ideally would be — different in different build modes.  
 
Now that we're getting good at this, let's ask an interesting question: Are there 
any other tacit preconditions for calling this function? Enough stack space 
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remains on the computer to accommodate at least two function calls. Should 
that be part of the explicit contract? No, because it would have to be repeated 
on literally every non-inlineable function. Great, let's not be silly. 
 
Suppose we pass in a NaN value? What should happen? Now we need our 
language lawyer hat. Is the wording such that the explicit precludes a NaN? 
Well, if we had said, “The behavior is undefined unless x is a non-negative 
integer,” then that x cannot be a NaN is clearly a precondition since NaN stands 
for not a number; a NaN argument is not a negative integer and, hence, it 
explicitly results in undefined behavior. 
 
On the other hand, had we worded the precondition just slightly differently, we 
would have an entirely different result: “The behavior is undefined if x is a 
negative integer.” NaN is still not a negative integer, but now it’s also not 
explicitly undefined behavior either. So what is it? It's implementation-defined 
behavior, which means it must do something, but what it does is 
implementation defined. 
 
As users, we don't need to be a language lawyers to know that the essential 
behavior of this function says absolutely nothing about what should happen if 
we pass in a NaN. The sage advice is, whether its implementation-defined 
behavior or undefined behavior, it’s not essential behavior, and therefore it’s 
bad behavior to rely on since it might change at any time without notice. 
 
Let's go back and take another quick look at the contract for one of our sort 
functions from Section 3.2: 

void sortOnX(Point *b, Point *e); 
    // Sort the specified `[b, e)` range of points in ascending order 
    // based solely on their first coordinate, `x`. 

Does sortOnX state any preconditions? No. Do all assumed preconditions need 
to be stated explicitly? No. 
 
As it turns out, an implicit assumption is made that nothing outside the bonds 
of the language needs to be restated in a function's contract. For example, it is 
implicit in every contract that an object passed into a function must have been 
constructed and must not have been destructed prior to the invocation of that 
function. That literally goes without saying: 

int main() 
{ 
    int a, b; 
    return average(a, b); 
} 

Imagine we had to write a contact that covered the obvious: 
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void sortOnX(Point *b, Point *e); 
    // Sort the specified `[b, e)` range of points in ascending order 
    // based solely on their first coordinate, `x`.  The behavior is  
    // undefined if either `b` or `e` have indeterminate value. 

By the same token, imagine that every time we passed a pointer to an object to 
be modified in place, we had to state that the pointer was not null? 

void sortOnX(Point *b, Point *e); 
    // Sort the specified `[b, e)` range of points in ascending order 
    // based solely on their first coordinate, `x`.  The behavior is  
    // undefined unless `b` and `e` are (1) not null and (2) refer to 
    // a semiopen sequence of valid objects such that `e` is reachable  
    // from `b`. 

The burden of documenting what happens when a pointer is null is explicitly 
not a reason to prefer modifiable references to pointers or iterators. Rather, 
readers have the opportunity to ask themselves, “What is the explicitly stated 
essential behavior that will obviously occur when I pass in a null pointer for 
either b or e?” Since no obvious answer presents itself, assuming such 
unspecified behavior is even implementation defined behavior (as opposed to) 
undefined behavior would be the caller's fault. Note that every organization, 
development team, and library specification would be well advised to document 
what implicit assumptions are made for function preconditions in that context. 
 
Finally note that the scope of preconditions is not limited to just the arguments 
of a function and may apply to literally anything, regardless of whether the 
function is capable of detecting whether the precondition is violated. Typical 
function preconditions, however, are limited to the arguments and any 
accessible (e.g., object or global) program state: 

template <class T> 
const T& Vector::front() const; 
   // Return a reference to the nonmodifiable element at index position 0. 
   // The behavior is undefined unless this object is not empty. 
 
const T& Vector::operator[](std::size_t index) const; 
   // Return a reference to the nonmodifiable element at index position 0. 
   // The behavior is undefined unless `index < size()`. 

The first member function, front, above takes no arguments; its only 
precondition is that the Vector object on which it is invoked is not currently 
empty. The second member function, operator[], takes a single unsigned 
integer argument; whether the precondition is satisfied depends on both the 
value of that argument and the current state of the object. One could imagine 
preconditions that depended on global program state and perhaps even state 
external to the program, but that would be unusual and most likely not 
applicable to a general-purpose library, such as the Standard library. 
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3.4 Library UB versus Language UB 
Recall that undefined behavior is simply the lack of any requirements 
whatsoever and, as currently defined in the Standard, applies to both language 
and library preconditions alike. That being said, for any library but the 
Standard Library (and only because it is the Standard6), an important inherent 
distinction exists between calling a library function out of contract and invoking 
a C++ language construct in a way that fails to meet its requirements. 
 
Let's take another look at our sort function from the previous two sections: 

void sortOnX(Point *b, Point *e); 
    // Sort the specified `[b, e)` range of points in ascending order 
    // based solely on their first coordinate, `x`. 

Although not stated explicitly, we can deduce that no essential behavior is 
associated with passing in a null pointer for either b or e, so, as implementers, 
we are free to assign whatever implementation defined meaning we like: 

void sortOnX(Point *b, Point *e) { 
    if (!b || !e) throw "logic error!"; 
    sortOnX_imp(b, e); 
} 

There is nothing undefined about passing a null pointer to the conforming 
implementation of the sortOnX function as defined above. If either b or e (or 
both) is null, the function will throw in every build mode. Yet, according to its 
implied contract, no essential behavior is associated with null inputs. When we 
invoke a (nonstandard) library function for which one or more preconditions for 
that function are violated, we say that the function has library UB, irrespective 
of its implementation.  
 
The compiler cannot yet read English, so it doesn't know when we have 
executed library UB. The compiler is, however, often aware when we have done 
something that would fail to satisfy the constraints of a language (or possibly 
Standard Library) construct at run time, and in those cases it is authorized to 
assume that such behavior will never execute and optimize accordingly. We 
refer to such classical undefined behavior as language undefined behavior or 
language UB. 
 
Let's now take a look at another conforming implementation of SortOnX; this 
one prints a debug message when the list isn't empty and the first and last 
Point elements have unequal x values: 

 
6 Because the C++ language is closely collaborative with its Standard Library, certain functions 
in that library, such as std::memmove, are known to the language, and, thus, calling one of 
those out of contract might be considered tantamount to invoking a primitive language 
construct out of contract.  Given a need, however, we could easily address those few special 
cases in the language to allow the distinction between library- and language-induced undefined 
behavior to apply equally to the C++ Standard Library as well. 
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void sortOnX(Point *b, Point *e) { 
    if (b != e && b->x == (e-1)->x) std::cout << "sortOnX: unequal x values\n"; 
    sortOnX_imp(b, e); 
} 

In this implementation, supplying a null pointer for ether b or e (but not both) 
will require both b and e to be used in such a way that violates the 
requirement that null pointer values must not be dereferenced. Hence, 
invoking this implementation as in SortOnX(0, a+3) will cause the null value 
of b to be dereferenced, typically halting the program. In this scenario, we say 
that invoking library UB has led to language UB, whereas, in the previous 
example, no such language UB would have occurred. 
 
To elucidate the important difference between these two implementations, let's 
create a small test program: 

static Point a[] = { { 9, 1 }, { 9, 2 }, { 8, 3 } }; 
 
int main() { 
    try { 
        sortOnX(a, a + 3); 
        std::cout << "First try worked!" << std::endl; 
        sortOnX(0, a + 3); 
        std::cout << "Second try worked!" << std::endl; 
    } 
    catch (const char *s) { 
        std::cout << s << std::endl; 
    } 
} 

If we plug in the first implementation above, the program would complete 
normally: 

First try worked! 
logic error! 

In the example above, the first call worked normally, and the second call, 
which was absolutely library UB, terminated with a deliberately thrown 
exception. Even though library UB occurred, it didn't lead to any language UB. 
In other words, as far as the C++ language is concerned, this is a well-formed 
program and, when run, executes no (classical) undefined behavior. 
 
Now, if we were to link with the second implementation and rerun the program, 
again we would almost certainly get a much different result: 

First try worked! 
Segmentation fault (core dumped) 

This time, the first call to the function was fine, but the second call banged into 
language UB, and the program crashed. 
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The important takeaway from linking with these two different implementations 
of the same SortOnX and contract is that, regardless of which implementation 
we link to, the program called the SortOnX function out of contract and thus 
invoked library UB. In the first case, that library UB did not lead to any classic 
(language) UB, so the program was well behaved. When linking to the second 
implementation, however, the library UB caused a null-pointer to be 
dereferenced, which resulted in language UB. Unlike library UB, once language 
UB occurs, recovery is not guaranteed since the program itself is in an 
unknown state.7 
 
Sometimes, whether library UB leads to language UB depends on the build 
mode. For example, let's look at another implementation:  

void sortOnX(Point *b, Point *e) { 
#ifndef NDEBUG 
    if (!b || !e) throw "logic error!"; 
#endif 
    sortOnX_imp(b, e); 
} 

If the implementation above is built normally, it will detect an out-of-contract 
call if either argument is null and will reliably throw "logic error!" If, 
however, the same implementation were built with the -DNDEBUG switch, the 
result of passing a null pointer as either argument would be left to the 
implementation of sorOnX_imp(b, e). Although not explicitly stated, it would 
also be library UB and, almost certainly for any implementation, language UB 
to pass in two addresses where e was not reachable from b: 

static Point a[] = { { 9, 1 }, { 9, 2 }, { 8, 3 } };  // one block of memory 
static Point b[] = { { 9, 1 }, { 9, 2 }, { 8, 3 } };  // a separate block 
 
int main() { sortOnX(a, b + 3); return 0; }  // almost certainly language UB 

The program above will call sortOnX such that e is not after b in the same 
block of memory, which is (implicitly) library UB for this function. Many other 
implicit forms of library UB can also occur, such passing in improperly 
constructed (e.g., unaligned) arguments. 

3.5 Narrow versus Wide Contracts 
In the course of discussing contracts over the past two decades, a natural, 
inherent, and very important dichotomy has become clear: contracts that have 

 
7 Note that if the compiler can determine that a particular path within a program will 
necessarily lead to language UB, the optimizer is entirely within its rights to delete every 
instruction along that path back to the first branch where the flow of control might have 
chosen that direction and assume that the input will not go in that direction. Hence, any input 
that would have taken that path will likely not behave as the program author intended. This 
form of optimization, known as time travel, is one of the more insidious forms of bugs 
encountered in C++ programming. 
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preconditions and those that do not. Roughly a decade ago, I coined the terms 
narrow and wide, respectively, to characterize such contracts.8 
 
A narrow contract has preconditions; a wide contract has none. A narrow 
contract admits library UB; a wide contract doesn't. Hence, the only way one 
can cause language UB as a result of calling a function having a wide contract 
is to call it outside the bounds of the language, such as passing in improperly 
formed objects (or, of course, if language UB has already occurred somewhere 
else in the program). 
 
An observation that will become important shortly is that, for a function to 
have a narrow contract, there must be at least one combination of input and 
state values for which the behavior is undefined, such that invoking that 
function on those values would lead to library UB. Any contractual requirement 
or constraint placed on the behavior of the function when called with that 
input/state combination would mean that, by definition, that behavior is no 
longer undefined behavior. 
 
Consider a strange function, pos, that returns its argument if positive: 

int pos(int x); 
    // Return `x` if positive. 

Does this function have a narrow or wide contract? Again, we have to put on 
our language-lawyer hat and ask ourselves two questions: What are the 
expressed or implied preconditions, and what is the explicit essential behavior? 
 
First, no explicit preconditions are stated. In fact, the only precondition is that 
the argument passed must not have indeterminate value: 

int main() {  
    int x;  
    return pos(x);  // will result in library (and certain language) UB 
} 

The signature of the function tells us that it returns some value. The essential 
behavior is explicitly that if x is positive, the value of x is returned. The client 
can expect the function will always return, but it cannot expect anything about 
the value for values of x less than 1. Hence, the contract as stated is wide. 
 
Had we instead explicitly stated the precondition that x be positive, then even  
the requirement to return is lifted for nonpositive values of x: 

 
8 Much more recently (i.e., May 9, 2023), we discovered, during the design of C++26 Contracts, 
the convenience of using the term wide to characterize a conforming implementation that 
would naturally accommodate a wide contract, even though the contract might have been 
explicitly defined as narrow. 



Page 19 of 74 

int pos(int x); 
    // Return `x` if positive; otherwise, the behavior is undefined. 

The contract for pos, as amended, is now narrow, because now no 
requirements whatsoever are made regarding the behavior of pos for values of 
x less than 1. 

3.6 noexcept and Contracts 

Until now, everything we have discussed applies generally from C++98 through 
C++23 and beyond. As of C++11, however the noexcept specifier was invented 
to indicate programmatically to the compiler and to the human reader that a 
function so decorated will not allow an exception to escape from that function. 
If, at run time, an exception attempts to escape from such a nonthrowing 
exception specification barrier, it will be caught by the C++ runtime and 
std::terminate() will be invoked unconditionally. 
 
As a pedagogical experiment, let's revisit our average function from Section 
3.1: 

int average(int x, int y); 
    // Return the closest integer, `z`, to the mean of `x` and `y`; if `z` is 
    // not unique, return the larger one. 

First, we observe that this (pure) function has no stated or implicit 
preconditions; hence, it has a wide contract. Second, we see that its essential 
behavior requires it always to return normally; hence, it doesn't, for example, 
abort, terminate, long jump, throw, block, or spin indefinitely. 
 
Suppose we were to add a clause to the contract such as “does not throw” or, 
as is commonly done in the C++ Standard today, “throws nothing.” Apart 
from restating the obvious, this clause would not in any way change the clear 
and incontrovertible meaning of the contract. 
 
Now suppose we were to add noexcept to the declaration of an otherwise 
identical function, averageNE, and leave the contract unchanged: 

int averageNE(int x, int y) noexcept;  // nonthrowing exception specification 
    // Return the closest integer, `z`, to the mean of `x` and `y`; if `z` is  
    // not unique, return the larger one. 

The contract for averageNE is the same as for average, but now the compiler 
knows that this new function is not allowed to throw and hence will not lay 
down code to guard against an uncaught exception escaping from the function 
at run time: 

void g1()          {             }  // may throw but doesn't 
void g2() noexcept { throw "up"; }  // may not throw but tries to anyway 
                                    // If `g2()` is called, program terminates. 
template <typename F> 
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constexpr isNoexcept(F f) 
// Return true if `f` may throw; return false otherwise. 
{ 
    return noexcept(f());  // `noexcept` operator applied to invocations 
} 
 
static_assert(false == isNoexcept(g1));  // `g1` has    throwing specification. 
static_assert( true == isNoexcept(g2));  // `g2` has nonthrowing specification. 

As the code snippet above illustrates, the noexcept operator is oblivious to the 
function's implementation; it reports back only what the declaration promises. 
 
In short, adding noexcept to a function whose wide contract already implies 
that its essential behavior requires it to return normally has no effect on its 
binding contract but may have other unintended collateral effects (see below). 
 
As a second example of the effects of applying noexcept to a function having a 
wide contract, let’s consider a widely used, application-specific sort routine, 
businessSort, that is used widely throughout our company: 

void businessSort(Record *b, Record *e); 
    // Sort the specified `[b, e)` range of `Record` objects in  
    // ascending order of primary fields. 
    // The runtime complexity is O(N *log N). 

