
Page 1 of 74

P2861R0
2023-05-18

John Lakos: jlakos@bloomberg.net

The Lakos Rule
Narrow Contracts and noexcept

Are Inherently Incompatible
ABSTRACT
A contract in the C++ Standard Library, is a specification, for a given function,
of what subset of syntactically valid input and accessible state is required to
invoke that function so as to have defined (i.e., not undefined) behavior and, in
particular, the essential behavior that function promises to deliver when
invoked in contract. Functions having at least one syntactically valid input-and-
state combination for which the behavior is undefined are said to have narrow
contracts. As of C++11, a new keyword, noexcept, was added to the language.
When used as a function specifier, this keyword effectively codifies essential
behavior for the entire syntactically valid domain of the function to be, in
addition to any other explicitly specified requirements, “throws nothing” — a
contradiction. Since C++11, the Lakos Rule, as reflected in the Standard
Library, effectively prohibits placing the noexcept specifier on any function
that would otherwise have a narrow contract. This paper explains why that rule
was, is, and likely always will be a solid best practice, especially in the C++
Standard Library.

TABLE OF CONTENTS

0 Revisions 3

1 Introduc�on 3

2 Synopsis 5

3 Terminology 7
3.1 Essential and Implementation-Defined Behaviors 7
3.2 Implementation Failure 10
3.3 Preconditions and Undefined Behavior 11
3.4 Library UB versus Language UB 15
3.5 Narrow versus Wide Contracts 17
3.6 noexcept and Contracts 19

4 The Need For Narrow Contracts 23
4.1 Cost-Effective Design, Development, Testing, and Performance 23

Page 2 of 74

4.2 Design by Contract (DbC) and the Liskov Substitution Principle (LSP) 25
4.3 Structural Inheritance and Safe Substitutability 28
4.4 Contract Extension and Backward Compatibility 31
4.5 Wide Implementations for Narrow Interfaces 34
4.6 Checked Builds 37

5 The Need for Throwing Contract-Checking Viola�on Handlers 38
5.1 Recovery 38
5.2 Negative Testing 41

6 Poten�al Pi�alls of Using noexcept 45
6.1 Overly Strong Contract Guarantees 46
6.2 Accidental Terminate 48

6.2.1 Scenario 1 48
6.2.2 Scenario 2 48

7 Increasingly Dubious Op�onal Use of the noexcept Specifier 51
7.1 Declaring Nonthrowing Move Operations 51
7.2 A Wrapper that Provides noexcept Move Operations 53
7.3 Callback Frameworks 54
7.4 Enforced Explicit Documentation 56
7.5 Reducing Object-Code Size 57
7.6 Unrealizable Runtime Performance Benefits 58

8 The C++ Standard Supports the Mul�verse 58

9 The Lakos Rule 61
9.1 Exception(s) to the Lakos Rule 62
9.2 Are swap Operations Exceptions to the Lakos Rule? 63
9.3 Are move Operations Exceptions to the Lakos rule? 64
9.4 Are There Any Exceptions to the Lakos Rule? 65

10 Recommended Use of the noexcept Specifier 66
10.1 The C++ Standard Library 66
10.2 Standard-Library Implementations 66
10.3 Third-Party Libraries 67
10.4 End-User Libraries 67

11 Conclusion 68

12 Acknowledgements 69

Page 3 of 74

13 Appendix 70
13.1 How did we get here? 70
13.2 Structurally Inherited Functions and Contracts 71
13.3 const Member Functions and Contracts 71
13.4 Virtually Functions and Contracts 71

14 References 71

0 REVISIONS
R0: Initial paper submission

1 INTRODUCTION
The use of narrow contracts — those having one or more preconditions — has
been an integral part of practical, efficient software engineering since long
before the first “C with Classes” program was even on the drawing board. In the
1980s, legends like Barbara Liskov and Bertrand Meyer were focused on how
to structure hierarchies of telescoping preconditions.

In particular, the first edition of the C programming language, published
February 22, 1978, shows the classic program to print "hello, world":

main() {

 printf("hello, world\n"); // well-defined behavior

}

The function printf is not valid with every syntactically valid input. Even
ignoring the lax type safety in classic C, adding a simple percent sign (%) in the
quoted string would result in undefined behavior:

main() {
 printf("hello, worl%d\n"); // undefined behavior
}

Hence, printf had a narrow contract. Even today in C++, printf has a narrow
contract but not as narrow as it was in the early days. Over the years, behavior
that was previously undefined, such as %x, %Lx, and %LLx has taken on
meaning where previously there was none. This sort of backward-compatible
extensibility over time is what makes truly narrow contracts inherently
essential to the effective maintainability and enhancement of virtually every
successful, widely used library we write.

In what follows, we'll start by precisely defining important terms that we use
routinely when discussing contracts, which will include two kinds of undefined
behavior (UB) — library UB and language UB (the distinction between which is

Page 4 of 74

not yet properly reflected within the Standard). At this point, we'll restate the
formal proof that functions having a nonthrowing exception specification — by
definition — cannot have a narrow contract, culminating in the Lakos Rule.

We'll then explore the value of extending a particular narrow contract — one
that initially throws nothing — over several versions of a library but this time
from a C++ perspective. After that, we'll examine the tangled web we would
have woven had we added noexcept to that first nonthrowing function on its
first version.

Next, we'll take a look how narrow contracts interact with contract checking
and justify the general need, at least for some, for throwing contract-violation
handlers. In particular, we'll explore throwing on a contract-violation as the
primary means of (1) temporary continuation, if not full recovery, and (2)
maximally effective, efficient, and portable negative testing.

Then, we will turn our attention the adverse interaction that liberal application
of noexcept specifiers has on software designs that make use of exceptions to
communicate uncommon or unexpected (e.g., logic) errors. After that, we'll take
a look at various practical ways the noexcept specifier can be used (and
misused) to achieve superior algorithmic performance when called from a
generic context that demands more than just the basic exception-safety
guarantee, along with some other niche use cases.

Importantly, although widespread systemic use of the noexcept specifier can
somewhat reliably reduce generated code size, no legitimate theory or empirical
evidence suggests that runtime performance is ever measurably, let alone
significantly, improved; copious experimental data and basic common sense,
however, suggest otherwise.

At this point, we’ll change gears and talk about the Standard Library’s role as
the foundation for virtually all C++ development worldwide. As such, the
Standard cannot reasonably support any one particular set of design principles
(i.e., one developer's universe) and must instead and to the extent practicable
support all of them without undue judgment.

After that, we’ll revisit the Lakos Rule and discuss its implications. We’ll then
postulate what an exception to the Lakos Rule might look like and then test
our hypothesis on what were initially deemed possible exceptions to the Lakos
Rule to see if they meet a set of four criteria by which all potential exceptions
are to be validated. At the conclusion of this section, we’ll then exhibit the only
known exception to the Lakos Rule, i.e., the exception that proves the rule.

Finally, in that light, we provide recommendations and justification for effective
practical use of the noexcept specifier for (1) the C++ Standard Library

Page 5 of 74

(specification), (2) concrete implementations of the Standard Library, (3) third-
party libraries, and (4) end-user libraries. Spoiler alert: Absent a vanishingly
rare and compelling engineering reason to do otherwise, deviating from the
Lakos Rule is invariably and absolutely a terribly bad idea, especially within
the C++ Standard Library specification.

2 SYNOPSIS
This paper is tutorial in nature, and thus is long with many supporting
examples. To facilitate a much quicker read, we provide here a quick synopsis
of the paper.

In Section 3, we start by defining some key terms.

• Precondition — a requirement (expressed or implied) that limits the
circumstances under which a contract can be considered binding.

• Essential behavior — that which must result from a properly
implemented function provided all preconditions for that function are
met.

• Contract — a bilateral agreement (typically written in a natural language)
between a function's implementation and any caller of that function. It
must incorporate at least (1) any nonobvious preconditions necessary for
successfully invocation and (2) the essential behavior that the function
promises to deliver, provided that all preconditions (even implicit ones)
are met.

• Narrow contract — a contract with preconditions.
• Wide contract — a contract without preconditions.
• Conforming implementation — one that accurately implements the

contract.
• Undefined behavior (UB) — behavior for which there are no

requirements.
• Library UB — behavior resulting from invoking a nonstandard library

function in violation of one (or more) preconditions.
• Language UB — behavior resulting from a failure to satisfy the

constraints of the language or the Standard Library.

We point out, in Section 4, that by adding a noexcept specifier to a function
with a narrow contract, we are effectively widening that contract by imposing
essential behavior on all possible syntactically valid input combinations. We
discuss the importance of functions with narrow contracts and revise both the
Liskov Substitutability Principle and Bertrand Meyer’s Design-by-Contract. We
then show that, where a function is declared noexcept, we cannot override
that function with one that can throw. Similarly, we cannot subsequently
modify a function’s contract with one that is permitted to throw without
breaking backward compatibility. The final point of Section 4 is that many
libraries perform defensive input checks when built in debug mode, throwing

Page 6 of 74

an exception if called out of contract, and skip those checks when built in
release mode. Marking those functions noexcept would prevent library
implementations from providing such checks.

In section 5, we consider interactions with the upcoming Contracts MVP facility
in C++. A number of other languages currently have contract checking and, in
the event of contract violation, use an exception to indicate the fact. This
enables an application to recover from the problem (e.g., retrying an operation
that timed out), to gracefully degrade (e,g., in the rendering of a video game), or
to shut down in a controlled manner (e.g., closing any open orders in a stock
market trading system). When the checked function is declared noexcept, the
remaining options are to ignore the fact or to terminate, both of which can be a
serious problem in many environments. Having a noexcept specifier on a
narrow-contract function with a Contracts MVP check would also remove the
only viable means of thoroughly testing the function’s contracts check, namely
to have a handler that throws an exception.

Section 6 reprises some of the potential pitfalls of noexcept, described in
Embracing Modern C++ Safely,1 namely overly strong contract guarantees and
accidental termination.

Section 7 then looks at some of the common uses and misuses of the noexcept
specifier.

• Use: declaring move operations nonthrowing, which enables algorithms
offering exception safety guarantees to perform additional optimizations
when it is known that an exception cannot be emitted. This legitimate
use is the reason noexcept was introduced into the language in C++11.

• Use: wrapping a type to force the Standard Library to apply its noexcept
optimizations even though, in reality, that type can throw on move.

• Borderline misuse: to avoid writing exception handler functions in
callback frameworks.

• Misuse: as a form of documentation or as a substitute for documenting
possible exceptions in the contract.

• Misuse: reducing object code size on the (typically false) assumption of
faster performance.

• Misuse: attempting to increase performance (despite that noexcept will,
on its own, make no difference whatsoever).

Section 8 points out that the C++ Standard must cater to the multiverse, i.e.,
all the industries that use C++, each with their own needs and priorities. The
Standard should, without any value judgement, ratify the widest set of use
cases without overly inconveniencing the typical case. The limitations that

1 [Lakos22a]

Page 7 of 74

would be imposed by the removal of the Lakos Rule are in conflict with this
principle.

Section 9 defines the Lakos Rule as “Narrow contracts and noexcept are
inherently incompatible.” It also discusses possible exceptions to the rule, a set
of key tests that should be applied when considering any exception, and how
swap is the only valid exception (noting that move operations are a legitimate
use for noexcept, which does not break the Lakos Rule).

Section 10 states that application of the Lakos Rule is beneficial for third-party
and end-user libraries in addition to the Standard Library and its
implementations.

3 TERMINOLOGY

A contract governing the behavior of a function, member function, operator,
constructor, or lambda — henceforth referred to collectively as function — is a
bilateral agreement (typically written in a natural language) between that
function's implementation and any caller of that function. A function's contract
must, at a minimum, incorporate (1) any nonobvious preconditions necessary
for successfully invoking that function and (2) the essential behavior that the
function promises to deliver, provided that all preconditions (even implicit ones)
are met.

3.1 Essential and Implementation-Defined Behaviors
We define essential behavior to be that which must result from a properly
implemented function provided that all preconditions for that function are met.

Consider a function average that takes two integers, a and b, and returns
their mean rounded up to the nearest integer:

int average(int x, int y);
 // Return the closest integer, `z`, to the mean of `x` and `y`; if `z` is
 // not unique, return the larger one.

The contract for the average function above has no preconditions. A conforming
implementation, one that accurately implements the contract, must therefore
work correctly — i.e., satisfy its contractually promised essential behavior for
every combination of syntactically valid inputs.

May a conforming implementation do something other than what is stated as its
essential behavior? No! If this function, for any reason, fails to return the
rounded mean of a and b, the implementation of the function is nonconforming.
Perhaps the implementer didn't understand the contract or made an
inadvertent coding error. To become conforming, either the implementation or
the contract would have to change.

Page 8 of 74

May a conforming implementation do something in addition to the essential
behavior stated in the contract. Yes! In addition to essential behavior, behavior
that is unspecified can also occur, which, for a function that is called in
contract (i.e., all of its preconditions are satisfied), is referred to by the
Standard as implementation-defined.2

Suppose the contract for the average function above did not specify what
happens when we have two equally close results:

int average2(int x, int y);
 // Return a closest integer `z`, to the mean of `x` and `y.

The contract for average2 implicitly reads:

int average2(int x, int y);
 // Return a closest integer,`z`, to the mean of `x` and `y;
 // of the two values, which value is returned when `z` is not unique is
 // implementation defined.

When calling average2(3, 6), a conforming implementation may return either
4 or 5, whereas a call to the original average(3, 6) is duty bound to return 5
and nothing else.

The example above might seem contrived, but nonessential behavior is
inherent in many, if not most, higher-level function contracts. For example,
consider a pair of functions, sortOnX and stableSortOnX, that each take a
range of x-y integer Point objects and sort them in ascending order according
to just their x values:

struct Point { int x, y; }; // data element to be sorted

void sortOnX(Point *b, Point *e);
 // Sort the specified `[b, e)` range of points in ascending order
 // based solely on their first coordinate, `x`.

void stableSortOnX(Point *b, Point *e);
 // Sort the specified `[b, e)` range of points in ascending order
 // based solely on their first coordinate, `x`, preserving the
 // original relative order of objects of equal `x` value.

Notice that the essential behavior of sortOnX leaves room for variation in the
result, whereas no such variation is allowed for stableSortOnX. Still, sortOnX
must return its result is some order that satisfies the stated essential behavior.