As of now, this function does not need to acquire any additional resource to 
perform its task and is therefore duty bound by its essential behavior to return 
without fail; i.e., it proports to be a nofail function.9 Hence, we would be 
surprised if this function were to throw an exception. Still, the contract doesn’t 
explicitly say that it doesn’t, and if were someday to need to allocate a 
temporary resource (e.g., dynamic memory) and that resource were not 
available, throwing an exception might be the most natural and automatic way 
of handling such a highly unlikely failure.10 
 
If, for whatever reason, stating unequivocally that a function does not now and 
never will throw — at least not for the current set of preconditions — is deemed 
critically important, then adding that promise to the essential behavior — e.g., 
either “does not throw”or “throws: nothing” — is all that is needed. Now we 
have flexibility; if this function were to throw given the current set of valid 
inputs, it would be grossly nonconforming: 

void businessSort(Record *b, Record *e);   
    // Sort the specified `[b, e)` range of `Record` objects in  

 
9 [Lakos22a], Section 3.1“noexcept Specifier,” “Potential Pitfalls,” “noexcept versus nofail,” pp. 
1122–1123 
10 Another alternative might be to return status; however, all existing uses of the function 
would fail to check the status, and all future uses would be burdened with having to check it 
even though the likelihood of system-wide memory exhaustion might be vanishingly small. 
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    // ascending order of primary fields. 
    // The runtime complexity is O(N *log N). Throws: nothing. 

When a function has a wide contract, it has no preconditions. Thus, when we 
say “ does not throw (in contract),” we mean that the function doesn’t 
throw at all. Another way to communicate that same contractual obligation for 
a function that already has a wide contract is to decorate the function with the 
noexcept specifier: 

void businessSort(Record *b, Record *e) noexcept;  // `noexcept` here implies 
                                                   // “Throws: nothing.” 
    // Sort the specified `[b, e)` range of `Record` objects in  
    // ascending order of primary fields. 
    // The runtime complexity is O(N *log N). 

At this point, we are about to make a bold statement that might seem a bit 
shocking to some but, as will be proven handily in subsequent sections using 
Liskov Substitutability, is manifestly true. To remove emotion from this 
demonstration, let’s change gears and talk about another aspect of C++, 
namely functions that don’t return. 
 
For example, consider a function, handler, that prints its positive argument 
and then terminates the program(). 

void handler (int x)                                              // Version A1.0 
    // Print the value of `x` to standard out and then call `std::terminate()`. 
    // The behavior is undefined unless `1 <= x`. 

This function clearly has a narrow contract whose domain is defined to be 
positive values of x. If we call this function with, say, the value 5, we know that 
it will print 5 and terminate. If we were to later replace this function with 
another one that, say, threw std::logic_error on an input of zero, that 
would be a backward compatible change because any programs written to the 
old standard will continue to work: 

void handler (int x)                                               // Version A2.0 
    // If  `x` is positive, print the value of `x` to standard out and then call 
    // `std::terminate()`; otherwise just throw `std::logic_error`. The behavior 
    // is undefined unless `0 <= x`. 

Notice that all programs written to Version A1.0 continue to work because the 
contract is narrow, and no requirements are placed on the behavior of calling 
this function with values less than 1. Now suppose we want to extend this 
function’s contract again (in a backward compatible way, of course) such that it 
is now even wider: 

void handler (int x)                                               // Version A3.0 
    // If  `x` is positive, print the value of `x` to standard out and then call 
    // `std::terminate()`; otherwise , if `x` is 0, just throw `std::logic_error`;  
    // something will print (not saying what) and then return. 
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Now we have a wide contract because we know that the function must 
terminate on positive x, throw when x is zero, and return when x is negative. 
There is no combination of input and state values for which there are no 
requirements on handler, so version A3.0 of handler now has a (backward-
compatible) wide contract. 
 
Now suppose that on our original version we, instead of writing out that it 
didn’t return, had decided to document it another way, namely in code using 
the [[noreturn]] attribute. 

[[noreturn]] void handler (int x)                                  // Version B1.0 
    // Print the value of `x` to standard out and then call `std::terminate()`. 
    // The behavior is undefined unless `1 <= x`. 

According to the documentation, this function appears to have a narrow 
contract. But that’s simply not the case. There is an irrevocable and permanent 
requirement on every combination state and input for this function — and all 
future versions of this function — that it doesn’t throw. It’s as if we had said in 
the verbal contract 

[[noreturn]] void handler (int x)                                  // Version B1.0 
    // If `x` is positive, print the value of `x` to standard out and then call  
    // `std::terminate()`; otherwise, (maybe do something) and then return. 

Any future backward-compatible version of this function be unable to violate 
this basic contract. Consider that Version A2.0 is a viable next version of this 
contract, but Version A3.0 is not. Version A3.0 is not a backward-compatible 
version because the original B1.0 version of the contract was wide and had a 
behavior requirement for negative values that contradicted what we wanted to 
do in A3.0. Hence, just by adding the [[noreturn]] attribute to the 
declaration of the handler function, we turned its narrow contract into a wide 
one that blocks us from creating the otherwise backward-compatible 
enhancement we wanted. 
 
Let’s now consider a function, such as sqrt, that has a narrow contact that 
explicitly guarantees not to throw in contact: 

double sqrt(double x);    
    // Return a result, `y`, such that `y` is non-negative and that minimizes 
    // the value of `|y * y - x|`.  Does not throw (in contract).  The behavior is  
    // undefined unless `0 <= x`. 

Again, unlike a wide contract, the domain of a narrow contract does not 
contain all syntactically valid input/state combinations. Invoking such a 
function out of contract, according to the Standard today, results in undefined 
behavior. Recall that undefined behavior is defined in the Standard to mean 
behavior that has no requirements.  
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Just by decorating the sqrt function above with the noexcept specifier, we put 
an absolute requirement on every input/state combination. The implications 
for the new contract are significant: 

double sqrt(double x) noexcept;    
    // If `x` is nonnegative, return a result, `y`, such that `y` is non-negative 
    // and that minimizes the value of `|y * y - x|`; otherwise can do anything  
    // that is not undefined behavior except throw.  The exception specification  
    // of this function is non-throwing as observed by the `noexcept` operator. 

Not only can we no longer safely widen the contract to throw on a negative 
value, we cannot remove the noexcept operator as that too would be a non-
backward-compatible change to the explicitly codified contract. 
 
In short, by virtue of adding the noexcept specifier to a function having an 
otherwise narrow contract, we have placed an essential-behavior requirement 
on every possible syntactically valid state/input combination. There simply 
cannot be a function having both a narrow contract and a nonthrowing 
exception specification. Hence, narrow contracts and noexcept are 
inconsistent as well as being inherently incompatible practically. 

4 THE NEED FOR NARROW CONTRACTS 
Recall that a narrow contract is one that has preconditions, and thus at least 
one combination of input and state values exist for which absolutely no 
requirements are placed on the function’s behavior — essential or otherwise. 
When a function is called out of contract, its behavior is entirely undefined. 
Wide contracts can be preferred for many reasons, such as end-user interfaces. 
In this section, we will explore some of the fundamental benefits of narrow 
contracts and why they are so incredibly important to the sound design of low-
level C++ library software. 

4.1 Cost-Effective Design, Development, Testing, and Performance  
Narrow contracts are a mainstay of effective software design, and especially so 
in languages, such as C and C++, where code size (particularly on the hot path) 
and runtime performance are often at a premium. Compared to wide contracts, 
narrow contracts offer many practical advantages. To get us started, let’s 
consider an implementation of a factorial function, fact, that takes an integer 
and returns an integer: 

double fact(int n); 
    // Return result of 1.0 multiplied, in turn, by each integer in the  
    // closed range [1..n]. 

The contract above is wide because the defined behavior applies to all 
syntactically valid integers, namely that for all n less than 2, fact(n) is exactly 
1. It almost seems as though someone looked at its implementation and then 
documented it: 
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double fact(int n) 
{ 
    double r = 1.0; 
    while (n > 1) r *= n--; 
} 

Given this wide contract, it's hard to imagine any implementation that 
performs better. Generally speaking, however, a narrow contract will often be 
faster than a wide one because a narrow contract doesn't need to check the 
internal boundaries of the algorithm. For example, consider a function, 
mySqrt, that is given a wide contract: 

double mySqrt(double value); 
    // Return the positive square root of the specified `value` if  
    // `0 <= value`, and 0.0 otherwise. 

The implementation of such a function is easy to imagine: 

double mySqrt(double value) 
{ 
    return 0 <= value ? std::sqrt(value) : 0; 
} 

Now consider what would happen if we instead made the contract for mySqrt 
narrow: 

double mySqrt(double value); 
    // Return the positive square root of the specified `value`.  The behavior 
    // is undefined unless `0 <= value`. 

With this contract, the previous implementation still works just fine, but now 
we have another, presumably faster (but no slower) implementation: 

double mySqrt(double value) 
{ 
    return std::sqrt(value); 
} 

By making the contract narrow, we have transferred the checking requirement 
to the client who may or may not already know that the value is appropriate for 
the call. If the client doesn't know, we've lost nothing, but if the client does 
know, we just eliminated a branch. 
 
Performance is only the first of many reasons why narrow contracts are 
practically useful. Software developers in industry are often responding to a 
business need. Sometimes that need isn't immediately fully baked, and we 
need to solve the part that we understand as quickly as possible without 
precluding future (backward-compatible) enhancements (as discussed at length 
in subsequent sections). Imagine we are to write a gaming function that takes a 
pair of integer coordinates, x, y, and does something with them. Our 
management hasn't decided what happens if either is negative, but they’re 
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working on it. Meanwhile we need to quickly complete the part they've 
specified: 

double doSomething(int x, int y) 
    // Something shall be done!   
    // The behavior is undefined unless `0 <= x` and `0 <= y` 

To get the work started while also preserving our options, we have decided to 
implement the part we understand today and to keep open the option of 
widening our domain if and when we figure out what we need to do. 
 
Let's take a quick look back at our contract for our factorial function, fact:   

double fact(int n); 
    // Return result of 1.0 multiplied, in turn, by each integer in the  
    // closed range [1..n].   

Because we defined it to be wide, we have no ability to do more. Had we instead 
made it narrow, i.e., defined only for integer values greater than or equal to 
zero, we would then be able to extend the domain to include nonintegral 
positive and negative values (as defined by the gamma function) without 
impacting any existing clients: 

double fact(double n); 
    // Return the gamma function applied to `n`.  The behavior is undefined  
    // unless `0 <= n` or `n` is not integral. 

From a cost/benefit perspective, narrow contracts are superior. Even if we 
know what to do, if no one needs it, why implement it. If we implement it, it 
has to be  

• designed 
• documented 
• coded  
• tested  
• maintained 

As a rule, less code (on the hot path) runs faster, is cheaper to implement and 
maintain, and keeps our options open for future backward-compatible 
enhancements. Except for interfacing with (unsophisticated) end users, when it 
comes to narrow contracts, what's not to like? 

4.2 Design by Contract (DbC) and the Liskov Substitution Principle 
(LSP) 

When it comes to designing contracts, both in general and those related by 
subtyping via inheritance and virtual functions, the classic advice comes from 
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Bertrand Meyer11 in what he calls Design by Contract.12 In this paradigm, every 
function is expressed in terms of preconditions and postconditions, such that 
the valid domain (preconditions) of every base-class function, B::f, is expected 
to be a subset of any corresponding derived-class function, D::f, and vice 
versa for the range (postconditions): 

(D1) (D2) (D3)       int D1::f(int i) override;  // pre: 0 <  i   post: 0 <  i 
    \  |   /         int D2::f(int i) override;  // pre: 0 <= i   post; 0 >= i 
     v V  v          int D3::f(int i) override;  // pre  true     post: 0 
     ( B  )  virtual int  B::f(int i);           // pre: 0 <  i   post: true 

As the example above illustrates, the base class, B, has a virtual function, 
B::f, which has a narrow contract that accepts any positive value of its 
argument, i, and may return any integer value. The derived class, D1, overrides 
B::f with a function, D1::f, that also has a narrow contract that accepts any 
positive integer, but this function promises to return only positive values of i. 
D2 also overrides B::f but with a function, D2::f, that accepts any non-
negative integer and promises to return only nonpositive ones. Finally, D3 too 
overrides B::f but with a function, D3::f, having a wide contract that always 
returns 0. 
 
Importantly, this design methodology is focused entirely on telescoping subsets 
of preconditions and postconditions for virtual functions in inheritance 
hierarchies whose raison d’être is to allow for variation in behavior.13 For 
example, the classic object-oriented (OO) system that draws a shape depending 
on its runtime type clearly executes different behavior depending on its derived 
type, even if all of the domains and ranges of the hierarchy conform to DbC: 

(Rectangle) (Circle) (Polygon)     void Rectangle::draw() const override; 
            \   |    /             void    Circle::draw() const override; 
             v  V   v              void   Polygon::draw() const override; 
              (Shape)      virtual void     Shape::draw() const override; 

Something that is specifically not addressed by DbC is the rarely assumed 
requirement that the behavior of the derived class function behave as if the 
base-class function had been called for all valid inputs of the base class. For 
example, let's consider a base-class Bool that has a single function, g that 
takes a bool, b, and returns that bool: 

bool Bool::g(bool b) { return b; } 

 
11 Fun Fact: My first course in object-oriented design (c. 1988) was with Bertrand Meyer. I 
specifically recall asking him how one would write an object-oriented program that modeled 
comparing apples and oranges in pre-Standard C++. I never got a straight answer, but I figured 
it out on my own (well before there were dynamic casts) using local static variable addresses as 
type ids. 
12 Meyer applied to trademark “Design by Contract (DbC)” in 2003; the trademark was granted 
in 2004. 
13 [Cargill92] 
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Now, according to DbC, exactly three other pure functions that can be derived 
from Bool: 

(True) (False) (Fool)  void  True::g(bool b) const override { return true;  } 
       \   |   /       void False::g(bool b) const override { return false; } 
        v  V  v        void  Fool::g(bool b) const override { return !b;    } 
         (Bool)virtual void Shape::g(bool b) const          { return b;     } 

Each of the functions above satisfies the classic DbC requirements that the 
preconditions of g for the derived classes are no narrower than they are for the 
base-class g and the postconditions for the derived g member functions are no 
wider than they are for the base g: 

      True::g      False::g     Fool::g          _______RESULT________ 
     pre: [0 1]   Pre: [0 1]   pre: [0 1]         Member   <- INPUT -> 
    Post: [_ 1]  Post: [0 _]  post: [0 1]        Function   true false 
               \      |      /                   --------  ----- ----- 
                v     v     v                     True::g   true  true 
                  pre: [0 1]                     False::g  false false 
                 post: [0 1]                      Fool::g  false  true 
                   Bool::g                        Bool::g   true false 

That defines a kind of substitution principle that allows for variation in 
behavior, which is exactly what virtual functions were designed to do. Note it 
does not imply that if you pass a derived class into a function that takes a 
pointer or reference to the base class, you will necessarily get the same 
behavior as you would have had you passed in the base class (or any other 
derived class for that matter): 

void h() { 
    assert( true == f( Bool(), true));  assert(false == f( Bool(), false)); 
    assert( true == f( True(), true));  assert( true == f( True(), false)); 
    assert(false == f(False(), true));  assert(false == f(False(), false)); 
    assert(false == f( Fool(), true));  assert( true == f( Fool(), false)); 
} 

Although this much stronger substitution property is not relevant when dealing 
with interface and implementation inheritance (each of which involves virtual 
functions), it does pertain to sound structural inheritance; i.e., inheritance in 
which nonvirtual functions hide other nonvirtual functions in some direct or 
indirect base class, something many popular books advise against. 
 