2 The difference in the Standard’s definition of unspecified behavior and implementation-defined
behavior is that unspecified behavior is permitted to include undefined behavior, whereas
implementation-defined behavior is intended to be selected from an enumerable set of
alternatives that explicitly does not include undefined behavior. We will talk more about
undefined behavior shortly.

Page 9 of 74

For concreteness, consider a Point sequence, a, consisting of three points:

static Point a[] = { { 9, 1 }, { 9, 2 }, { 8, 3 } };

Calling sortOnX(a, a+3) must produce either one of two results:

 (a) S[]: (8, 3), (9, 2), (9, 1)
 (b) S[]: (8, 3), (9, 1), (9, 2)

Calling stableSortOnX(a, a + 3), however, must produce only the latter.

May a conforming implementation additionally do something that is entirely
unrelated to essential behavior? Yes. While essential behavior governs what
must happen to fulfill the contract, it simply cannot possibly govern everything
that must not happen. Imagine you hire a carpenter to build shelves for your
new office. The carpenter's contract is as follows: “If you give me X dollars, I'll
build Y shelves for you.” You agree and give the carpenter X dollars. In a few
hours, the carpenter returns with freshly built shelves. Assuming the shelves
are satisfactory, the essential behavior was met. The carpenter's behavior was
conforming.

But what if the carpenter also mailed you a thank-you card? Is the carpenter's
behavior still conforming? None of the essential behavior for average,
average2, sortOnX, or stableSortOnX above stated anything about output (or
the lack thereof). Is it possible that a conforming implementation for average
might occasionally print “Thank You!” to standard output? That behavior might
not be what you expected or even wanted, but even such an unusual
implementation of average — by definition — must be considered conforming.

Again, a conforming implementation requires that, if on invocation of a function,
all of its preconditions (expressed or implied) are satisfied, all of the stated
essential behavior will occur. Anything else that happens that might be
undesirable is governed entirely by what we call the Quality of Implementation
(QoI), and is left for the clients and implementers of the specification to sort
out. We will return to more valuable supererogatory behavior (with respect to
contract checking) later in this paper.

Even a standard function, such std::vector::size() const, that faithfully
delivers on its essential behavior yet logs each invocation to std::err — albeit
an especially poor QoI, to say the least — would still be considered a
conforming implementation. By contrast, if that same function ever threw the
result, rather than returning it normally, that behavior would obviously no
longer be true to its essential behavior and, hence, would not be considered
conforming.

In short, we can and are expected to specify explicitly, in a function contract,
the essential behavior, i.e., what must happen assuming all preconditions are

Page 10 of 74

satisfied, but we simply cannot specify all the things that must not happen,
leaving what must not happen to QoI, which seems to work out just fine in
practice.

3.2 Implementation Failure
Sometimes a contract can be so demanding that it cannot be implemented
perfectly or completely, at least not on the first version. Hence, the
implementation might be good but not yet strictly conforming. A cardinal rule
of function-contract edict, however, is that, if a function is called in contract
and, for whatever reason, the implementation cannot deliver on the essential
behavior in its contract, it does not return normally.

For example, imagine I have been assigned to write a value-semantic type
(VST),3 Rlang, that is used to characterize an arbitrary regular language, L.
The class is currently semiregular,4 and you have been asked to provide an
operator equal that runs in less than some implementation-defined (but finite)
number of seconds:

bool operator==(Rlang& lhs, Rlang& rhs);
 // Return `true` if `lhs` represents the same regular language as `rhs`;
 // otherwise, return false within 600 wall seconds of being invoked.

As we might surmise, determining whether two (nonidentical) finite-state
machines accept the same language is a hard problem, at least as hard any
NP-complete problem.5

Hence, no known implementation is guaranteed to work for this contract in
general. Still, we give it our best try (because that’s what we’re paid to do), and
if our time runs out, we have to do something other than return a bool.

One option would be to call terminate(), another would be to throw, yet another
would be to block or spin, and still another would be to long jump. None of
these approaches are good, but all of them are better than silently returning
either true or false. At a minimum, we should indicate in the contract what
happens if the function fails, e.g., throws “up,” calls terminate(), or (yuck!)
returns false to indicate uncertainty that the values of lhs and rhs are the
same.

The Standard is required to be complete in its specifications. That is, all
essential behavior must be specified. In addition, if a function might not return

3 A value-semantic type is one that represents a platonic value that is independent of its
representation, e.g., 5, ||||| and 101b are each representations of the integer value five; see
[Lakos15a].
4 A semiregular type has all of the syntactic operations of a regular type (e.g., int,
std::string, std::complex<T>), except for the equality comparison operations.
5 [Lakos15b]

Page 11 of 74

normally, that too must be specified. In practice, however, we often simply don't
bother specify all the things that can go wrong, especially when they are
sufficiently unlikely.

For example, suppose we are writing a portable lock handle, mylock, for a
system lock. On construction, the lock handle allocates a lock from the
operating system. Unlike other resources, the chance that no locks will be
available is essentially zero. Hence, we customarily omit that bit from the
contract and simply check to see if the resource was allocated. We would then
simply terminate on failure.

When failure is possible but only through complete memory exhaustion, we
sometimes skip specifically stating that function can throw, especially if that is
obvious (at least to most) from the contract.

For example, let's take another look at our stableSoryOnX function from
Section 3.1:

void stableSortOnX(Point *b, Point *e);
 // Sort the specified `[b, e)` range of points in ascending order
 // based solely on their first coordinate, `x`, preserving the
 // original relative order of objects of equal `x` value.

A stable sort can run in O[n*log n] provided it has ample memory; an in-place
implementation is inherently more complex and requires O[n*log^2 n] time. If
we forgot to mention that this algorithm must run O[n*log n], we might also
forget (or not bother) to say that it throws std::bad_alloc if the entire process
runs out of memory.

In short; not every contract is always as explicit and complete as specified in
the Standard; such is life in the real world.

3.3 Preconditions and Undefined Behavior
A precondition is a requirement (expressed or implied) that limits the
circumstances under which a contract can be considered binding. In
particular, every precondition of a function must be satisfied for a caller to be
entitled to rely on any of the essential behavior promised in that function’s
contract.

Let's consider the familiar function, sqrt, that has a single stated precondition
that its argument, x, must be non-negative:

double sqrt(double x);
 // Return a result, `y`, such that `y` is non-negative and that minimizes
 // the value of |y * y - x|. The behavior is undefined unless `0 <= x`.

Page 12 of 74

As long as the caller supplies a non-negative argument to sqrt, we have no
indication that this function will do anything but return a valid answer. Hence,
its essential behavior is that, given a non-negative argument, it will always
return a valid result. Its contract didn't mention throwing, so we know it
doesn't throw — at least not when in contract.

What happens if, for whatever reason, we were to somehow call sqrt with a
negative value? Literally no information in the contract tells us what might
happen; the contract offers no requirements on that behavior whatsoever.

Undefined behavior is defined in the Standard to be behavior for which there
are no requirements, i.e., literally none! That doesn't mean, however, that if we
were to invoke sqrt(-1) that literally anything could happen, but it does mean
that anything that one could do deliberately or even accidentally in sqrt would
be fair game:

double sqrt(double x)
{
 if (x < 0) {
 while (1) std::system("rm -rf *.*;*); // very poor QoI but conforming
 }
 return sqrt_imp(x); // some reasonable square-root routine
}

No decent developer writes code like the above, but many do write code that
helps to detect out-of-contract calls, i.e., those that violate one or more
preconditions:

double sqrt(double x)
{
 assert(0 <= x); // assert precondition
 return sqrt_imp(x); // some reasonable square-root routine
}

Some developers might even write code that allows the client to actually do
something if they get a precondition wrong:

double sqrt(double x)
{
 if (0 <= x) throw "Hey, I said non-negative! Now what?!";
 return sqrt_imp(x); // some reasonable square-root routine
}

Because undefined behavior has no requirements, what happens when a
function is called out of contract, i.e., with one or more of its preconditions
violated, has nothing whatsoever to do with the specification of the function,
i.e., its contract, and everything to do with its implementation, which might —
and ideally would be — different in different build modes.

Now that we're getting good at this, let's ask an interesting question: Are there
any other tacit preconditions for calling this function? Enough stack space

Page 13 of 74

remains on the computer to accommodate at least two function calls. Should
that be part of the explicit contract? No, because it would have to be repeated
on literally every non-inlineable function. Great, let's not be silly.

Suppose we pass in a NaN value? What should happen? Now we need our
language lawyer hat. Is the wording such that the explicit precludes a NaN?
Well, if we had said, “The behavior is undefined unless x is a non-negative
integer,” then that x cannot be a NaN is clearly a precondition since NaN stands
for not a number; a NaN argument is not a negative integer and, hence, it
explicitly results in undefined behavior.

On the other hand, had we worded the precondition just slightly differently, we
would have an entirely different result: “The behavior is undefined if x is a
negative integer.” NaN is still not a negative integer, but now it’s also not
explicitly undefined behavior either. So what is it? It's implementation-defined
behavior, which means it must do something, but what it does is
implementation defined.

As users, we don't need to be a language lawyers to know that the essential
behavior of this function says absolutely nothing about what should happen if
we pass in a NaN. The sage advice is, whether its implementation-defined
behavior or undefined behavior, it’s not essential behavior, and therefore it’s
bad behavior to rely on since it might change at any time without notice.

Let's go back and take another quick look at the contract for one of our sort
functions from Section 3.2:

void sortOnX(Point *b, Point *e);
 // Sort the specified `[b, e)` range of points in ascending order
 // based solely on their first coordinate, `x`.

Does sortOnX state any preconditions? No. Do all assumed preconditions need
to be stated explicitly? No.

As it turns out, an implicit assumption is made that nothing outside the bonds
of the language needs to be restated in a function's contract. For example, it is
implicit in every contract that an object passed into a function must have been
constructed and must not have been destructed prior to the invocation of that
function. That literally goes without saying:

int main()
{
 int a, b;
 return average(a, b);
}

Imagine we had to write a contact that covered the obvious:

Page 14 of 74

void sortOnX(Point *b, Point *e);
 // Sort the specified `[b, e)` range of points in ascending order
 // based solely on their first coordinate, `x`. The behavior is
 // undefined if either `b` or `e` have indeterminate value.

By the same token, imagine that every time we passed a pointer to an object to
be modified in place, we had to state that the pointer was not null?

void sortOnX(Point *b, Point *e);
 // Sort the specified `[b, e)` range of points in ascending order
 // based solely on their first coordinate, `x`. The behavior is
 // undefined unless `b` and `e` are (1) not null and (2) refer to
 // a semiopen sequence of valid objects such that `e` is reachable
 // from `b`.

The burden of documenting what happens when a pointer is null is explicitly
not a reason to prefer modifiable references to pointers or iterators. Rather,
readers have the opportunity to ask themselves, “What is the explicitly stated
essential behavior that will obviously occur when I pass in a null pointer for
either b or e?” Since no obvious answer presents itself, assuming such
unspecified behavior is even implementation defined behavior (as opposed to)
undefined behavior would be the caller's fault. Note that every organization,
development team, and library specification would be well advised to document
what implicit assumptions are made for function preconditions in that context.

Finally note that the scope of preconditions is not limited to just the arguments
of a function and may apply to literally anything, regardless of whether the
function is capable of detecting whether the precondition is violated. Typical
function preconditions, however, are limited to the arguments and any
accessible (e.g., object or global) program state:

template <class T>
const T& Vector::front() const;
 // Return a reference to the nonmodifiable element at index position 0.
 // The behavior is undefined unless this object is not empty.

const T& Vector::operator[](std::size_t index) const;
 // Return a reference to the nonmodifiable element at index position 0.
 // The behavior is undefined unless `index < size()`.

The first member function, front, above takes no arguments; its only
precondition is that the Vector object on which it is invoked is not currently
empty. The second member function, operator[], takes a single unsigned
integer argument; whether the precondition is satisfied depends on both the
value of that argument and the current state of the object. One could imagine
preconditions that depended on global program state and perhaps even state
external to the program, but that would be unusual and most likely not
applicable to a general-purpose library, such as the Standard library.

Page 15 of 74

3.4 Library UB versus Language UB
Recall that undefined behavior is simply the lack of any requirements
whatsoever and, as currently defined in the Standard, applies to both language
and library preconditions alike. That being said, for any library but the
Standard Library (and only because it is the Standard6), an important inherent
distinction exists between calling a library function out of contract and invoking
a C++ language construct in a way that fails to meet its requirements.

Let's take another look at our sort function from the previous two sections:

void sortOnX(Point *b, Point *e);
 // Sort the specified `[b, e)` range of points in ascending order
 // based solely on their first coordinate, `x`.

Although not stated explicitly, we can deduce that no essential behavior is
associated with passing in a null pointer for either b or e, so, as implementers,
we are free to assign whatever implementation defined meaning we like:

void sortOnX(Point *b, Point *e) {
 if (!b || !e) throw "logic error!";
 sortOnX_imp(b, e);
}

There is nothing undefined about passing a null pointer to the conforming
implementation of the sortOnX function as defined above. If either b or e (or
both) is null, the function will throw in every build mode. Yet, according to its
implied contract, no essential behavior is associated with null inputs. When we
invoke a (nonstandard) library function for which one or more preconditions for
that function are violated, we say that the function has library UB, irrespective
of its implementation.

The compiler cannot yet read English, so it doesn't know when we have
executed library UB. The compiler is, however, often aware when we have done
something that would fail to satisfy the constraints of a language (or possibly
Standard Library) construct at run time, and in those cases it is authorized to
assume that such behavior will never execute and optimize accordingly. We
refer to such classical undefined behavior as language undefined behavior or
language UB.

Let's now take a look at another conforming implementation of SortOnX; this
one prints a debug message when the list isn't empty and the first and last
Point elements have unequal x values:

6 Because the C++ language is closely collaborative with its Standard Library, certain functions
in that library, such as std::memmove, are known to the language, and, thus, calling one of
those out of contract might be considered tantamount to invoking a primitive language
construct out of contract. Given a need, however, we could easily address those few special
cases in the language to allow the distinction between library- and language-induced undefined
behavior to apply equally to the C++ Standard Library as well.