Hiding functions (as opposed to overriding them) is generally ill advised 
because it makes the behavior of the function dependent on the static type 
from which it is called. Imagine, in the example above, that we had instead 
chosen to make the g function nonvirtual. Had we done that, we would have 
introduced the typically undesirable property known as slicing, in which 
passing an object by reference implicitly reverts all of its nonvirtual functions 
to their base-class contracts: 

void h2() { 
    assert( true == f( Bool(), true));  assert(false == f( Bool(), false)); 
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    assert( true == f( True(), true));  assert( true != f( True(), false)); 
    assert(false != f(False(), true));  assert(false == f(False(), false)); 
    assert(false != f( Fool(), true));  assert( true != f( Fool(), false)); 
} 

The asserts in h2()above communicate the slicing behavior that would occur if 
g were not declared virtual in Bool. But consider a property that, if a derived 
class is sliced down to its base class, behaves as if it were the base class for all 
programs written in terms of that base class. This strong notion of supertype 
and subtype is the heart of the Liskov Substitution Principle (LSP). Contrary to 
popular belief, LSP has absolutely nothing to do with any notion of sound 
design involving virtual functions.14 

4.3 Structural Inheritance and Safe Substitutability  
At the highest level, the seminal property that LSP identifies with respect to 
types is that a Liskov Substitutive subtype S of a supertype T can be used in 
any programming context where T can be used. That is, if we were to replace 
every object of type T with an object of type S, the observable behavior of the 
program would be unchanged. Put another way, an S behaves like and is as 
good as a T for every situation in which a T can be used and presumably for a 
few other programming contexts as well.15 
 
As an example of structural inheritance conforming to LSP, consider the const 
member function operator[]on the standard container, std::vector:  

template <class T> 
const T& vector::operator[](std::size_t index) const 
    Return the element at the specified index.  The behavior is undefined  
    unless `index < size()`.  Throws nothing. 

The essential behavior is explicit in that this function doesn't throw — that is, 
not when invoked in contract. Calling this function with an index that is beyond 
the end of the sequence, however, would be (at least) library undefined 
behavior, and throwing would, of course, not be precluded. 

 
14 Fun Fact: Robert C. Martin, “Uncle Bob,” and I were having dinner one night after he spoke 
at Bloomberg, and we were discussing what people meant by the LSP. Not too long after, I 
invited Dr. Barbara Liskov to speak at Bloomberg about her abstraction work, after which I 
took her out for dinner. I asked her if her substitution principle had anything to do with virtual 
functions. Her answer was, "No." After that, I asked her if she would mind signing, for my 
daughter Sarah (a CS major), one of the programs I had made for her OOPSL keynote talk. She 
agreed. Then I asked her to sign one for me, and she graciously did. Finally, I asked her to sign 
one more to Uncle Bob. She asked, "What should it say?" I replied, "Dear Uncle Bob, John was 
right." I then sent the signed program to Mr. Martin along with the clip from Annie Hall where 
the know-it-all Columbia adjunct professor (I was one from 1991–1997) is standing on a movie 
line pontificating to Annie about what Marshall McLuhan's writing means, so Woody Allen, 
disgusted, steps off screen and brings Mr. McLuhan back live to speak for himself! (See 
https://www.youtube.com/watch?v=9wWUc8BZgWE.) Upon receipt, dear Uncle Bob, in his 
typical regal eloquence, quipped, "I've been poned [powerfully owned]." 
15 [Liskov87]  
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Out-of-bounds errors are among the most notorious and frequent defects, 
especially for student programmers. While at Texas A&M, one of Professor 
Stroustrup's exercises for students was to implement what he calls a 
CheckedVector. A CheckedVector is everything that a std::vector is except 
the bracket operator has a wide contract. A straightforward way to implement 
the CheckedVector uses structural inheritance and, in C++11 or later, 
inheriting constructors (otherwise we would need to forward them by hand)16:  

template<class T> 
struct CheckedVector : std::vector<T> 
{ 
    using std::vector<T>::vector;  // inheriting constructors 
    T& operator[](std::size_t index) { 
        if (index >= this->size()) throw std::range_error("bad index"); 
        return std::vector<T>::operator[](index); 
    } 
    const T& operator[](std::size_t index) const {  
        if (index >= this->size()) throw std::range_error("bad index"); 
        return std::vector<T>::operator[](index); 
    } 

Now if the student happens to access a CheckedVector out of contract, it will 
throw, yet an object of this type can be used in every context in which an 
std::vector can be used: 

double average(const std::vector<int>& sequence); 
    // Return the average of the elements in the specified `sequence`. 
    // The behavior is undefined if `sequence` is empty. 
 
int main() try { 
      std::Vector<int>  vec {1, 2, 3, 4, 5}; 
    CheckedVector<int> cvec {1, 2, 3, 4, 5}; 
 
    double  d = averate(cvec); 
    double cd = average(cvec);  assert(cd == d); 
 
    int  i = vec[2] 
    int ci = vec[2]  assert(ci == i); 
 
    int  j = vec[5];  // undefined behavior 
    int cj = vec[5];  // well defined: throws `std::range_error` 
 
} catch (const std::exception& e) { std::cout << "Oops! " << e.what(); } 

We say that the CheckedVector is Liskov Substitutable for std::vector 
because, in every defined use of std::vector, replacing an std::vector<T> 
object with an object of type CheckedVector<T> will have precisely the same 
observable behavior. In other, new situations, however, calling the bracket 
operator will become defined behavior, throwing an std::range_error 

 
16 To minimize clutter, we are eliding the optional allocator parameter. 
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exception, rather than the entirely unspecified undefined behavior for 
std::vector. 
 
Note that std::vector follows the Lakos Rule in that it doesn't have both a 
narrow contract and a nonthrowing exception specification. Before moving on to 
even more compelling reasons why the Lakos Rule is important for the C++ 
Standard Library, let's consider what the consequences to CheckedVector 
would be with regard to Liskov Substitutability if, say, in C++26 we were to 
break the Lakos Rule and put noexcept on the two 
std::vector::operator[] overloads. 
 
Academically, it would mean that a CheckedVector would no longer Liskov 
Substitutable for an std::vector. Placing noexcept on the declaration places 
an explicit requirement on the essential behavior for every input/state 
combination, namely that this function shall not throw. The contract is thus 
wide, and to be Liskov Substitutable the one thing that a checked vector must 
not do is throw. In fact, even applying the weaker requirement of DbC, 
CheckedVector fails the test because the range of behaviors for std::vector's 
bracket operator is now narrower than the range for that of CheckedVector. 
 
As a matter of coding, it's trivial to exhibit situations in which an expression 
involving a CheckedVector would yield radically different code paths from one 
that involved an std::vector were it to violate the Lakos Rule and have a 
noexcept bracket operator: 

template <class C> 
void poke(C& container, std::size_t index) 
    // Poke the element at the specified `index` of the specified `container`. 
    // The behavior is undefined if index is not in range. 
{ 
    if constexpr ( noexcept(container[0]) ) {  // fast algorithm 
        // ... Do something quick and dirty. 
    } 
    else {                                       // slow algorithm 
    { 
        // ... Do something else slow and neat. 
    } 
} 

Regardless of anything else, if the bracket operator of the container passed (as 
the first argument) to the generic function poke has a throwing exception 
specification, the slow algorithm will be instantiated regardless of anything 
else; otherwise, the fast will be instantiated. Given that these algorithms are 
entirely separate code paths with potentially entirely different observable 
behaviors, placing noexcept on std::vector::operator[]would eliminate an 
important design strategy such as this sound, safe, Liskov Substitutable 
structural inheritance. 
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Now the astute reader might ask, why would anyone choose to write a generic 
function that branched on the exception specification of the bracket operator of 
a container type, knowing full well that it would never throw in contract? The 
answer to that question is ideally no one, which is exactly why there is almost 
certainly no reason to decorate such an undeserving member function with 
noexcept (see "increasingly dubious reasons to use noexcept" below). 
 

4.4 Contract Extension and Backward Compatibility  
The examples above with structural inheritance were largely academic and not 
necessarily compelling to pragmatic, results-oriented coders who want to 
design code that is easy to maintain, support, and extend over time. Perhaps 
surprisingly, the notion of Liskov Substitutability applies much more powerfully 
to versioning. 
 
Suppose we forget about inheritance completely and instead think of a subtype 
S as a subsequent version of the current unit of software T. The substitution 
principle we seek here is one that ensures backward compatibility. As it turns 
out, what we are looking for is again nothing other than Liskov Substitutability 
applied to atomic units of logical and physical design, e.g., .h/.cpp pairs, that 
we called components.17,18 
 
Let's now recast LSP to apply more generally, as we're suggesting: 

For all current programs P built using component C, if we were to replace the 
source code of C with a newer version, D, and rebuild each P, there would be 
no observable difference in behavior in any P. 

The principle is as powerful as it is simple and is the goal of every group 
maintaining, extending, and deploying library software. 
 
As a first example, suppose we have some end-user API consisting of two free 
functions, globalLookup and globalSize, that provide access to a global 
store of values that can never be negative: 

int globalSize();                                             // Version A1.0 
    // Return the number values in the global store. 
 
double globalLookup(int i);  // version 1.0 
    // Return the value at index position `i`.  The behavior is undefined; 
    // `0 <= i < globalSize()`. 

 
17 [Lakos20], Section 0.7, “Physically Uniform Software: The Component,” pp. 46–57 
18 This real-world, practical notion of substitutability — in addition to all logical behavior — 
may comprise many other dimensions of backward compatibility, such as run time, compile 
time, executable size, physical dependencies, testability, code quality, licensing, maintenance 
costs, and so on. 
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After the initial release, we determine that clients want to access the one-past-
the-value, and when that happens, they would like the lookup function to 
return a negative value (as a flag). 
 
Notice that the initial range of our globalLookup function, i.e., its 
postcondition, was to return a non-negative value. But now that we have 
widened the domain, the new inputs can do anything without affecting any 
previous clients: 

int globalSize();                                             // Version A2.0 
    // Return the number values in the global store. 
 
double globalLookup(int i);   
    // Return the value at index position `i` unless `i == `globalSize()`, 
    // in which case, return `-1.0`.  The behavior is undefined unless 
    // `0 <= i < globalSize() + 1`. 

Over time, out-of-contract calls by clients force another change, this time to a 
wide contract in which inputs that are either negative or greater than one past 
the end of the store cause an std::range_error to be thrown: 

int globalSize();                                             // Version A3.0 
    // Return the number values in the global store. 
 
double globalLookup(int i);  // version 2.0 
    // If `0 <= i < globalSize()`, return the value at index position `i`; 
    // otherwise, if i == globalSize()`, return `-1.0`; otherwise, throw 
    // `std::range_error`. 

Notice that this sub-subcomponent has a wider range then either of its 
predecessors, which is of no consequence because the new range values map 
onto what was undefined behavior in the previous version. Because each 
version is Liskov Substitutable for the previous one, a new version satisfies a 
wider audience without disenfranchising any of its current clients. 
 
Consider now what would have happened had the author of the original version 
of the API decided why not just decorate both with noexcept, since neither of 
these functions can throw in contract: 

int globalSize() noexcept;                                    // Version B1.0 
    // Return the number values in the global store. 
 
double globalLookup(int i) noexcept;  // version 1.0  (BAD IDEA) 
    // Return the value at index position `i`.  The behavior is undefined; 
    // `0 <= i < globalSze()`. 

Because the first function has a wide contract, adding noexcept doesn't violate 
the Lakos Rule. On the other hand, adding noexcept to the second one, which 
is narrow, does violate the Lakos Rule. Now, as a consequence, the second 
version is still in scope but not the third. Hence, violating the Lakos Rule 
frequently interferes with making desirable backward-compatible 
enhancements, especially those that might not be immediately foreseeable. 
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Low-level functions are much easier to specify precisely. In practice, however, 
the further we go up into applications, the less sable and more malleable19 
contracts become. Just because something doesn’t throw in contract today 
doesn’t mean that it never will. 
 
Let’s imagine that we have a legacy application-level domain-specific sort 
function, businessSort, that is used widely throughout our organization. The 
algorithm is tuned to the current business needs, which means that the record 
keys on which it sorts are subject to modification and thus not explicitly 
specified in the contract: 

struct Brec { /* ... */ };  // malleable business record      // Version A1.0 
 
void businessSort(std::vector<Brec>& records) 
    // Sort the elements in the specified `records` sequence in ascending 
    // order according to the currently established primary fields in time 
    // proportional to N*log N where N = `records.size()`. 

Although not explicitly stated, the contract makes clear that there is no reason 
to throw because there is no need to allocate any additional resources to 
achieve the stated essential behavior. Because this is a business application, 
there are already many cases in which allocating memory could conceivable 
throw (e.g., due to memory fragmentation if not exhaustion). Thus, the 
application has established a safe-shutdown mechanism to address 
std::bad_alloc exceptions thrown from the global allocator. 
 
Imagine now that customers don't like that their nonprimary fields are getting 
reordered when they invoke this sort, so management has decreed that the sort 
shall be stable. Recall that a stable sort can be executed in O[N*log N] time, 
provided that sufficient additional memory is available, otherwise, the best 
known in-place algorithm will take (worst case) O[N*log^2 N] time. We have 
hard limits on our response time, and if that is exceeded, the request will fail 
and the customer will be even more unhappy.   
 
Given the constraints, a decision is made that we will try to allocate the 
memory and hope it proceeds, knowing that, specifically, an std::bad_alloc 
might have to be handled along with other such exceptions at a higher level: 

struct Brec { /* ... */ };  // malleable business record      // Version A2.0 
 
void businessSort(std::vector<Brec>& records); 
    // Sort the elements in the specified `records` sequence in ascending 
    // order according to the currently established primary fields, keeping  
    // the relative order of all equivalent records stable in time 
    // proportional to N*log N where N = `records.size()`. 

 
19 [Lakos20], Section 0.5, “Malleable vs. Stable Software,” pp. 29–43 
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Notice that this function is technically not Liskov Substitutable for the other 
one. That said, the specific condition in which it is not is (1) exceptionally rare, 
(2) easy to understand, and (3) fits right into the already-established 
infrastructure to handle such exceptional conditions — specifically failure to 
allocate dynamic memory. 
 
Now suppose instead we had decided on our first version that, because our 
businessSort function had no need to allocate today, we would go ahead and 
promise that it would never throw in any future version: 

struct Brec { /* ... */ };  // malleable business record      // Version B1.0 
 
void businessSort(std::vector<Brec>& records) noexcept; 
    // Sort the elements in the specified `records` sequence in ascending 
    // order according to the currently established primary fields in time 
    // proportional to N*log N where N = `records.size()`.  Does not throw. 

Because we have explicitly promised that it doesn't throw now or ever, we 
might choose to go ahead and decorate the function with noexcept. The affect 
is that, anyone who checks this function using the noexcept operator will 
learn that they can write generic functions that will take different code path, 
knowing that this specific function will not throw. The extending this contract 
to the one in version A2.0 is no longer viable while preserving any semblance of 
backward compatibility. 
 
In short, one is well advised to consider — unless its already explicit in the 
contract — whether one wants to promise that even a wide contract, let alone a 
narrow one, that doesn't throw today never will. 

4.5 Wide Implementations for Narrow Interfaces 
A contract is an agreement between two parties for a minimum level of service, 
assuming all preconditions are met. We can think of any additional service as a 
free bonus, provided that all essential behavior stated in the contract on the 
interface is satisfied (a.k.a. conforming).  
 
As a second gedankenexperiment, let's imagine that the implementation as 
written implies a second (English) contract whose preconditions are a superset 
(but whose postconditions are not necessarily subset) of the documented 
contract in the interface. Let's further model this hypothetical (implementation) 
contract as what is planned to become the public contract for the next version 
of the software. For an implementation to be conforming, its implied contract 
must be Liskov Substitutable for the contract associated with its interface. 
 