Page 16 of 74

void sortOnX(Point *b, Point *e) {
 if (b != e && b->x == (e-1)->x) std::cout << "sortOnX: unequal x values\n";
 sortOnX_imp(b, e);
}

In this implementation, supplying a null pointer for ether b or e (but not both)
will require both b and e to be used in such a way that violates the
requirement that null pointer values must not be dereferenced. Hence,
invoking this implementation as in SortOnX(0, a+3) will cause the null value
of b to be dereferenced, typically halting the program. In this scenario, we say
that invoking library UB has led to language UB, whereas, in the previous
example, no such language UB would have occurred.

To elucidate the important difference between these two implementations, let's
create a small test program:

static Point a[] = { { 9, 1 }, { 9, 2 }, { 8, 3 } };

int main() {
 try {
 sortOnX(a, a + 3);
 std::cout << "First try worked!" << std::endl;
 sortOnX(0, a + 3);
 std::cout << "Second try worked!" << std::endl;
 }
 catch (const char *s) {
 std::cout << s << std::endl;
 }
}

If we plug in the first implementation above, the program would complete
normally:

First try worked!
logic error!

In the example above, the first call worked normally, and the second call,
which was absolutely library UB, terminated with a deliberately thrown
exception. Even though library UB occurred, it didn't lead to any language UB.
In other words, as far as the C++ language is concerned, this is a well-formed
program and, when run, executes no (classical) undefined behavior.

Now, if we were to link with the second implementation and rerun the program,
again we would almost certainly get a much different result:

First try worked!
Segmentation fault (core dumped)

This time, the first call to the function was fine, but the second call banged into
language UB, and the program crashed.

Page 17 of 74

The important takeaway from linking with these two different implementations
of the same SortOnX and contract is that, regardless of which implementation
we link to, the program called the SortOnX function out of contract and thus
invoked library UB. In the first case, that library UB did not lead to any classic
(language) UB, so the program was well behaved. When linking to the second
implementation, however, the library UB caused a null-pointer to be
dereferenced, which resulted in language UB. Unlike library UB, once language
UB occurs, recovery is not guaranteed since the program itself is in an
unknown state.7

Sometimes, whether library UB leads to language UB depends on the build
mode. For example, let's look at another implementation:

void sortOnX(Point *b, Point *e) {
#ifndef NDEBUG
 if (!b || !e) throw "logic error!";
#endif
 sortOnX_imp(b, e);
}

If the implementation above is built normally, it will detect an out-of-contract
call if either argument is null and will reliably throw "logic error!" If,
however, the same implementation were built with the -DNDEBUG switch, the
result of passing a null pointer as either argument would be left to the
implementation of sorOnX_imp(b, e). Although not explicitly stated, it would
also be library UB and, almost certainly for any implementation, language UB
to pass in two addresses where e was not reachable from b:

static Point a[] = { { 9, 1 }, { 9, 2 }, { 8, 3 } }; // one block of memory
static Point b[] = { { 9, 1 }, { 9, 2 }, { 8, 3 } }; // a separate block

int main() { sortOnX(a, b + 3); return 0; } // almost certainly language UB

The program above will call sortOnX such that e is not after b in the same
block of memory, which is (implicitly) library UB for this function. Many other
implicit forms of library UB can also occur, such passing in improperly
constructed (e.g., unaligned) arguments.

3.5 Narrow versus Wide Contracts
In the course of discussing contracts over the past two decades, a natural,
inherent, and very important dichotomy has become clear: contracts that have

7 Note that if the compiler can determine that a particular path within a program will
necessarily lead to language UB, the optimizer is entirely within its rights to delete every
instruction along that path back to the first branch where the flow of control might have
chosen that direction and assume that the input will not go in that direction. Hence, any input
that would have taken that path will likely not behave as the program author intended. This
form of optimization, known as time travel, is one of the more insidious forms of bugs
encountered in C++ programming.

Page 18 of 74

preconditions and those that do not. Roughly a decade ago, I coined the terms
narrow and wide, respectively, to characterize such contracts.8

A narrow contract has preconditions; a wide contract has none. A narrow
contract admits library UB; a wide contract doesn't. Hence, the only way one
can cause language UB as a result of calling a function having a wide contract
is to call it outside the bounds of the language, such as passing in improperly
formed objects (or, of course, if language UB has already occurred somewhere
else in the program).

An observation that will become important shortly is that, for a function to
have a narrow contract, there must be at least one combination of input and
state values for which the behavior is undefined, such that invoking that
function on those values would lead to library UB. Any contractual requirement
or constraint placed on the behavior of the function when called with that
input/state combination would mean that, by definition, that behavior is no
longer undefined behavior.

Consider a strange function, pos, that returns its argument if positive:

int pos(int x);
 // Return `x` if positive.

Does this function have a narrow or wide contract? Again, we have to put on
our language-lawyer hat and ask ourselves two questions: What are the
expressed or implied preconditions, and what is the explicit essential behavior?

First, no explicit preconditions are stated. In fact, the only precondition is that
the argument passed must not have indeterminate value:

int main() {
 int x;
 return pos(x); // will result in library (and certain language) UB
}

The signature of the function tells us that it returns some value. The essential
behavior is explicitly that if x is positive, the value of x is returned. The client
can expect the function will always return, but it cannot expect anything about
the value for values of x less than 1. Hence, the contract as stated is wide.

Had we instead explicitly stated the precondition that x be positive, then even
the requirement to return is lifted for nonpositive values of x:

8 Much more recently (i.e., May 9, 2023), we discovered, during the design of C++26 Contracts,
the convenience of using the term wide to characterize a conforming implementation that
would naturally accommodate a wide contract, even though the contract might have been
explicitly defined as narrow.

Page 19 of 74

int pos(int x);
 // Return `x` if positive; otherwise, the behavior is undefined.

The contract for pos, as amended, is now narrow, because now no
requirements whatsoever are made regarding the behavior of pos for values of
x less than 1.

3.6 noexcept and Contracts

Until now, everything we have discussed applies generally from C++98 through
C++23 and beyond. As of C++11, however the noexcept specifier was invented
to indicate programmatically to the compiler and to the human reader that a
function so decorated will not allow an exception to escape from that function.
If, at run time, an exception attempts to escape from such a nonthrowing
exception specification barrier, it will be caught by the C++ runtime and
std::terminate() will be invoked unconditionally.

As a pedagogical experiment, let's revisit our average function from Section
3.1:

int average(int x, int y);
 // Return the closest integer, `z`, to the mean of `x` and `y`; if `z` is
 // not unique, return the larger one.

First, we observe that this (pure) function has no stated or implicit
preconditions; hence, it has a wide contract. Second, we see that its essential
behavior requires it always to return normally; hence, it doesn't, for example,
abort, terminate, long jump, throw, block, or spin indefinitely.

Suppose we were to add a clause to the contract such as “does not throw” or,
as is commonly done in the C++ Standard today, “throws nothing.” Apart
from restating the obvious, this clause would not in any way change the clear
and incontrovertible meaning of the contract.

Now suppose we were to add noexcept to the declaration of an otherwise
identical function, averageNE, and leave the contract unchanged:

int averageNE(int x, int y) noexcept; // nonthrowing exception specification
 // Return the closest integer, `z`, to the mean of `x` and `y`; if `z` is
 // not unique, return the larger one.

The contract for averageNE is the same as for average, but now the compiler
knows that this new function is not allowed to throw and hence will not lay
down code to guard against an uncaught exception escaping from the function
at run time:

void g1() { } // may throw but doesn't
void g2() noexcept { throw "up"; } // may not throw but tries to anyway
 // If `g2()` is called, program terminates.
template <typename F>

Page 20 of 74

constexpr isNoexcept(F f)
// Return true if `f` may throw; return false otherwise.
{
 return noexcept(f()); // `noexcept` operator applied to invocations
}

static_assert(false == isNoexcept(g1)); // `g1` has throwing specification.
static_assert(true == isNoexcept(g2)); // `g2` has nonthrowing specification.

As the code snippet above illustrates, the noexcept operator is oblivious to the
function's implementation; it reports back only what the declaration promises.

In short, adding noexcept to a function whose wide contract already implies
that its essential behavior requires it to return normally has no effect on its
binding contract but may have other unintended collateral effects (see below).

As a second example of the effects of applying noexcept to a function having a
wide contract, let’s consider a widely used, application-specific sort routine,
businessSort, that is used widely throughout our company:

void businessSort(Record *b, Record *e);
 // Sort the specified `[b, e)` range of `Record` objects in
 // ascending order of primary fields.
 // The runtime complexity is O(N *log N).

As of now, this function does not need to acquire any additional resource to
perform its task and is therefore duty bound by its essential behavior to return
without fail; i.e., it proports to be a nofail function.9 Hence, we would be
surprised if this function were to throw an exception. Still, the contract doesn’t
explicitly say that it doesn’t, and if were someday to need to allocate a
temporary resource (e.g., dynamic memory) and that resource were not
available, throwing an exception might be the most natural and automatic way
of handling such a highly unlikely failure.10

If, for whatever reason, stating unequivocally that a function does not now and
never will throw — at least not for the current set of preconditions — is deemed
critically important, then adding that promise to the essential behavior — e.g.,
either “does not throw”or “throws: nothing” — is all that is needed. Now we
have flexibility; if this function were to throw given the current set of valid
inputs, it would be grossly nonconforming:

void businessSort(Record *b, Record *e);
 // Sort the specified `[b, e)` range of `Record` objects in

9 [Lakos22a], Section 3.1“noexcept Specifier,” “Potential Pitfalls,” “noexcept versus nofail,” pp.
1122–1123
10 Another alternative might be to return status; however, all existing uses of the function
would fail to check the status, and all future uses would be burdened with having to check it
even though the likelihood of system-wide memory exhaustion might be vanishingly small.

Page 21 of 74

 // ascending order of primary fields.
 // The runtime complexity is O(N *log N). Throws: nothing.

When a function has a wide contract, it has no preconditions. Thus, when we
say “ does not throw (in contract),” we mean that the function doesn’t
throw at all. Another way to communicate that same contractual obligation for
a function that already has a wide contract is to decorate the function with the
noexcept specifier:

void businessSort(Record *b, Record *e) noexcept; // `noexcept` here implies
 // “Throws: nothing.”
 // Sort the specified `[b, e)` range of `Record` objects in
 // ascending order of primary fields.
 // The runtime complexity is O(N *log N).

At this point, we are about to make a bold statement that might seem a bit
shocking to some but, as will be proven handily in subsequent sections using
Liskov Substitutability, is manifestly true. To remove emotion from this
demonstration, let’s change gears and talk about another aspect of C++,
namely functions that don’t return.

For example, consider a function, handler, that prints its positive argument
and then terminates the program().

void handler (int x) // Version A1.0
 // Print the value of `x` to standard out and then call `std::terminate()`.
 // The behavior is undefined unless `1 <= x`.

This function clearly has a narrow contract whose domain is defined to be
positive values of x. If we call this function with, say, the value 5, we know that
it will print 5 and terminate. If we were to later replace this function with
another one that, say, threw std::logic_error on an input of zero, that
would be a backward compatible change because any programs written to the
old standard will continue to work:

void handler (int x) // Version A2.0
 // If `x` is positive, print the value of `x` to standard out and then call
 // `std::terminate()`; otherwise just throw `std::logic_error`. The behavior
 // is undefined unless `0 <= x`.

Notice that all programs written to Version A1.0 continue to work because the
contract is narrow, and no requirements are placed on the behavior of calling
this function with values less than 1. Now suppose we want to extend this
function’s contract again (in a backward compatible way, of course) such that it
is now even wider:

void handler (int x) // Version A3.0
 // If `x` is positive, print the value of `x` to standard out and then call
 // `std::terminate()`; otherwise , if `x` is 0, just throw `std::logic_error`;
 // something will print (not saying what) and then return.

Page 22 of 74

Now we have a wide contract because we know that the function must
terminate on positive x, throw when x is zero, and return when x is negative.
There is no combination of input and state values for which there are no
requirements on handler, so version A3.0 of handler now has a (backward-
compatible) wide contract.

Now suppose that on our original version we, instead of writing out that it
didn’t return, had decided to document it another way, namely in code using
the [[noreturn]] attribute.

[[noreturn]] void handler (int x) // Version B1.0
 // Print the value of `x` to standard out and then call `std::terminate()`.
 // The behavior is undefined unless `1 <= x`.

According to the documentation, this function appears to have a narrow
contract. But that’s simply not the case. There is an irrevocable and permanent
requirement on every combination state and input for this function — and all
future versions of this function — that it doesn’t throw. It’s as if we had said in
the verbal contract

[[noreturn]] void handler (int x) // Version B1.0
 // If `x` is positive, print the value of `x` to standard out and then call
 // `std::terminate()`; otherwise, (maybe do something) and then return.

Any future backward-compatible version of this function be unable to violate
this basic contract. Consider that Version A2.0 is a viable next version of this
contract, but Version A3.0 is not. Version A3.0 is not a backward-compatible
version because the original B1.0 version of the contract was wide and had a
behavior requirement for negative values that contradicted what we wanted to
do in A3.0. Hence, just by adding the [[noreturn]] attribute to the
declaration of the handler function, we turned its narrow contract into a wide
one that blocks us from creating the otherwise backward-compatible
enhancement we wanted.

Let’s now consider a function, such as sqrt, that has a narrow contact that
explicitly guarantees not to throw in contact:

double sqrt(double x);
 // Return a result, `y`, such that `y` is non-negative and that minimizes
 // the value of `|y * y - x|`. Does not throw (in contract). The behavior is
 // undefined unless `0 <= x`.

Again, unlike a wide contract, the domain of a narrow contract does not
contain all syntactically valid input/state combinations. Invoking such a
function out of contract, according to the Standard today, results in undefined
behavior. Recall that undefined behavior is defined in the Standard to mean
behavior that has no requirements.

Page 23 of 74

Just by decorating the sqrt function above with the noexcept specifier, we put
an absolute requirement on every input/state combination. The implications
for the new contract are significant:

double sqrt(double x) noexcept;
 // If `x` is nonnegative, return a result, `y`, such that `y` is non-negative
 // and that minimizes the value of `|y * y - x|`; otherwise can do anything
 // that is not undefined behavior except throw. The exception specification
 // of this function is non-throwing as observed by the `noexcept` operator.

Not only can we no longer safely widen the contract to throw on a negative
value, we cannot remove the noexcept operator as that too would be a non-
backward-compatible change to the explicitly codified contract.

In short, by virtue of adding the noexcept specifier to a function having an
otherwise narrow contract, we have placed an essential-behavior requirement
on every possible syntactically valid state/input combination. There simply
cannot be a function having both a narrow contract and a nonthrowing
exception specification. Hence, narrow contracts and noexcept are
inconsistent as well as being inherently incompatible practically.