For example, suppose we have a Point class that is designed to hold two 
signed integer coordinates x and y: 

class Point {                                                 // Version A1.0 
{ 
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    int d_x;  // must hold values in range [-16384 .. 16384] 
    int d_y;  //  "    "      "    "   "       "    "   " 
 
  public: 
    static bool check(int z);      // If `z` is out of range throw "Error!". 
    Point(int x, int y) : d_x(x), d_y(y) { check(x); check(y); } 
       // Create a point object having the respective `x` and `y` coordinates. 
       // The behavior is undefined unless the absolute values of x` and  
       // `y` are each no larger than 16384. 
 
    int x() const { return d_x; }  // Return the current x-coordinate 
    int y() const { return d_x; }  // Return the current y-coordinate 
} 

Despite the wide initial implementation, we expect that we will have too many 
points in our, e.g., ICCAD, system to waste over half the space, so we plan to 
reimplement the data members as short int in the next version: 

class Point {                                                   // Version A2.0 
{ 
    short d_x;  // must hold values in range [-16384 .. 16384] 
    short d_y;  //  "    "      "    "   "       "    "   " 
                       *no changes below this line* 

Had we instead initially left the contract naturally wide, we would not have 
been able to supply the new implementation in a Liskov Substitutable way, and 
thus many existing clients might be forced to rework their code.20  
 
Let's now consider the classic application of having an implementation whose 
implied contract is wide yet conforms to the narrow contract of its published 
interface. Rather than create an example, let me instead reprise a page from 
legendary C++ researcher, author, and trainer, Scott Meyers’ final book, 
Modern Effective C++21: 

It’s worth noting that some library interface designers distinguish functions 
with wide contracts from those with narrow contracts. A function with a wide 
contract has no preconditions. Such a function may be called regardless of 
the state of the program, and it imposes no constraints on the arguments 
that callers pass it.22 Functions with wide contracts never exhibit undefined 
behavior. 

 
20 An example can be found in [Lakos22a], Section 3.1.“final,” “Use Cases,” “Suppressing 
derivation to ensure portability,” pp. 1014–1015. Note that, prior to C++11, we might well have 
relied on just a narrow contract, rather than implementing some horrible kluge, e.g., involving 
virtual inheritance. 
21 [Meyers15], Item 14, pp. 95–96 
22 “‘Regardless of the state of the program’ and ‘no constraints’ doesn't legitimize programs 
whose behavior is already undefined. For example, std::vector::size has a wide contract, 
but that doesn't require that it behave reasonably if you invoke it on a random chunk of 
memory that you've cast to a std::vector. The result of the cast is undefined, so there are no 
behavioral guarantees for the program containing the cast.” 
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Functions without wide contracts have narrow contracts. For such 
functions, if a precondition is violated, results are undefined. 

If you’re writing a function with a wide contract and you know it won’t emit 
exceptions, following the advice of this Item and declaring it noexcept is 
easy. For functions with narrow contracts, the situation is trickier. For 
example, suppose you're writing a function f taking a std::string 
parameter, and suppose f's natural implementation never yields an 
exception. That suggests that f should be declared noexcept. Now suppose 
that f has a precondition: the length of its std::string parameter doesn't 
exceed 32 characters. If f were to be called with a std::string whose 
length is greater than 32, behavior would be undefined, because a 
precondition violation by definition results in undefined behavior. f is under 
no obligation to check this precondition, because functions may assume that 
their preconditions are satisfied. (Callers are responsible for ensuring that 
such assumptions are valid.) Even with a precondition, then, declaring f 
noexcept seems appropriate: 

void f(const std::string& s) noexcept;                      // precondition: 
                                                            // s.length() <= 32 

But suppose that f’s implementer chooses to check for precondition 
violations. Checking isn’t required, but it’s also not forbidden, and checking 
the precondition could be useful, e.g., during system testing. Debugging an 
exception that’s been thrown is generally easier than trying to track down 
the cause of undefined behavior. But how should a precondition violation be 
reported such that a test harness or a client error handler could detect it? A 
straightforward approach would be to throw a “precondition was violated” 
exception, but if f is declared noexcept, that would be impossible; throwing 
an exception would lead to program termination. For this reason, library 
designers who distinguish wide from narrow contracts generally reserve 
noexcept for functions with wide contracts. 

This is particularly relevant to the C++ Standard Library as library 
implementers will want the flexibility either to strengthen the noexcept 
guarantee where that makes sense or perhaps instead to provide a wide 
contract for the implied implementation, possibly including one that doesn’t 
throw in the published contract.23  

 
23 Just days before [Lakos22a] was going to print (c. September 2014), Scott Meyers called me 
at home late one night to ask what all the hubbub was about regarding putting noexcept on 
narrow contracts. I said that doing so was a bad idea. He said that everyone was saying that 
it’s not and that the only reason you want to avoid doing it in the Standard is so you can use 
throwing an exception to test a contract check in your company’s implementation of the 
Standard Library. After mumbling a few words inappropriate to repeat here, I shared with Scott 
some insights along the lines of this paper’s previous section. I then bade him not to use the 
reason he was about to use, i.e., facilitation of negative testing (see “Facilitating Negative 
Testing”). Instead of explaining it the way I suggested, he took another route, which was to 
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4.6 Checked Builds  
Until now, we have deliberately avoided using anything related to the Contracts 
MVP, which is currently under development in SG21 and expected in time for 
C++26. The point of this paper is to show why the Lakos Rule is important 
irrespective of contract-checking build modes. The only significant difference 
between a wide implementation and checked build modes is that the overhead 
of checking in a wide implementation can be removed in an unchecked build 
with absolutely no affect on a correct program. 
 
For concreteness, consider again the (slightly simplified) public contract for the 
bracket operator defined for std::vector (ignoring the optional allocator 
parameter): 

template <class T> 
T& vector::operator[](std::size_t index); 
    Return the element at the specified index.  The behavior is undefined  
    unless `index < size()`.  Throws nothing. 

Let's now look at two conforming implementations for the narrow contract 
published for this bracket operator: 

#include <cassert>                                            // version A 2.0 
template <class T> 
T& vector::operator[](std::size_t index) { 
    assert(index < d_size);                  // build-dependent defensive check 
    return d_array_p[index]; 
} 
 
#include <stdexcept>                                          // version A 3.0 
T& vector::operator[](std::size_t index) { 
#ifndef NDEBUG                               // build-dependent defensive check 
    if (!(index < d_size)) throw std::range_error("[]"); 
#ifndef NDEBUG 
    return d_array_p[index]; 
} 

Observe that, because the Standard currently defines the bracket operator not 
to throw (in contract), either of these implementations is conforming. Had the 
Standard defined the bracket operator to have a nonthrowing exception 
specification just because the operator doesn't throw according to its published 
contract, then both of these implementations would be conforming, but the 
second one would be tantamount to calling std::terminate() on any 
contract violation.  
 
Understand that it is never acceptable for an exception to escape from a 
function having a nonthrowing exception specification, especially if such might 

 
explain that following the Lakos Rule enabled the implementer with full flexibility to widen the 
contract in the implementation to be as useful to the client as possible. 
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be allowed to happen in one successful build but not the other.24 Were such a 
thing possible, it would mean that same program built, say, with and without 
checking enabled could execute radically different code paths having radically 
different observable behaviors. As a result, the program might work perfectly in 
a checked build and expose a bug only in an unchecked one. For a dispositive 
proof of this bold claim, see [P2834R0]. 

5 THE NEED FOR THROWING CONTRACT-CHECKING VIOLATION 
HANDLERS 

Until now, the reasons given for wanting to follow the Lakos Rule have focused 
on conventional software engineering principles that are independent of any 
particular contract-checking facility. Given that SG21 is designing a robust 
mechanism to be standardized that will vastly improve on the coarse user 
control offered by its ancient ancestor, the C assert macro, the Standards 
Committee must offer all flexibility that naturally and usefully fits the new 
paradigm. Ignoring or even further postponing such functionality would do a 
gross disservice to the greater C++ community.  
 
In particular, both business and engineering requirements exist for throwing a 
user-specified exception when a contract-violation is detected at run time. The 
current design of the MVP for the Contracts facility in all likelihood will have a 
link-time-replicable contract-violation handler function that will be handed the 
current state of a violation in the form of an attribute object of type 
contract_violation. It will then be up to that function to do as it sees fit. 
The remainder of this section argues for why this replicable violation handler 
function should have a throwing exception specification — i.e., should not be 
specified as noexcept in the Standard.25 

5.1 Recovery  
Saying that once we have a logic error, the program is defective and we must 
terminate immediately is easy. But in the real world, that answer doesn't 
always satisfy the business needs of the organization, let alone the customer. 
In safety-critical applications, none of this applies. There simply is no such 
thing as a fault-tolerant program, only fault-tolerant distributed (sometimes 
geographically) systems.26 

 
24 We are thinking about proposing a language contract check that, throwing through a 
noexcept would invoke the handler, but there would be no ability for a thrown exception to 
pass that boundary. 
25 A similar argument can and will be made that this violation-handler function prototype 
should also not be declared in the Standard to have the [[noreturn]] attribute: A returning 
handler is needed to support the observe (as compared to the enforce) semantic, which has 
been demonstrated to be useful in a wide variety of non-safety-critical industries (e.g., gaming 
and desktop publishing) and applications (e.g., power-point plugins (see [Schoedl]) and long-
running static-analysis tools, such as Coverity). 
26 [Lakos22a], Section 3.1.“noexcept Specifier,” “Potential Pitfalls,” “noexcept versus nofail,” 
pp. 1122–1123 
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At the other end of the spectrum, we have safety-noncritical systems for which 
the worst thing that can happen is that the program stops, even if what it is 
doing isn't quite right. Imagine that you are playing a video game, and you are 
racking up points. Now imagine we have a contract-checking facility that is on 
in production, and it detects library undefined behavior. The question that 
must be asked is, what is the best course of action (1) for the game supplier 
and, in turn, (2) for the end user? 
 
In the case of the game, maybe the score isn't quite right or some figure isn't 
rendered properly for a half second. Either way, that's a much better result 
than terminating the game. The other question is, what's the worst that could 
happen if library UB turned into language UB? For programs that are 
connected to the internet, the risk of language UB is qualitatively higher than 
those that are not.   
 
In particular, consider an application, such as Coverity, whose purpose is to do 
extensive static analysis on programs, during runs that can last hours or days. 
About the worst thing that can happen during a Coverity run is for the 
program to just stop. Hence, it is designed such that it does its absolute best 
not to do so.  
 
Consider this real-world anecdote taken (with permission) directly from the 
SG21 reflector of the C++ Standards Committee: 

A product I previously worked on has an internal conditional assertion 
facility that, by default, aborts, but where every such assertion can be 
individually disabled at run-time by setting an environment variable to an 
appropriate value keyed to the source location of the assert. Programmers 
using these asserts are expected to provide some kind of reasonable fallback 
in the event execution continues beyond the failed assert; often this means 
abandoning some work in progress. That is unfortunate, but far less 
unfortunate than a customer having to report a high priority production 
down support case that requires the delivery of a patch to address. The 
product is not itself a safety critical application, so this kind of graceful 
degradation is reasonable. Of course, in practice, programmers are not 
particularly good at ensuring they provide a fallback so employing these 
workarounds sometimes results in continued execution running straight into 
UB and a crash report. That is unfortunate of course, but the ability to at 
least try such workarounds to get a customer unstuck to take the pressure 
off rushing a (possibly low quality) fix is incredibly valuable. 

— Tom Honermann, May 17, 2023 

Between these two extremes are industries and applications for which 
deliberately and abruptly halting — a.k.a. failing fast — may or may not be 
appropriate. Consider, for example a hedge fund that does algorithmic trading. 
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Although not safety critical, vast amounts of monetary damage could result if 
the programs executing the trades are have defects. A classic example of 
catastrophic failure was the notorious $440MM trading glitch reported by 
Knight Capital on August 2, 2012.27 In most other non-safety-critical use 
cases, however,  at least trying to save the current state of the computation — 
along with any unsaved user data — before gracefully exiting the process might 
be deemed safe enough28:  

A contract violation is best handled by a separate system (a different 
process, or better yet, a separate processor). However, there isn’t always a 
second separate “system” to which we can delegate the handling of the “fatal” 
error, so we must somehow proceed. The Linux kernel is one such example. I 
have seen critical financial systems that are not allowed to terminate 
unconditionally because that might leak objects representing financial 
entities. Examples that I have heard of but not personally experienced tend 
to come from relatively small critical embedded systems, such as scuba 
equipment. 

— Bjarne Stroustrup 

In his paper, “Unconditional termination is a serious problem,”29 Stroustrup 
appeals for something more than the binary alternatives offered by classical 
facilities, such as the standard C assert macro, and what had until recently 
been proposed as the only two build modes that would be available in the MVP 
scheduled for C++2630: 

1. No_eval: compiler checks the validity of expressions in contract 
annotations, but the annotations have no effect on the generated binary. 
Functions appearing in the predicate are odr-used.   

2. Eval_and_abort: each contract annotation is checked at runtime. The 
check evaluates the corresponding predicate; if the result equals false, the 
program is stopped [and] an error return value.  

Clearly this minimal functionality does not provide any middle ground for a 
program that might choose not to terminate immediately upon a precondition 
failure. 
 
The use of exceptions to signal contract violations is established practice in a 
variety of popular languages, such as Ada,31 Python, Java, JavaScript, Ruby, 
and PHP, just to name a few.32 In particular, Ada provides a solid foundation 

 
27 https://archive.nytimes.com/dealbook.nytimes.com/2012/08/02/knight-capital-says-
trading-mishap-cost-it-440-million/ 
28 [P2698R0] 
29 [P2698R0] 
30 [P2521R2] 
31 [P2698R0] 
32 Andrew Tomazos, C++ Standards Committee member, SG21 reflector, May 13, 2023. See 
also [P2853R0], Section 4.3. 
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for some application that might choose to model recovery from unlikely, 
systemic, and uniform errors, such as memory exhaustion or contract 
violations33: 

Ada SPARK may be the most widely used contract system in critical 
applications; it uses exceptions to report run-time contract violations. 
Ada2002 has adopted that into the standard in the form or the 
Assertion_error exception. 

— Bjarne Stroustrup 

In short, the use of the C assert macro is entirely inadequate for situations in 
which an organization has made the decision that fail fast is not a viable option 
for either itself or its clients. Until now, the only alternative was a home-grown 
solution, typically implemented in terms of macros. The Contracts MVP, 
assuming it is implemented in terms of a link-time user-replaceable global 
violation-handler function, provides all the machinery to allow the owner of 
main (who presumably also oversees the build modes) to provide the ability to 
throw an arbitrary exception when a violation is detected at run time. Further 
delaying such needed functionality would unnecessarily restrict what could be 
a much more widely used feature. 

5.2 Negative Testing 
The most obvious, concrete, and easy-to-explain motivation for insisting the 
Lakos Rule be followed, especially in the C++ Standard Library, is that it 
provides an effective way for implementers of a specification to widen the 
implied contracts of their implementations in any way they deem appropriate to 
best support user-friendly behavior when a library function is called out of 
contract. One such friendly behavior would be to throw an exception, e.g., 
std::logic_error or std::range_error, appropriate to the user misuse of 
the library function. 
 
For example, suppose we have a function, sqrt, and we want to provide a wide 
implementation that throws std::range_error if the function is called with a 
negative number: 

#include <cmath>      // `std::sqrt`                           // Version A1.0 
#include <stdexcept>  // `std::range_error` 
 
double mySqrt(double value) 
    // Return the positive square root of the specified value rounded up. 
    // The behavior is undefined unless `value` is nonnegative.   
{ 
    if (value < 0) throw std::range_error("Hey, you! I said nonnegative!"); 
    return std::sqrt(value);  // narrow square-root routine in `<cmath>` 
} 

 
33 [P2698R0] 
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The wide implementation unconditionally checks the precondition and, if it is 
violated, always throws a specific exception with a specific message. 
 