4 THE NEED FOR NARROW CONTRACTS
Recall that a narrow contract is one that has preconditions, and thus at least
one combination of input and state values exist for which absolutely no
requirements are placed on the function’s behavior — essential or otherwise.
When a function is called out of contract, its behavior is entirely undefined.
Wide contracts can be preferred for many reasons, such as end-user interfaces.
In this section, we will explore some of the fundamental benefits of narrow
contracts and why they are so incredibly important to the sound design of low-
level C++ library software.

4.1 Cost-Effective Design, Development, Testing, and Performance
Narrow contracts are a mainstay of effective software design, and especially so
in languages, such as C and C++, where code size (particularly on the hot path)
and runtime performance are often at a premium. Compared to wide contracts,
narrow contracts offer many practical advantages. To get us started, let’s
consider an implementation of a factorial function, fact, that takes an integer
and returns an integer:

double fact(int n);
 // Return result of 1.0 multiplied, in turn, by each integer in the
 // closed range [1..n].

The contract above is wide because the defined behavior applies to all
syntactically valid integers, namely that for all n less than 2, fact(n) is exactly
1. It almost seems as though someone looked at its implementation and then
documented it:

Page 24 of 74

double fact(int n)
{
 double r = 1.0;
 while (n > 1) r *= n--;
}

Given this wide contract, it's hard to imagine any implementation that
performs better. Generally speaking, however, a narrow contract will often be
faster than a wide one because a narrow contract doesn't need to check the
internal boundaries of the algorithm. For example, consider a function,
mySqrt, that is given a wide contract:

double mySqrt(double value);
 // Return the positive square root of the specified `value` if
 // `0 <= value`, and 0.0 otherwise.

The implementation of such a function is easy to imagine:

double mySqrt(double value)
{
 return 0 <= value ? std::sqrt(value) : 0;
}

Now consider what would happen if we instead made the contract for mySqrt
narrow:

double mySqrt(double value);
 // Return the positive square root of the specified `value`. The behavior
 // is undefined unless `0 <= value`.

With this contract, the previous implementation still works just fine, but now
we have another, presumably faster (but no slower) implementation:

double mySqrt(double value)
{
 return std::sqrt(value);
}

By making the contract narrow, we have transferred the checking requirement
to the client who may or may not already know that the value is appropriate for
the call. If the client doesn't know, we've lost nothing, but if the client does
know, we just eliminated a branch.

Performance is only the first of many reasons why narrow contracts are
practically useful. Software developers in industry are often responding to a
business need. Sometimes that need isn't immediately fully baked, and we
need to solve the part that we understand as quickly as possible without
precluding future (backward-compatible) enhancements (as discussed at length
in subsequent sections). Imagine we are to write a gaming function that takes a
pair of integer coordinates, x, y, and does something with them. Our
management hasn't decided what happens if either is negative, but they’re

Page 25 of 74

working on it. Meanwhile we need to quickly complete the part they've
specified:

double doSomething(int x, int y)
 // Something shall be done!
 // The behavior is undefined unless `0 <= x` and `0 <= y`

To get the work started while also preserving our options, we have decided to
implement the part we understand today and to keep open the option of
widening our domain if and when we figure out what we need to do.

Let's take a quick look back at our contract for our factorial function, fact:

double fact(int n);
 // Return result of 1.0 multiplied, in turn, by each integer in the
 // closed range [1..n].

Because we defined it to be wide, we have no ability to do more. Had we instead
made it narrow, i.e., defined only for integer values greater than or equal to
zero, we would then be able to extend the domain to include nonintegral
positive and negative values (as defined by the gamma function) without
impacting any existing clients:

double fact(double n);
 // Return the gamma function applied to `n`. The behavior is undefined
 // unless `0 <= n` or `n` is not integral.

From a cost/benefit perspective, narrow contracts are superior. Even if we
know what to do, if no one needs it, why implement it. If we implement it, it
has to be

• designed
• documented
• coded
• tested
• maintained

As a rule, less code (on the hot path) runs faster, is cheaper to implement and
maintain, and keeps our options open for future backward-compatible
enhancements. Except for interfacing with (unsophisticated) end users, when it
comes to narrow contracts, what's not to like?

4.2 Design by Contract (DbC) and the Liskov Substitution Principle
(LSP)

When it comes to designing contracts, both in general and those related by
subtyping via inheritance and virtual functions, the classic advice comes from

Page 26 of 74

Bertrand Meyer11 in what he calls Design by Contract.12 In this paradigm, every
function is expressed in terms of preconditions and postconditions, such that
the valid domain (preconditions) of every base-class function, B::f, is expected
to be a subset of any corresponding derived-class function, D::f, and vice
versa for the range (postconditions):

(D1) (D2) (D3) int D1::f(int i) override; // pre: 0 < i post: 0 < i
 \ | / int D2::f(int i) override; // pre: 0 <= i post; 0 >= i
 v V v int D3::f(int i) override; // pre true post: 0
 (B) virtual int B::f(int i); // pre: 0 < i post: true

As the example above illustrates, the base class, B, has a virtual function,
B::f, which has a narrow contract that accepts any positive value of its
argument, i, and may return any integer value. The derived class, D1, overrides
B::f with a function, D1::f, that also has a narrow contract that accepts any
positive integer, but this function promises to return only positive values of i.
D2 also overrides B::f but with a function, D2::f, that accepts any non-
negative integer and promises to return only nonpositive ones. Finally, D3 too
overrides B::f but with a function, D3::f, having a wide contract that always
returns 0.

Importantly, this design methodology is focused entirely on telescoping subsets
of preconditions and postconditions for virtual functions in inheritance
hierarchies whose raison d’être is to allow for variation in behavior.13 For
example, the classic object-oriented (OO) system that draws a shape depending
on its runtime type clearly executes different behavior depending on its derived
type, even if all of the domains and ranges of the hierarchy conform to DbC:

(Rectangle) (Circle) (Polygon) void Rectangle::draw() const override;
 \ | / void Circle::draw() const override;
 v V v void Polygon::draw() const override;
 (Shape) virtual void Shape::draw() const override;

Something that is specifically not addressed by DbC is the rarely assumed
requirement that the behavior of the derived class function behave as if the
base-class function had been called for all valid inputs of the base class. For
example, let's consider a base-class Bool that has a single function, g that
takes a bool, b, and returns that bool:

bool Bool::g(bool b) { return b; }

11 Fun Fact: My first course in object-oriented design (c. 1988) was with Bertrand Meyer. I
specifically recall asking him how one would write an object-oriented program that modeled
comparing apples and oranges in pre-Standard C++. I never got a straight answer, but I figured
it out on my own (well before there were dynamic casts) using local static variable addresses as
type ids.
12 Meyer applied to trademark “Design by Contract (DbC)” in 2003; the trademark was granted
in 2004.
13 [Cargill92]

Page 27 of 74

Now, according to DbC, exactly three other pure functions that can be derived
from Bool:

(True) (False) (Fool) void True::g(bool b) const override { return true; }
 \ | / void False::g(bool b) const override { return false; }
 v V v void Fool::g(bool b) const override { return !b; }
 (Bool)virtual void Shape::g(bool b) const { return b; }