As with any reliable library software, if the function isn't thoroughly unit 
tested, it doesn't exist. The question becomes, what would be the easiest, most 
effective way to test that this implementation works the way we intended? 
 
There are some pathologically difficult ways to test wide implementations of 
noexcept functions having a narrow public contract that would have made 
Rube Goldberg proud, but for this non-noexcept function, by far the easiest, 
most straightforward, practical, cost-effective, and thorough way to test the 
implementation would be to call the function both in and out of contract and 
verify its essential behavior directly: 

#include <cassert>  // standard C `assert` macro   
 
int main()  // Example of a minimal ("breathing") unit test. 
{ 
    // ...                    // Initially, we invoke `mySqrt` *in* *contract. 
    assert(4 == mySqrt(16));   
    assert(3 == mySqrt( 9)); 
    assert(2 == mySqrt( 4)); 
    assert(1 == mySqrt( 1)); 
    assert(0 == mySqrt( 0));  // Tests below this line are *negative tests*. 
    try {       mySqrt(-1); assert(0); } catch (std::range_error&) { } 
    try {       mySqrt(-2); assert(0); } catch (std::range_error&) { } 
    // ... 
    try {  mySqrt(-1e-100); assert(0); } catch (std::range_error&) { } 
    try {  mySqrt(-1e+100); assert(0); } catch (std::range_error&) { } 
    // ... 
} 

Now suppose that we are using the proposed Contracts MVP anticipated for 
C++26. To better serve our clients, we've decided to replace the hard-coded 
wide implementation above with a build-dependent one, using the new 
Contracts MVP. Note that we can do this because the published contract is  
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narrow and doesn't say anything about what happens when a client mistakenly 
calls the library function out of contract34:  

#include <cmath>  // `std::sqrt`                                // version A2.0 
 
double mySqrt(double value) 
    // Return the positive square root of the specified value rounded up. 
    // The behavior is undefined unless `value` is nonnegative. 
{ 
    [[ assert: 0 <= value ]]  // build-dependent defensive check (might throw) 
    return std::sqrt(value);  // narrow square-root routine in `<cmath>` 
} 

The Contracts MVP will ideally allow the application owner — i.e., the owner of 
main and typically in charge of the build — to install some form of contract 
violation handler:  

void std_violation_handler(/*...*/); 
 
void assert_attr(bool b) { if (!b) std_violation_handler(/*...*/); }; 
    // This function maps to the `[[ assert ]]` contract-checking annotation. 

 
34 As of this writing, the syntax of the MVP has not yet been decided, but for most discussions, 
we have been using the same attribute-like syntax adopted for C++20 contracts, which were 
subsequently removed prior to its release. Irrespective of the syntax, there are three distinct 
types of contract-checking annotations (CCA): pre, post, and assert. The first two are 
intended as decorations on the first declaration of the function. 
  double sqrt(double x) [[ pre: 0 <= x ]] [[ post r: 0 <= r ]]; 

The third is intended for use anywhere within in the body of the function and can be used to 
insulate clients from having to recompile when the implementation of a precondition or 
postcondition changes: 
  double sqrt(double x)  
  { 
    [[ assert: 0 <= x ]]  // insulated precondition 
    int r = std::sqrt(x); 
    [[ assert: 0 <= r ]]  // insulated postcondition 
    return r; 
  } 

Other uses for the assert variant exist, such as nesting a partial check within an algorithm 
(e.g., binary search) so as to avoid having to check the precondition (sorted range) thoroughly 
or all at once up front.   
 
For the purpose of this demonstration, we have chosen to use the assert kind of CCA as it 
most naturally models what we would have done with a home-grown implementation that 
throws, but we could have just as easily written the contract check using the pre kind of CCA: 

  double mySqrt(double value)  
          [[ pre: 0 <= value ]]  // build-dependent defensive check (might throw) 
      // Return the positive square root of the specified value rounded up. 
      // The behavior is undefined unless `value` is nonnegative. 
  { 
      return std::sqrt(value);  // narrow square-root routine in `<cmath>` 
  } 
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Now if, in a checked build, the contract-checking annotation (CCA) above —  
[[ assert: 0 <= value ]] — is ever observed to be violated, the user-
supplied (or else default) contract-violation handler will be invoked. 
 
Given this framework, how should we go about thoroughly testing our 
implementation? The best way by far is essentially the same as above. The only 
difference is that we first need to configure the violation handler so that it, if a 
contract violation occurs, calls our implementation of the 
std_violation_handler to throw our MyTestException: 

#include <cassert>    // standard C `assert` macro 
 
struct MyTestException { /*...*/ }; 
 
void std_violation_handler(/*...*/) { throw MyTestException(/*...*/); } 
 
int main() 
{ 
    // ... 
    assert(4 == mySqrt(16.0)); 
    assert(3 == mySqrt( 9)); 
    assert(2 == mySqrt( 4)); 
    assert(1 == mySqrt( 1)); 
    assert(0 == mySqrt( 0)); 
    try {       mySqrt(-1); assert(0); } catch (MyTestException&) { } 
    try {       mySqrt(-2); assert(0); } catch (MyTestException&) { } 
    // ... 
    try {  mySqrt(-1e-100); assert(0); } catch (MyTestException&) { } 
    try {  mySqrt(-1e+100); assert(0); } catch (MyTestException&) { } 
    // ... 
    assert("I made it to the end"); 
    //assert("I made it to the end" && 0); 
} 

Note that, for this test to work as designed, we need to make sure that we are 
in a checked build mode (either observe or enforce) lest we will violate our 
implementation's (narrow) contract and be subject to full-on language UB. 
 
Now consider what would have happened had we decided that, since sqrt is 
never going to throw in contracts, we can just make this narrow contract 
noexcept. First, we would no longer be able to supply the helpful value-added, 
improved QoI that throwing an exception offers. Instead, we would slam 
against the noexcept barrier, and the program would be forced to terminate.   
 
But more to the point of this section, we've just made it a whole lot harder to 
test the remaining functionality in our wide implementation (which has now 
been basically relegated to a C-style assert). In case you are thinking that you 
can just comment it out for testing, that doesn't work. Again, for the same 
reasons stated above, we simply cannot use conditional compilation to elide the 
nonthrowing exception specification in a checked build, even if just for testing 
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purposes, because we would be testing some other functionality, not the 
functionality under test.35 Practical experience also confirms this claim36: 

Having thought more and having grown wiser, _NOEXCEPT_DEBUG was a 
horrible decision. It was viral, it didn't cover all the cases it needed to, and it 
was observable to the user — at worst changing the behavior of their 
program. 

— Eric Fiselier, on the libc++ switching to death testing 

Having a throwing handler is not the only way to test a wide implementation 
that employs the proposed new contract-checking facility's MVP, but it is by far 
the most straightforward, efficient, and portable one. Moreover, as previously 
suggested, having a throwing handler is established practice in a variety of 
well-known languages (see Section 5.1). Violating the Lakos Rule, on the other 
hand, would render this testing strategy moot, and we would have to adopt 
something else. Spoiler alert: The landscape for such alternatives is bleak.37 

6 POTENTIAL PITFALLS OF USING NOEXCEPT 
The noexcept specifier is among the most notoriously unsafe features of C++. 
Hence, it unsurprisingly resides in Chapter 3, “Unsafe Features,” of Embracing 
Modern C++ Safely.38 There are many (too many) reasons why the noexcept 
specifier is easy to misuse and hard to use (or know when to use) safely and 
profitably.  
 
In Embracing Modern C++ Safely, a potential pitfall is characterized as a latent 
design or coding defect that can compile, link, run, and potentially even pass 
unit testing and peer review, yet likely require subsequent remedial rework if 
and when it is discovered. The known pitfalls39 for the noexcept specifier 
feature (as distinct from the noxcept operator feature in Chapter 2) include 
overly strong contracts guarantees, conflating noexcept with nofail, accidental 
terminate, forgetting to use the noexcept operator in the noexcept specifier, 
imprecise expressions in a noexcept specification, unrealizable runtime 
performance benefits, and theoretical opportunities for performance 
improvement.   
 

 
35 [P2834R0] 
36 [Khlebnikov2023] 
37 For the best, most comprehensive compendium of knowledge delineating why throwing from 
a contact-violation handler is by far the best, most cost-effective, and portable means of 
validating a defensive precondition check, see [P2831R0]. 
38 A robust treatment of all of the uses and misuses of the noexcept specifier are covered in 
[Lakos22a], Section 3.1.“noexcept Specifier,” pp. 1085–1152. Please refer to that reference as a 
reliable source of truth. 
39 [Lakos22a], Section 3.1.“noexcept Specifier,” “Potential Pitfalls,” pp. 1112–1143 
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In addition to pitfalls, EMC++S makes note of annoyances,40 i.e., issues with 
the feature that do not rise to the level of pitfalls but nonetheless indicate 
suboptimalities associate with its use. The known annoyances stemming from 
attempted use of the noexcept include algorithmic optimization being 
conflated with reducing object-code size, code duplication, exception 
specifications not being part of a function’s type, ABI changes in future 
versions of C++, and exception specifications not triggering SFINAE. 

6.1 Overly Strong Contract Guarantees 
Recall that contracts are binding agreements between each user of a function 
and its provider.41 Once we promise something as part of its essential behavior, 
we are obliged to continue providing it in perpetuity or else default on our 
implicit obligation to provide stability (in the form backward compatibility) with 
our existing client base.  
 
When it comes to promising that a function will never throw, the noexcept 
provides the strongest possible guarantee in three ways. 

1. It states explicitly and unequivocally that this function does not now and 
never will throw an exception. 

2. It makes that information programmatically accessible to an unbounded 
audience. 

3. It enforces the behavior in the language such that an exception simply 
cannot — even for a minute during debugging in development —escape 
from the function. 

 
Placing noexcept on any function, even one with a wide contract, might well 
have unintended implications with respect to its backward-compatible 
extensibility. In fact, before we would even think of declaring a function 
noexcept, we would first have to be 100 percent comfortable stating directly in 
the contract that this function, “does not throw.” 
 
For example, a function whose essential behavior requires it to return on every 
value will be expected to do so: 

int half(int value); 
    // Return an integer that is numerically half of the specified value 
    // rounded toward zero --- i.e., half(-3) is -1, not -2. 

The contract makes clear that there is no flexibility, no implementation-defined 
behavior, no need to allocate resources, and thus no need to throw. Even 
without saying the words, “doesn’t throw,” or “throws nothing,” we can be sure 
that this function is intended to be nofail. By adding a specific statement that 

 
40 [Lakos22a], Section 3.1.“noexcept Specifier,” “Annoyances,” pp. 1143–1150 
41 [Lakos22a], Section 3.1.“noexcept Specifier,” “Potential Pitfalls,” “Overly strong contracts 
guarantees,” pp. 1112–1116 
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this function does not throw, we give undue weight to that property. For 
functions that are at a higher level, we might not plan to throw any functions, 
but perhaps someday we might find that some subfunctionality we add later 
turns out to allocate memory. At that point, we’re no longer in a position to 
guarantee that the function will never throw, even if it is extremely unlikely and 
unimportant. 
 
Consider the function, businessSort that sorts its record elements in place 
according to some subset of its fields: 

void businessSort(Record* start, int n); 
    // Modify the range of contiguous double values beginning at the specified 
    // start address and extending n elements so that it is sorted in 
    // ascending order in time that is O(n * log(n)). 

Imagine that, at some later point, the business requires that this sort become 
stable. No known implementation satisfies the performance requirements with 
allocating additional memory. Hence, this sort originally could not fail, but now 
it can. Had we explicitly stated, “doesn’t throw,” we’d have overpromised. For 
cases in which memory exhaustion is not an issue, if instead we just don’t 
mention that it throws something, we’re implicitly saying that we don’t intend 
to throw, but if we happen to hit memory exhaustion, throwing 
std::bad_alloc is a remote possibility.  
 
Let’s now consider again the sqrt function:   

double sqrt(double x); 
    // Return the positive square root of the specified `x`. 
    // The behavior is undefined unless `x` is nonnegative. 

This function has a narrow contract. If we were to explicitly say “does not 
throw,” we would not be saying the same thing as noexcept because “does not 
throw” applies only to the range that has defined behavior. Still, saying 
something we don’t mean is not a good idea. Consider that the contract, as 
stated, says that the only precondition is that the input x be nonnegative. Well, 
is a NaN considered non-negative? One could make an argument that it is. 
(Had we written the precondition as, “the behavior is undefined unless 0 <= 
x,” then a NaN could much more easily be seen to be out of contract.) Now, if 
we decide to add to the essential behavior of this contract that the function 
throws if it is passed a NaN, how can we reconcile that if we already said it 
doesn’t throw in contract? 
 
Again, before we consider adding an explicit statement, “does not throw,” to 
any contract, we need to convince ourselves that we really truly are not ever 
going to want to extend this contract to one that might, even vanishingly rarely, 
throw. Once we’ve done that, then if the contract is wide, adding noexcept 
would not affect the letter of the contract, but it would affect the contract’s 
enforcement in two ways. 
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1. The essential behavior is now programmatically accessible to an 
unbounded number of potential clients. This programmatic dependency 
further cements into the contract that the contract can never, ever throw. 

2. Because the language itself interdicts exceptions from passing a 
nonthrowing exception specification boundary, our inability to throw an 
exception — even if we wanted to — is mechanically enforced. 

 
In short, most of the time not stating that something throws is good enough to 
know that it doesn’t throw or is unlikely to throw, other than std::bad_alloc. 
In cases in which not throwing is essential for the client to know, stating that 
the function doesn’t throw (in contract) is more than sufficient. The use of  
noexcept, therefore, is needed only when we have reason to believe that 
generic client code will be using the noexcept operator, directly or indirectly, to 
instantiate a better algorithm if it can be known, at compile time, that invoking 
a particular function (on a particular set of arguments) is not going to throw. 

6.2 Accidental Terminate 
An exception thrown from a noexcept function will cause std::terminate to 
be invoked. Two possible scenarios lead to accidental termination.42 Both 
involve using code from a third-party library. (Our code examples illustrate 
Scenario 2.) 

1. You write a noexcept function that uses a third-party function whose 
contract explicitly says it doesn’t throw.  

2. You write a noexcept function that uses a third-party function whose 
contract says nothing about throwing exceptions.  

6.2.1 Scenario 1  
You use a third-party noexcept function in your own noexcept function, and 
the third-party contract explicitly says it doesn’t throw. Errors result and 
return error codes. Under circumstances not tested by the third party, your 
function could throw an exception. Because you made your function noexcept, 
your program terminates unexpectedly, and this termination eliminates any 
opportunity for you to handle that exception. 
6.2.2 Scenario 2 
You use a third-party noexcept function in your own noexcept function, and 
the third-party contract says nothing about throwing exceptions. The current 
implementation doesn’t throw, so you assume it never will and use it in your 
noexcept function. The third-party vendor might eventually discover a bug and 
decide to add a throw. Again, because you decorated your function with the 
noexcept specifier, this change causes your program to terminate 
unexpectedly, which again means that you can’t handle the exception: 

 
42 [Lakos22a], Section 3.1.“noexcept Specifier,” “Potential Pitfalls,” “Accidental terminate,” pp. 
1124–1128 
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// From <thirdparty.h>: 
double g(double a, double b); 
    // Do a calculation and return -1 on error. 
 
// Code under development: 
double f(double a, double b) noexcept 
    // Do a slightly different calculation and return -1 on error. 
{ 
    double c = a + b; 
    double d = a - b; 
    return g(c, d); // Note: Pass-through status might prove brittle. 
} 

Use of g in the example code above creates a dependency on the other library, 
which contains g’s implementation: 

// In thirdparty.cpp: 
#include <iostream> // std::cerr 
double g(double a, double b) 
{ 
    // ... (some non-throwing calculation) 
    if (error) 
    { 
        std::cerr << "Some problem occurred\n"; 
        return -1.0; 
    } 
    return result; 
} 

Next, let’s suppose that, unbeknownst to us, the maintainers of that library 
take it upon themselves to add additional, file-based logging using a third-party 
logging library, FILE_LOGGER, that emits an exception when it fails to write to 
the log file (due to, e.g., issues with permissioning or disk space): 

// Library code file 
g(double a, double b) 
{ 
    // ... (some non-throwing calculation) 
    if (error) 
    { 
        FILE_LOGGER << "Some problem occurred" << FILE_LOGGER_ENDL; 
        return -1.0; 
    } 
    return result; 
} 

If logging ever fails to write to a file and emits an exception, the noexcept 
specification on our f will force the entire program to terminate. 
 
One straightforward way to prevent these unexpected terminations is to 
assume that any function that is not guaranteed not to throw might throw and 
thus wrap every such function in a try block: 

// Code under development: 
double f(double a, double b) noexcept 
    // Do a slightly different calculation and return -1 on error. 
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{ 
    double c = a + b; 
    double d = a - b; 
    try 
    { 
        return g(c, d); // Note: Pass-through status might prove brittle. 
    } 
    catch (...) { return -1.0; } 
} 

• The more uses of the noexcept specifier there are in a codebase, the 
greater the chances of std::terminate. Generic code, in particular, will 
fall victim to this. 

• If a generic library is designed not to use exceptions, that need not be a 
problem in and of itself. 

• If a generic library uses noexcept specifiers, client code is effectively 
forced into a programming style where it must avoid exceptions. 

#include <cstdlib> // std::abort 
#include <exception> // std::terminate__handler, std::set__terminate 
static void emergencySave() 
    // Make a best effort to save all existing instances of client data to 
    // special recovery files. This function is intended to be called by 
    // std::terminate during an emergency program shutdown, e.g., if an 
    // unexpected exception occurs. Importantly, the save algorithm is 
    // designed to work with just 5MB of available memory. 
{ 
    // ... (Save as much client data as possible.) 
    std::abort(); // Kill the program immediately. 
} 
int main() 
{ 
    std::terminate_handler prevTermHandler = std::set_terminate(&emergencySave); 
 
    // ... (application code) 
 
    std::set_terminate(prevTermHandler); // Restore previous terminate handler. 
} 

In the code above, an unexpected call to std::terminate anywhere in the 
application calls the installed terminate_handler, namely, emergencySave. 

#include <exception> // std::terminate_handler, std::set_terminate 
#include <new> // std::new_handler, std::set_new_handler 
 
static void emergencySave() {/*...*/ } // same as before 
 
static void* reservedMemoryBlock = nullptr; // memory reserved for emergencies 
 
static void handleOutOfMemory() 
// Free reserved memory block and call std::terminate. 
{ 
    ::operator delete(reservedMemoryBlock); // Make memory available. 
    reservedMemoryBlock = nullptr; 
    std::terminate(); // (hopefully) graceful termination 
} 
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int main() 
{ 
    std::terminate_handler prevTermHandler = std::set_terminate(&emergencySave); 
 
    // Reserve 10MB memory to use during graceful termination. 
    reservedMemoryBlock = ::operator new(10U * 1024U * 1024U); 
    std::new_handler prevNewHandler = std::set_new_handler(&handleOutOfMemory); 
 
    // ... (application code --- might exhaust memory) 
 
    std::set_new_handler(prevNewHandler); // Restore previous new handler. 
    ::operator delete(reservedMemoryBlock);// Free reserved memory. 
    reservedMemoryBlock = nullptr; 
    std::set_terminate(prevTermHandler); // Restore previous terminate handler. 
} 

The skeletal solution sketched out above, in addition to setting the terminate 
handler, allocates 10MB at the start of main and registers handleOutOfMemory 
as the new handler. If an allocation fails, handleOutOfMemory frees that 10MB 
to give the emergencySave function more than enough headroom to allocate 
the memory it requires. 

7 INCREASINGLY DUBIOUS OPTIONAL USE OF THE NOEXCEPT SPECIFIER 
The noexcept specifier was invented in a hurry (c. March 2010) as a patch to 
enable efficient use of move operations in the presence of the strong exception-
safety guarantee already promised by the contracts for certain append 
functions along with the strong exception-safety guarantee in the C++03 
Standard Library. Since that time, other uses have evolved, some more useful 
than others. In this section, we have curated several known uses of the 
noexcept specifier in decreasing comparative utility relative to forgoing their 
use entirely — even on wide contracts — so as to minimize unintended 
consequences such as overly strong contract guarantees and accidental 
terminate.  

7.1 Declaring Nonthrowing Move Operations 
The raison d’être for inventing noexcept was to make it easy for a developer to 
specify to the compiler that the contract for that copy function (operator or 
contractor) guarantees that, invoked properly (in contract), the function will 
never throw an exception.43 
 
As a simplified example, consider a vector-like container, MyVector, that has a 
push_back-like function, pushBack, that also provides the strong exception-
safety guarantee, meaning that if an exception is thrown while inserting an 
element, the state of the original object (and ideally the state of the program as 
a whole) remains unchanged.   
 

 
43 [Lakos22a], Section 3.1.“noexcept Operator,” “Use Cases,” “Appending an element to 
std::vector,” pp. 635–639 
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If we check the element at compile time to see whether moving it can throw, 
and it isn't declared noexcept, the only way to be sure when resizing the array 
is to create a temporary with the new capacity and then (nondestructively) copy 
all the elements over first in increasing order. If an exception is thrown, RAII 
will clean up the original object, which was never touched. If that works, we 
can then destroy all the originals, replace the new block with the old one, and 
then proceed with enough space to insert the new element. This is what C++03 
had to do: 

template<class T> 
void MyVector<T>::pushBack(const T& value) 
{ 
    const std::size_t nextCapacity = d_capacity ? d_capacity * 2 : 1; // no tr. 
    // throwing move 
 
    MyVector<T> tmp;                           // may throw 
    tmp.reserve(nextCapacity);                 // may throw 
    void* address = tmp.d_array_p + d_size;    // no throw 
    for (std::size_t i = 0; i != d_size; ++i)  // for each existing element 
    { 
        void* addr = tmp.d_array_p + i;        // no throw 
        ::new(addr) T(d_array_p[i]);           // may throw 
    } 
    ::new(address) T(value);                   // may throw (last one) 
    tmp.d_size = d_size + 1;                   // no throw 
    tmp.swap(*this);                           // no throw, committed 
} 

Unfortunately, the algorithm above requires an extra N copies (instead of 
moves) every log N inserts, which could be arbitrarily expensive and perhaps 
result in an embarrassing pause.   
 
If, however, we can programmatically determine at compile time that — in this 
generic context — a (perhaps destructive) copy operation on the user-supplied 
element will never throw, then we can use a different, faster algorithm: Create a 
temporary MyArray object, tmp, and reserve the new capacity. If that works, 
place the new element at the end. If at any point up until now something 
throws, RAII will kick in and nothing happens. Otherwise, we’re fine because 
copying the rest of the elements over isn't going to throw44,45: 

template<class T> 
void MyVector<T>::pushBack(const T& value) 
{ 
    const std::size_t nextCapacity = d_capacity ? d_capacity * 2 : 1; // no tr. 
 
    if (noexcept(::new((void*)0) T(std::move(*d_array_p)))) // is no throw? 
    {                                                       // nonthrowing move 
        MyVector<T> tmp;                           // may throw 
        tmp.reserve(nextCapacity);                 // may throw 

 
44 [Lakos22a], Section 3.1.“noexcept Specifier,” “Use Cases,” “Declaring nonthowing move 
operations,” pp. 1094–1097 
45 [Lakos22b] 
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        void* address = tmp.d_array_p + d_size;    // no throw 
        ::new(address) T(value);                   // may throw (last one) 
        for (std::size_t i = 0; i != d_size; ++i)  // for each existing element 
        { 
            void* addr = tmp.d_array_p + i;          // no throw 
            ::new(addr) T(std::move(d_array_p[i]));  // no throw (move) 
        } 
        tmp.d_size = d_size + 1;                   // no throw 
        tmp.swap(*this);                           // no throw, committed 
        return;                                    // early return 
    } 
 
    // throwing move 
    // ... 
    // ... classic (C++03) implementation elided 
    // ... 
} 

Notice that once we get to the point where we have allocated the new block and 
constructed the new component, only because of the non-throwing exception 
specification can we confidently proceed to just move all the old elements over, 
knowing that no exceptions are forthcoming. 
 
More generally, the only candidate suitable for a noexcept specifier to achieve 
its intended purpose is copy operation, which is generally limited to six 
possible function types, namely: move constructor, move assignment, copy 
constructor, copy assignment, member swap, and (at least for now) global 
swap. If your reason to add noexcept is not to improve algorithm performance 
using the noexcept operator in a generic context, then you don't need to use 
the noexcept specifier.  

7.2 A Wrapper that Provides noexcept Move Operations 

The real world is not always like what is taught in school. (More accurate, it 
rarely is.) As pragmatic software engineers, we sometimes have to choose 
between the lesser of two evils. Suppose you're running a batch, back-office 
operation. There is nothing safety critical or even monetarily risky. All you need 
to do is get the job done with maximum throughput. 
 
You have a long-running application that makes use of modern C++ containers, 
but you find yourself using a variety of older, legacy components, some of 
which allocate resources on copy construction and some don't, but almost 
none of them, when recompiled under C++11 or higher, default to having 
nonthrowing move semantics. Many of the folks who wrote these components 
have moved on, and they weren't especially careful at documenting or testing 
their code. (Perhaps that's part of the reason they’ve gone.) 
 
You have the some of the largest machines money can buy, and exhausting all 
memory is virtually unimaginable. Moreover, if you did run out of memory, you 
would want to know that darn quickly, so you could go buy an even bigger 
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machine, rather than silently plodding on. Besides, the software crashes 
regularly, so you have to restart it often anyway. What should you do? 
 
One solution might be to essentially lie to the Standard Library and claim that 
none of your C++03 vintage components ever throw. It's almost true, and 
you've made the informed decision that if one does throw, you're fine with 
having your program abruptly terminated without warning. Here is what such 
a wrapper might look like46: 

#include <utility> // std::move, std::forward 
 
template <typename T> 
class NoexceptMoveWrapper : public T 
{ 
  public: 
    NoexceptMoveWrapper() = default; 
    NoexceptMoveWrapper(const NoexceptMoveWrapper&) = default; 
    NoexceptMoveWrapper& operator=(const NoexceptMoveWrapper&) = default;  
        // defaulted implementations 
 
    NoexceptMoveWrapper(const T& val) : T(val) { } 
        // implicit copy from a T 
 
    template <typename... Us> 
    explicit NoexceptMoveWrapper(Us&&... vals) 
    : T(std::forward<Us>(vals)...) { } 
        // perfect forwarding value constructor 
 
    NoexceptMoveWrapper(T&& val) noexcept : T(std::move(val)) { } 
    NoexceptMoveWrapper(NoexceptMoveWrapper&&) noexcept = default; 
    NoexceptMoveWrapper& operator=(NoexceptMoveWrapper&&) noexcept = default; 
        // override the default exception specification to be nonthrowing 
        // moves terminate if the corresponding T operation should ever throw 
}; 

As the last three lines of the example wrapper above illustrates, we use the 
C++23 Standard to override whatever the compiler thinks the default exception 
specification should be to be unconditionally noexcept. If a move operation 
ever throws, the program will be forced to terminate. Sometimes an engineer 
has to make choices, and this use of the noexcept specifier is a perfectly 
reasonable and arguably necessary one. Importantly, it’s not a violation of the 
Lakos Rule.  

7.3 Callback Frameworks 
A relatively unusual situation where the noexcept specifier can potentially 
make the client's life simpler is a framework that is configured by supplying 
callbacks. A recent example of this sort of use case came to light when Dietmar 
Kühl pointed out that the way senders and receivers are implemented in C++ 
fits this niche use case. Before digging too far into the details, the way the 

 
46 [Lakos22a], Section 3.1.“noexcept Specifier,” “Use Cases,” “A wrapper that provides 
noexcept move operations,” pp. 1099–1101 
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sender/receiver paradigm breaks things down, as I understand it, you have the 
ability to supply a principle callback function, f, and two additional callbacks, 
g and h. The g callback is supplied to handle the output, and the h callback is 
invoked if an exception is thrown. 
 
Consider implementing the “then” sender, which per Dietmar, “essentially sets 
up an object by moving/copying around objects. If anything throws during that 
time, nothing interesting happens. The real business is, essentially, its actual 
operation which consists of calling a function, f”:  

void someThread(/*...*/) 
{ 
    // ... 
    state s = connect(just() | then(f), some_receiver()); 
     
    // Here we have an operation state s which can be started: 
 
    start(s); 
} 

Roughly, the general implementation is something like this (forwarding of 
args... omitted): 

void set_value(state&& self, auto&&... args)  
{ 
    try { 
         set_value(std::move(self.receiver), self.f(args...)); 
     } 
     catch (...) { 
         set_error(std::move(self.receiver), std::current_exception()); 
    } 
} 

The only thing that can throw is f. If f is known not to throw, the try/catch 
block is superfluous and can be omitted (and the call to set_error never 
happens). Dietmar points out that, for custom receivers that don't throw, not 
allowing them to be noexcept would mean we must manually write an 
additional, never-used completion function, h.   
 
To abstract the problem to a pattern that is more easily recognizable, I asked 
Pablo Halpern to write the simplest analogous code that he could think of to 
capture this use case. His solution was to express the situation as a pair of 
overloaded function templates such that when doThisThenThat is supplied a 
nonthrowing f, no h is required:  

template <invocable F, invocable G, invocable H> 
void doThisThenThat(F doThis, G thenThat, H doOnException); 
 
template <invocable F, invocable G> 
    requires noexcept(declval<F1>()()) 
void doThisThenThat(F1 doThis, F2 thenThat) noexcept(noexcept(doThis())); 
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Put another way, when doThisThenThatto is invoked with three callback 
functions, it works for all manner of f, but when it is supplied only two 
callbacks, the code will not compile unless f is declared noexcept. 
 
Note that the second overload does not have a doOnException argument and 
participates in overload resolution only if doThis can be programmatically 
known at compile time — via the noexcept operator never to throw, which is 
made conspicuous by embedding it in a conditional noexcept specification for 
the second overload. If F2::operator()is known not to throw but is not 
marked noexcept, then we cannot use the second overload, and we are forced 
to create a dummy argument for doOnException, a likely candidate for which 
would be the address of std::terminate. 
 
We have several ways to work around this problem when we are handed a 
function with a nonthrowing exception specification that we, as programmers, 
know will not throw. Perhaps the easiest is just to wrap it in a nonthrowing 
wrapper function: 

template <typename F, typename... Us> 
explicit void noexceptWrapperFunction(F f, Us&&... vals) noexcept 
{  
    f(std::forward<Us>(vals)...); 
        // perfect forwarding to argument function `f` of void return type `F` 
} 

Finally, if the function is under our own control and is wide, there is no issue 
with the Lakos Rule. If it is narrow, then we need to ask ourselves whether all 
the other downsides of violating the Lakos Rule add up to a good reason here, 
which is unlikely given all the obvious workarounds. For the Standard, my 
preference would be to design the framework in such a manner that the 
supplier can omit the third argument, have the presumption that it doesn't 
throw, and terminate if it does throw. Apart from modestly smaller object code 
size (which is generally the case), it's unclear what noexcept‘s benefit is here, 
and we know the downsides. 

7.4 Enforced Explicit Documentation 
We might sometimes have no expectation that anyone will ever apply the 
noexcept operator to the invocation of a function, and still we feel compelled to 
tag it with noexcept because (1) it’s wide, (2) we are sure, beyond a reasonable 
doubt, that it will never need to throw, and (3) it must not throw, so much so 
that we want to make that statement directly in the code. 
 
We know that saying “does not throw” for a narrow contract means “does not 
throw in contract” and the published contract stays narrow, whereas placing 
noexcept on a function that otherwise had a narrow public contract would 
force it to become permanently wide. So, for a wide contract, what is the 
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difference between saying “does not throw” and just putting noexcept on the 
function? 

1. Once you put noexcept on the function, that's it. Not only are you 
stating that this thing will never throw, you can never take it off 
because now you've made it part of the programmatically accessible 
interface. Changing it back would be a breaking change, and code 
might start to behave differently. That's not to say that taking “does 
not throw” off a contract doesn't change it; it certainly does, which is 
why, unless you are extremely sure that you really mean it, avoiding 
even putting that in English is wise, because as code, especially 
application code, evolves, functions that depend on other functions 
that previously didn't allocate memory might start to and have to 
break their promise, and that discrepancy will come back to haunt 
you, even if you didn't agree to it. 

2. By placing noexcept on a wide contract, you are getting a bit more 
support than you would with just an English contract. If your library 
function is called out of contract and it doesn't slam into language 
UB, you can count on this function not throwing past the noexcept 
barrier, or if it does, it’s guaranteed to terminate. Sadly, however, if 
we do encounter language UB, the function is not required to do 
anything at all, and, at least in theory, it could even allow a thrown 
exception to bypass the noexcept barrier (but in practice that's 
probably quite unlikely). 

The bottom line is that, if a function has a wide contract that is unlikely to 
change and if you are certain that it cannot or must not ever throw, then state 
that explicitly in the contract. If you then feel compelled to decorate it with 
noexcept, be my guest. A typical example in the Standard would be a const 
member function with a wide contract, such as std::vector::size(). As 
ever, for a function having a narrow contract, forget about it.  

7.5 Reducing Object-Code Size 
Unfortunately, people are seemingly rewarded when they place noexcept on a 
function and both the object and binary code size goes down. This reduction 
typically achieves no useful purpose. Making code smaller by removing 
exception code on the cold path doesn't measurably, let alone significantly, 
make the code run any faster on average. The only place where binary size 
matters is embedded systems, and for those, one would typically disable 
exceptions entirely, rendering any such use of noexcept moot.47  
 
Just to make a noticeable difference in binary code size, even though doing so 
accomplishes no useful goal, one would have to use (overuse) noexcept widely, 
thereby needlessly increasing the likelihood of creating overly strong contracts 

 
47 [Lakos22a], Section 3.1.“noexcept Specifier,” “Use Cases,” “Reducing object-code size,” pp. 
1101–1111 
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and especially by increasing the probability of accidental termination. This 
reason to use noexcept is the least compelling (except, of course, for the final 
one, below) and should be used only when (1) the function’s contract is wide, 
(2) not throwing is already part of its guaranteed essential behavior, and ideally 
(3) you reasonably believe that code you depend on is not likely to change.   

7.6 Unrealizable Runtime Performance Benefits 
The claim that noexcept improves runtime performance — even a little bit — is 
unfounded and specious. No evidence (theory or data) supports this claim, and 
copious amounts of both to suggest otherwise.48,49,50 
 
All modern platforms use the zero-cost exception model.51,52 In this model, 
literally all the extra cost lies on the cold path in the sense that, if an exception 
is triggered, the flow of control will deviate from the expected (hot, branch-
predicted) path to other, distant code that is potentially not even be paged in. 
The tradeoff is that not throwing costs you literally nothing in run time, but 
heaven help you if you throw one.   
 
So, though difficult to believe, anyone who claims that noexcept speeds up 
your code — even someone whose knowledge and/or veracity you (used to) 
respect — is mistaken. Please never go littering your code with noexcept in the 
futile hope that doing so will speed up your code at all: It will not. In fact, the 
bell curve of noise due to cache line placement — in either direction — will 
overwhelm even any pathological performance gains you think you might be 
realizing. 

8 THE C++ STANDARD SUPPORTS THE MULTIVERSE 
As software developers, we have each amassed our own, sometimes formidable, 
design experience. The totality of that experience, however, will be unique to 
each individual. Developers in a particular industry, such as finance, safety-
critical systems, desktop publishing, or gaming, may find synergies and 
commonalities that simply don't exist across industry boundaries. As a result, 
what may seem like an obvious “no-brainer” design choice to a competent 
developer in one industry might be considered an untenable (if not 
unfathomable) choice by an equally competent application developer in 
another. 
 

 
48 [Lakos22a], Section 3.1.“noexcept Specifier,” “Potential Pitfalls,” “Unrealizable runtime 
performance benefits,” pp. 1134–1143 
49 [Dekker19a] 
50 [Dekker19b] 
51 [Lakos22a], Section 3.1.“noexcept Specifier,” “Potential Pitfalls,” “Unrealizable runtime 
performance benefits,” “The zero-cost exception model,” p. 1136 
52 [Mortoray13] 
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After years of experience working with the best developers on the C++ 
Standards Committee, one comes to learn that two dissimilar design 
approaches can each be optimal for their respective universes. As Standards 
Committee members, therefore, our responsibility is to design the C++ 
language and its Standard Library such that they enable if not support all 
industries. 
 
Stroustrup refers to the superposition of the respective realities that arise in all 
relevant industries as the multiverse. Hence, rather than inadvertently 
attempting to maximally satisfy the needs of any one particular industry (e.g., 
and isn’t that all too often our own?), as members of the Standards Committee 
we must deliberately take a step back and ensure that we are striving to 
maximize the satisfaction of the union of the requirements of all such 
industries. 
 
The diverse and sometimes conflicting needs of the multiverse abound. For 
example, C++ should be easy for a novice to understand and use yet enable an 
expert to do pretty much anything remotely reasonable. In this case, 
Stroustrup's design advice would be to keep simple things simple yet not 
preclude more sophisticated use, perhaps at some later time. 
 
Some organizations use C++ primarily because of its runtime efficiency, others 
for its scalability, and still others due to its ability to get close to the hardware. 
Some industries, such as medicine and aerospace, involve safety-critical 
systems. An undetected defect in such systems might lead to catastrophic 
results, even loss of life. Hence, the cost of design, development, testing, and 
deployment in such industries is typically disproportionately high. Other 
industries, such as desktop publishing, have no safety-critical components. For 
products in those industries, an inexpensive development strategy that admits 
the occasional defect in a new release is often preferred. 
 
As previously discussed, in some industries, such as gaming, an application 
might have an explicit design goal that it never intentionally self terminates. 
Stopping the game might be deemed as bad or worse than anything else that 
might reasonably happen, and there's always the chance that the player won't 
notice the current defect. In finance, however, failing fast or at least not 
continuing as if nothing had happened is often preferred over allowing a 
program to just keep going, possibly losing enormous sums of money for the 
firm.   
 
These distinct universes do not always overlap, and yet they are all contained 
in the same multiverse. To provide the widest possible applicability and utility 
to its prospective clients, the C++ Standard Library along with the C++ 
Language itself must support this multiverse. That is, C++ must enable design 
without making a value judgment as to whether a particular design choice is 
acceptable because such subjective decisions simply cannot be reached in our 
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multiverse in which the same design might be perfect in one context and 
entirely unacceptably in another. Instead, the Standards Committee must 
withhold judgment and instead design with flexibility to serve all industries.  
 
For example, suppose we decided that C-style casts are so bad that we want to 
deprecate them. Should we do that? Of course not. Why? Some developers 
want to use them, perhaps for good reason. Moreover, these casts are already 
in use. Hence, if you think they're bad and shouldn't be used, just don't use 
them. Live and let live; the multiverse goes on. 
 
When it comes to new features, the bar is a bit higher. In that case, we are 
typically increasing the complexity of the language for all implementers and 
users so the test is whether the added functionality provides real capability, 
theoretical value, or just syntactic sugar. On the other hand, sometimes adding 
a feature adds little complexity compared to the new capabilities it would bring 
to many users. 
 
For example, choosing to specify that the contract-violation handler cannot 
return by specifying it as [[nothrow]] in the Standard would aggressively 
enforce one policy over another, thereby disenfranchising users who would 
otherwise avail themselves of this capability, which comes essentially free in 
the current MVP. Similarly, specifying in the Standard that the replicable 
violation_handler function in the MVP is necessarily declared noexcept 
would preclude two important, effective, and widely applicable use cases 
described earlier (see Section 5). 
 
The Standard must support all the universes of all industries, organizations, 
and well-intentioned, reasonable developers. Sometimes we will have to choose 
between two policies. For example, when the expression in the contract check 
throws needs to be defined to do something, we need to choose what we think 
will ratify the widest set of use cases without overly inconveniencing the typical 
or novice user. (That decision will likely be to catch the exception in the contact 
check, treat it as a contract-violation, and pass the deception along with all the 
rest of the relevant information into the handler where it could even be 
rethrown if desired. 
 
In the case of whether to allow continuation or throwing, the answer is simple. 
Let's say that not allowing something is decision X and allowing something is 
decision Y. If the Standard imposes X, then anyone who would have preferred Y 
is just out of luck. On the other hand, if instead we standardize Y, then those 
who prefer X don't have to do Y, and those that prefer Y can still use that 
option. The obvious conclusion is that we should standardize a contract-
checking handler declaration that allows that handler to (1) continue, (2) 
throw, and (3) whatever else the user decides is appropriate (because it’s C++ 
code). By the same token, the Lakos Rule, being the more permissive 
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requirement, should be standardized, with implementers permitted to 
strengthen the exception guarantees or otherwise provide a better QoI, e.g., a 
wide implementation employing the new Contracts MVP. 
 
The design goals, rules, and guidelines for a development team in one industry 
might be radically different from those for a team in another industry, and yet 
neither team is doing anything wrong. Different engineering tradeoffs will be 
made for good reasons. The forces that govern these tradeoffs — e.g., safety, 
security, government regulation, and economics — will play a dominant role in 
how programs are designed. Understanding that, given different exigent 
requirements, smart people will naturally write good C++ programs differently 
is critically important to designing a maximally useful Standard. Hence, when 
making a policy decision, standardizing a less restrictive one that still admits 
the other is often the better choice. 

9 THE LAKOS RULE 
The Lakos Rule (note that I didn't name it) is nothing more than a simple 
observation based on classic principles of software design in terms of contracts. 
Over the years, much has been read into the rule, but what makes it elegant 
and useful is its inherent truth and simplicity. In fact, the rule (observation, 
really) is the title of this paper: 

The Lakos Rule: 
Narrow contracts and noexcept are inherently incompatible. 

The obvious interpretation of this rule is that, if you have a contract that is 
naturally narrow and will absolutely never throw when called in contract and if 
you feel that it's important that developers know this, note in the English 
documentation that the function “does not throw” or “throws nothing.” 
Otherwise, do nothing. If this public contract should someday widen or if the 
implied contract of the implementation is deliberately made wide (possibly only 
in certain build modes) to detect client misuse (aka defensive programming), 
those options will be preserved. 
 
Beyond that, whether to declare a function having a wide contract noexcept 
comes down to whether it is possible to predict whether this function might 
someday evolve or be ported to a different context where the need to throw an 
exception in contract might emerge. 
 
Coming from the opposite perspective, having more functions declared 
noexcept than justifiably need to be does nothing to help reduce the likelihood 
of accidental termination, especially when exceptions are used widely to 
communicate across multiple levels of function calls. 
 
The noexcept specifier is rarely necessary, and when it is needed, it’s for niche 
uses, almost always having to do with efficient copies in the presence of a 
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stronger-than-standard exception-safety guarantee. Unless a function is 
anticipated to be queried at compile time from a generic context using the 
noexcept operator (directly or indirectly), any use of the noexcept specifier 
can be safely omitted and with zero loss in observable average runtime 
performance. 
 
TL;DR: Avoid declaring a function that would otherwise have a narrow contract 
noexcept unless there is a compelling engineering or business reason to do so. 

9.1 Exception(s) to the Lakos Rule 
The original Lakos Rule of 2011 claimed three operations that were given 
special consideration: move construction, move assignment, and swap. With 
over a decade of experience, no new compelling examples have been found, and 
swap does not clearly qualifiy as special. 
 
The move constructor and move assignment operator are special as they are 
used to relocate elements, and useful guarantees can be given if relocation 
never fails. Never failing (nofail) is a stronger constraint than never throwing, 
but was deemed a reasonable, if imperfect, approximation for most libraries.  
 
Recall that the noexcept operator was conceived solely to preserve the strong 
exception-safety guarantee provided by C++03 when a vector grows by insertion 
at the end. Especially to expand the capacity of the vector and preserve the 
succeed-or-no-change semantic, we must guarantee that the relocate operation 
moving elements from one region of memory to another cannot fail. The 
performance change switching from copy to move to achieve such a relocate is 
well known, so we choose to guarantee that move operations do not fail (at 
least not by throwing), rather than preserving the freedom of potentially 
throwing in a future implementation of the contract.  
 
Hence, we consider move operations in particular to be a very special case such 
that even if a move operation were somehow narrow, we would nonetheless 
prefer it to be declared noexcept anyway since the property of allowing the 
noexcept operator to be used to query its (non-throwing) exception 
specification is critically important essential behavior for its primary use case 
(i.e., enabling algorithmically better implementations in generic contexts). 
 
In our decade of using the noexcept operator, we have not run into the same 
sort of benefits for the swap function that we were expecting. While best 
practice remains to write a swap function that guarantees to not throw (in 
contract), and with constant complexity, we have not seen the benefit of 
making that guarantee in the type system; no algorithm that we have 
encountered has a different optimal code path given the guarantee. (On the 
other hand, its contract can often give stronger postconditions when the plain 
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language contract for the swap function gives the nonthrowing — or better, 
nofail — guarantee.) 
 
If there were to be an exception to the Lakos Rule, it would have to satisfy four 
properties: 

1. The operation the function provides has an inherently narrow 
contract. 

2. A primary use case would be lost if it had a throwing specification. 
3. To disallow throwing in response to a contract violation is acceptable. 
4. No better design alternative is available (or foreseeable). 

First, by inherently narrow, we are talking about the contract for a function, 
such as a real sqrt or the bracket operator for std::vector, for which there is 
no obvious wide interpretation. Second, a generic client will be expected to 
employ the noexcept operator (directly or indirectly) to determine whether a 
particular invocation of the function cannot throw so that it may instantiate (at 
compile time) an algorithmically superior implementation. Third, we need to be 
fine with the idea that, if we call that function out of contract and an exception 
is thrown in response, the program will be forced to terminate. Forth, we 
simply cannot think of any other, better practicable way to solve the problem. 

9.2 Are swap Operations Exceptions to the Lakos Rule? 

Let us consider whether the standard swap function merits an exception to the 
Lakos Rule. The primary template, i.e., the basis for customization relying on 
ADL lookup, has a wide contract that has no nonthrowing constraints in the 
plain language contract. Hence, it does not have an inherently narrow contract, 
it should always be wide, and it may throw exceptions when called in contract. 
Thus, swap does not qualify for an exemption from the Lakos Rule, and there is 
no need to consider the remaining items in our list of properties.   
 

For purpose of illustration, however, we would like to know if there is a primary 
use case that would query the noexcept operator that we would lose without a 
noexcept specification?  When we drafted the original rule, we believed that, 
given the importance of no-throw swap to plain language contracts, it would be 
an important operation to support a nonthrowing exception specification where 
possible, so we applied a conditional exception specification when the move 
constructor and move-assignment operator had a nonthrowing exception 
specification.   
 
With a decade or more of experience, though, we have not encountered 
functions or algorithms that benefit from use of the noexcept operator on this 
operation. Instead, we continue to run into guarantees of the plain language 
contract that do not lean on the noexcept operator itself. Hence, if we were to 
specify swap for the Standard today, it would not merit even its conditional 
exception specification.  
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For item 3, we cannot possibly presume that all software built on top of the 
Standard Library can accept disallowing exceptions in response to contract 
violations. As a foundation for the C++ ecosystem, our specification cannot 
reach into user requirements in this way. Hence, std::swap fails on the third 
item as well. 
 
Finally, we come to the question of whether no better design alternative is 
available. The main alternative we lean on these days is customization-point 
objects (CPO), and while the complexity of such types goes beyond the simple 
swap template, the user experience seems better. So perhaps if failing on all 
four, then we’d have to repeat this analysis for the CPO! 

9.3 Are move Operations Exceptions to the Lakos rule? 

The other two exceptions to the Lakos Rule that were blessed with conditional 
exception specification are the move constructor and move assignment 
operator. Let us again apply the four tests and see if we learn anything. 
 
First, neither the move constructor nor move assignment operator are inherently 
narrow, although there are some artificially narrow move-assignment operators 
in the Standard Library (more on those assignment operators later). Hence, the 
first test fails, so we do not get an exception to the Lakos Rule. However, let us 
continue analysis as before. 
 
For item 2, we ask if we would lose a primary use case if we could not query 
these operations with the noexcept operator. The answer here is a strong 
affirmative, since the primary use case of the noexcept operator in the paper 
that proposed the feature for the language53 is to optimize relocation of 
elements in a vector under a variety of operations such as growing the 
capacity, inserting, and removing elements, and so on. Hence, even if the 
contract were somehow narrow, we would nonetheless make an exception for 
move operations because that’s the only way in which they can be used for 
their singular intended purpose. As for the final two check boxes, yes we would 
be OK with a checked build that terminated the program due to an out-of-
contract call to a narrow move, and, no, we don’t have a better idea. 
 
The remaining concern that we promised to address is the artificially narrow 
contracts in the Standard Library for move assignment on standard containers 
where allocators do not propagate and do not compare equal. This constraint is 
artificial since there is no inherent reason such containers could not move their 
elements by copying; after all, the motivation for move assignment was as an 
optimization to copy assignment, so copying when the optimization is not 
available should be the expected semantic (move-only types exempted). We note 

 
53 [N3050] 
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that the Standard still does not mark these operations as unconditionally 
noexcept but places a conditional noexcept on those operators instead that 
means, for example, pmr containers do not have nonthrowing move-assignment 
operators. Hence, although enabling nonthrowing move-assignment for the pmr 
containers might seem desirable, the artificial rather than inherent constraint 
does not satisfy the first test, and we still do not apply a noexcept 
specification here.54 

9.4 Are There Any Exceptions to the Lakos Rule? 
Yes! There is one. Implicit in every contract is the precondition that the client 
does not pass in an argument having an indeterminate value that the function 
intends to read: 

int f0() {  
    double x;                  // indeterminate value 

    double y = std::move(x);   // precondition: `x` is initialized 

} 

The built-in scalar type int has a noexcept move constructor that requires its 
argument not to be of indeterminant value. Hence that move operation 
hypertechnically has a precondition such that calling the move constructor 
with that specific input is undefined behavior, and hence the move constructor 
(like pretty much any function that takes any argument) has undefined 
behavior, and therefore a narrow contract! But, as we discussed earlier, a 
narrow move operation has special privileges because it passes all four of our 
check boxes. Here is a second example in terms of std::array55:  

using A = std::array<float, 1>; 

static_assert(std::is_nothrow_move_constructible_v<A>); 
 
int f1() { 

    A a0;                   // indeterminate valueb 

    A a1 = std::move(a0);   // precondition: a0 is initialized 
} 

Again, the implicit nonthrowing move constructor for std::array has a move 
constructor that expects its source object to be initialized. And again, move is a 
special case satisfying all four of the requirements: (1) this move function is 
inherently (albeit barely) narrow, (2) a nonthrowing exception specification is 
essential to its primary purpose, (3) we would much rather have faster 

 
54 Note that the authors of [Shearer20] and [P0178R0] intend to address this concern by 
making move assignment in these cases well defined; the authors are aiming to bring a revised 
paper to Kona later this year. 
55 Courtesy of Neven Liber, SG21 Reflector, May 16, 2023. 
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algorithms than try to preserve extensibility or worry over a thrown exception 
in pathological contract violation (that we can’t even test for), and (4) we don’t 
have a plan B. 
 
As a practical matter, we do not consider a contract that would otherwise be 
considered wide to become narrow due to irrelevant abuse of the language, 
such as passing in a destroyed or otherwise unusable object, since that would 
eliminate any utility in distinguishing narrow from wide contracts. Hence all 
the above move functions would be considered wide, and passing in an 
indeterminant or destructed object is simply a bug.56  
 
tl;dr: The Lakos Rule is about as close to absolute as any rule with an 
exception (pun intended) can be. 

10 RECOMMENDED USE OF THE NOEXCEPT SPECIFIER 
No recommendation fits all situations for using noexcept; use it where it 
affirmatively adds value, and don't use it where it doesn't (because we can 
always add it later) or, worse, where it subtracts value. 

10.1 The C++ Standard Library 
If we were starting from scratch, I would advocate using noexcept only where 
we anticipate standard containers will need it (typically only copy, move, and 
swap functions). I see no compelling reason to force implementers to do more 
against their will. Given what we have now, the trend seems to be also to 
declare const member functions having wide contracts that will never throw to 
be noexcept, and that seems nonproblematic yet has the ever-so-slight benefit 
of producing slightly less (but not faster) code on average. 
 
Hence, our recommendation for the Standard Library specification, which is a 
foundation for almost all C++ software, is that the Lakos Rule be observed for 
every library function having a narrow contract and that future flexibility be 
considered carefully before applying the noexcept specifier to nonthrowing 
wide contracts. On the other hand, move operations have demonstrated the 
importance of communicating their nonthrowing nature via use of the 
noexcept operator, so even conditionally nonthrowing (but invariably wide) 
move contracts merit applying noexcept. 

10.2 Standard-Library Implementations 
In anticipation of the Contracts MVP, we want to strongly encourage (if not 
mandate57) Standard Library developers to follow the Lakos Rule so that they 

 
56 Note that passing an indeterminant value by value is automatically UB whereas passing an 
indeterminant value by reference is allowed as long as the function does not attempt to read it; 
assigning to it and taking its address, however, is not (language) UB. 
57 [P2837R0] 
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will be able to widen their implementation to incorporate the full capability of a 
throwing contract-violation handler if they so choose. 
 
That said, it is ultimately the responsibility of each C++ library implementor to 
make the business and engineering tradeoff of how they want to spend the 
unspecified behavior afforded them by minimal use of noexcept in the 
Standard Library’s specification. In particular, an implementor is free to 
strengthen the exception specifications of any function whose current contract 
that doesn’t require it to throw (not recommended). Alternatively, implementors 
may preserve the narrow public contract and instead provide a wide 
implementation that incorporates the new Contracts MVP, on track for C++26.   
 
Although narrow contracts and nonthrowing exception specifications are 
inherently incompatible, they are not entirely so. If an implementor chose to 
widen the public contract to permanently disallow any thrown exception from a 
narrow contract and later add checking that attempted to check the original 
narrow contract, then some of the benefit of the checking would be realized; the 
only problem is that, if an application were counting on recovering from a 
contract-violation calling a standard function, and the implementor has cut off 
throwing as a possibility in an extended implementation, and then the natural 
(well-defined) consequence will be program termination.   

10.3 Third-Party Libraries 
The Lakos Rule applies to all software, not just the Standard; hence the general 
advice to ardently avoid (where unnecessary) placing noexcept on functions 
having a narrow contracts pertains. That said, each third-party library vendor 
must make an informed decision as to the extent to which optional use of 
noexcept on wide contracts serves their business needs and client base. 
 
As a (strong) general recommendation, a noexcept specification should not be 
used unless the following three conditions are met.  

1. Functions are expected to be implemented with an optimized code-
path by querying the noexcept operator on this function. 

2. The plain language function contract is wide. 
3. The function guarantees not to throw; if the function guarantees not 

to throw under only specific circumstances, those circumstances can 
be described by a predicate in the exception specification 

When used in software written above foundation layers, pragmatic engineering 
values may relax even these constraints, such as in an environment in which 
failing an operation (in any build mode) can terminate the program. 

10.4 End-User Libraries 
The Lakos Rule applies generally, even to end-user software, the only 
substantive difference being that the organization is in complete control of all 
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its internal clients; hence, backward incompatibility, though still painful, might 
not be irreparable. Again, each library implementation will make its own 
informed determination as to tradeoffs between retaining a narrow contract 
and permanently assigning requirements for all syntactically valid state and 
input combinations that explicitly preclude ever throwing for any reason. 

11 CONCLUSION   
This paper provides an in-depth elaborate, tutorial-level support for the simple 
observation that nonthrowing exception specifications are inherently and 
fundamentally incompatible and inconsistent with narrow contracts. That is, a 
function that otherwise would have a narrow contract loses its narrow status as 
soon as its exception specification becomes nonthrowing because now there is 
no syntactically valid combination of input and state values for which the 
function exhibits undefined behavior (i.e., behavior having no requirements). 
 
We started by considering the value proposition of designing software having 
narrow contracts rather than necessarily always making them wide. Then, after 
reviewing some basic principle of classical software engineering, including 
Design by Contract (DbC) and the Liskov Substitution Principle (LSP), we 
explored the benefits of narrow contracts as a means of extending software 
APIs in a backward-compatible manner over a sequence of versions. We 
observe that, had we initially declared to be noexcept a function otherwise 
having a narrow contract, the benefits of unfettered backward compatibility 
were lost --- further proof that the `noexcept` function’s contract simply cannot 
be considered narrow in any practical senses. 
 
In particular, we observed that the ability to provide a wide implementation to a 
narrow public contract serves as an opportunity to render increasingly valuable 
QoI without affecting the behavior of any programs currently written to that 
narrow (interface) contract. Only then did we introduce SG21's burgeoning 
Contracts facility and argue that failure to follow the Lakos Rule in the 
Standard would disenfranchise (1) clients of the Standard who want to make 
use of such QoI and (2) implementers of the Standard (or parts thereof) who 
might want to create effective negative tests without having to resort to a 
complicated, nonportable, grossly inefficient single (“death”) test per thread (or 
worse, per process). 
 
Next we considered the consequences of just generally inappropriate or 
unnecessary (over)use of the noexcept specifier, especially in the C++ 
Standard Library. Having more nonthrowing exception specifications does 
nothing to help avoid accidental termination, especially for applications that 
make heavy use of exceptions to communicate across multiple levels of 
function calls. 
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We then took a hard look at various purported uses of the noexcept specifier. 
Importantly, we observed that any need for the noexcept specifier, is rare, 
highly specific, and typically geared to maximizing algorithmic runtime 
performance in the presence of (dubious) strong exception-safety guarantees 
imposed by a few (e.g., insert) member functions of standard containers. By 
contrast, SG21's robust runtime contract-checking facility, for which an MVP is 
on track to be released for C++26, will offer value in terms of correctness, 
safety, security, and robustness, for any program that makes use of libraries — 
especially the C++ Standard Library — having functions with narrow contracts.   
 
Considering that excessive forced use of the noexcept specifier adds 
substantial risk whereas widespread (optional) use of the C++ Contracts MVP 
does just the opposite, the choice of which to favor seems obvious, yet the 
Standards Committee does not need to make that choice! By simply following 
the Lakos Rule in the C++ Standard Library specification, we leave open the 
possibly for implementers to (1) strengthen the exception specifications 
themselves or (2) provide a wide implementation that supports optional 
contract checking in the appropriate build modes or (3) both at the same time. 
(However, due to the inherent incompatibility identified by the Lakos Rule, a 
violation handler throwing into a noexcept specification will necessarily result 
in a call to std::terminate.) 
 
Next, we restated the Lakos Rule and discussed its application. We then 
clarified the Lakos Rule in the context of all we have learned about modern C++ 
and proceeded to tested its applicability on some previously thought-to-be 
exceptions. For completeness, we provided its one and only known 
(hypertechnical) exception, which involves the passing of indeterminate values 
to a move constructor (or move assignment operator).  
 
Finally, we provided recommendations for codifying the Lakos Rule as design 
guidance geared toward the C++ Standard Library specification, 
implementations of the Standard Library, arbitrary third-party library 
providers, and ultimately end-user libraries. The conclusion is that Lakos Rule 
has no known practical exceptions, pertains generally, and is especially 
important for the Standard Library, which must support the multiverse. 
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13 APPENDIX  

13.1 How did we get here? 
At the March, 2010, Standards Committee meeting in Pittsburgh, David 
Abrahams brought to the Standards Committee's attention that, if a move 
constructor is not known at compile time not to throw, there is no way to use it 
to its full efficiency and still achieve the requisite strong exception guarantees, 
e.g., appending to a std::vector. 
 
In response to this unanticipated emergency, both the noexcept specifier and 
noexcept operator were quickly concocted for the niche use of determining, at 
compile time, whether a copy, move, or swap operation on a type was 
nonthrowing. No other use was envisioned.  
 
As this new language feature was being added to the Standard, some began to 
question whether widening use of this nascent feature might be appropriate to 
include other functions for which there was no fathomable reason why generic 
code would ever need to query such a property. 
 
Those intimately familiar with contract-checking in practice knew that, when 
some form of contract-checking was eventually adopted into the Standard, one 
of the viable (and useful) behaviors resulting from a detected precondition 
violation would be to somehow throw a (e.g., user-provided) exception. 
 
The Lakos Rule, which in essence states that a function having one or more 
preconditions shall not have a nonthrowing exception specification, was 
articulated to provide the needed appropriately conservative, objective guidance 
since the hastily conceived noexcept specifier was about be summarily 
distributed across the entire Standard Library during that frantic final meeting 
in Madrid (March, 2011) before C++11 was shipped. After considerable 
discussion, this important guidance58 was adopted with strong consensus 
(>75%). 
 
Over the years, several attempts to introduce contract checking into the C++ 
Standard have come and gone and, as yet, the Standard has nothing concrete 
to show for it. We have, however, learned quite a bit about what is needed to 
support contract checking at scale and are now poised to propose a solution 
and a foundation for something that will be truly seminal to safety and 
correctness in the C++ language. 
 
In the meantime, we’ve had much discussion about certain alleged benefits of 
employing noexcept much more liberally. A widely touted yet unsupported 
claim states that declaring an arbitrary function noexcept can somehow 

 
58 [N3248] 
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measurably, let alone significantly, improve its runtime performance on 
modern, general-purpose architectures. Any such claims are flat-out wrong. 
Through controlled experiments and empirical measurement, this conjecture 
has since been repeatedly and thoroughly debunked (see Section “Unrealisable 
runtime performance benefits”). 
 
These and other misguided beliefs and ideas about what noexcept can achieve 
are likely responsible for the gross overuse of the noxcept specifier, which 
already threatens the safe, valid use of C++ exceptions in practical 
applications. Excessive unnecessary use of the noexcept specifier is destined 
to become even more problematic and contraindicated once the highly 
anticipated MVP for a general-purpose C++ contract-checking facility becomes 
available (expected for C++26). 

13.2 Structurally Inherited Functions and Contracts 
This section is forthcoming in a future release of this paper. 

13.3 const Member Functions and Contracts 

This section is forthcoming in a future release of this paper.  

13.4 Virtually Functions and Contracts 
This section is forthcoming in a future release of this paper. 
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