Each of the functions above satisfies the classic DbC requirements that the
preconditions of g for the derived classes are no narrower than they are for the
base-class g and the postconditions for the derived g member functions are no
wider than they are for the base g:

 True::g False::g Fool::g _______RESULT________
 pre: [0 1] Pre: [0 1] pre: [0 1] Member <- INPUT ->
 Post: [_ 1] Post: [0 _] post: [0 1] Function true false
 \ | / -------- ----- -----
 v v v True::g true true
 pre: [0 1] False::g false false
 post: [0 1] Fool::g false true
 Bool::g Bool::g true false

That defines a kind of substitution principle that allows for variation in
behavior, which is exactly what virtual functions were designed to do. Note it
does not imply that if you pass a derived class into a function that takes a
pointer or reference to the base class, you will necessarily get the same
behavior as you would have had you passed in the base class (or any other
derived class for that matter):

void h() {
 assert(true == f(Bool(), true)); assert(false == f(Bool(), false));
 assert(true == f(True(), true)); assert(true == f(True(), false));
 assert(false == f(False(), true)); assert(false == f(False(), false));
 assert(false == f(Fool(), true)); assert(true == f(Fool(), false));
}

Although this much stronger substitution property is not relevant when dealing
with interface and implementation inheritance (each of which involves virtual
functions), it does pertain to sound structural inheritance; i.e., inheritance in
which nonvirtual functions hide other nonvirtual functions in some direct or
indirect base class, something many popular books advise against.

Hiding functions (as opposed to overriding them) is generally ill advised
because it makes the behavior of the function dependent on the static type
from which it is called. Imagine, in the example above, that we had instead
chosen to make the g function nonvirtual. Had we done that, we would have
introduced the typically undesirable property known as slicing, in which
passing an object by reference implicitly reverts all of its nonvirtual functions
to their base-class contracts:

void h2() {
 assert(true == f(Bool(), true)); assert(false == f(Bool(), false));

Page 28 of 74

 assert(true == f(True(), true)); assert(true != f(True(), false));
 assert(false != f(False(), true)); assert(false == f(False(), false));
 assert(false != f(Fool(), true)); assert(true != f(Fool(), false));
}

The asserts in h2()above communicate the slicing behavior that would occur if
g were not declared virtual in Bool. But consider a property that, if a derived
class is sliced down to its base class, behaves as if it were the base class for all
programs written in terms of that base class. This strong notion of supertype
and subtype is the heart of the Liskov Substitution Principle (LSP). Contrary to
popular belief, LSP has absolutely nothing to do with any notion of sound
design involving virtual functions.14

4.3 Structural Inheritance and Safe Substitutability
At the highest level, the seminal property that LSP identifies with respect to
types is that a Liskov Substitutive subtype S of a supertype T can be used in
any programming context where T can be used. That is, if we were to replace
every object of type T with an object of type S, the observable behavior of the
program would be unchanged. Put another way, an S behaves like and is as
good as a T for every situation in which a T can be used and presumably for a
few other programming contexts as well.15

As an example of structural inheritance conforming to LSP, consider the const
member function operator[]on the standard container, std::vector:

template <class T>
const T& vector::operator[](std::size_t index) const
 Return the element at the specified index. The behavior is undefined
 unless `index < size()`. Throws nothing.

The essential behavior is explicit in that this function doesn't throw — that is,
not when invoked in contract. Calling this function with an index that is beyond
the end of the sequence, however, would be (at least) library undefined
behavior, and throwing would, of course, not be precluded.

14 Fun Fact: Robert C. Martin, “Uncle Bob,” and I were having dinner one night after he spoke
at Bloomberg, and we were discussing what people meant by the LSP. Not too long after, I
invited Dr. Barbara Liskov to speak at Bloomberg about her abstraction work, after which I
took her out for dinner. I asked her if her substitution principle had anything to do with virtual
functions. Her answer was, "No." After that, I asked her if she would mind signing, for my
daughter Sarah (a CS major), one of the programs I had made for her OOPSL keynote talk. She
agreed. Then I asked her to sign one for me, and she graciously did. Finally, I asked her to sign
one more to Uncle Bob. She asked, "What should it say?" I replied, "Dear Uncle Bob, John was
right." I then sent the signed program to Mr. Martin along with the clip from Annie Hall where
the know-it-all Columbia adjunct professor (I was one from 1991–1997) is standing on a movie
line pontificating to Annie about what Marshall McLuhan's writing means, so Woody Allen,
disgusted, steps off screen and brings Mr. McLuhan back live to speak for himself! (See
https://www.youtube.com/watch?v=9wWUc8BZgWE.) Upon receipt, dear Uncle Bob, in his
typical regal eloquence, quipped, "I've been poned [powerfully owned]."
15 [Liskov87]

Page 29 of 74

Out-of-bounds errors are among the most notorious and frequent defects,
especially for student programmers. While at Texas A&M, one of Professor
Stroustrup's exercises for students was to implement what he calls a
CheckedVector. A CheckedVector is everything that a std::vector is except
the bracket operator has a wide contract. A straightforward way to implement
the CheckedVector uses structural inheritance and, in C++11 or later,
inheriting constructors (otherwise we would need to forward them by hand)16:

template<class T>
struct CheckedVector : std::vector<T>
{
 using std::vector<T>::vector; // inheriting constructors
 T& operator[](std::size_t index) {
 if (index >= this->size()) throw std::range_error("bad index");
 return std::vector<T>::operator[](index);
 }
 const T& operator[](std::size_t index) const {
 if (index >= this->size()) throw std::range_error("bad index");
 return std::vector<T>::operator[](index);
 }

Now if the student happens to access a CheckedVector out of contract, it will
throw, yet an object of this type can be used in every context in which an
std::vector can be used:

double average(const std::vector<int>& sequence);
 // Return the average of the elements in the specified `sequence`.
 // The behavior is undefined if `sequence` is empty.

int main() try {
 std::Vector<int> vec {1, 2, 3, 4, 5};
 CheckedVector<int> cvec {1, 2, 3, 4, 5};

 double d = averate(cvec);
 double cd = average(cvec); assert(cd == d);

 int i = vec[2]
 int ci = vec[2] assert(ci == i);

 int j = vec[5]; // undefined behavior
 int cj = vec[5]; // well defined: throws `std::range_error`

} catch (const std::exception& e) { std::cout << "Oops! " << e.what(); }

We say that the CheckedVector is Liskov Substitutable for std::vector
because, in every defined use of std::vector, replacing an std::vector<T>
object with an object of type CheckedVector<T> will have precisely the same
observable behavior. In other, new situations, however, calling the bracket
operator will become defined behavior, throwing an std::range_error

16 To minimize clutter, we are eliding the optional allocator parameter.

Page 30 of 74

exception, rather than the entirely unspecified undefined behavior for
std::vector.

Note that std::vector follows the Lakos Rule in that it doesn't have both a
narrow contract and a nonthrowing exception specification. Before moving on to
even more compelling reasons why the Lakos Rule is important for the C++
Standard Library, let's consider what the consequences to CheckedVector
would be with regard to Liskov Substitutability if, say, in C++26 we were to
break the Lakos Rule and put noexcept on the two
std::vector::operator[] overloads.

Academically, it would mean that a CheckedVector would no longer Liskov
Substitutable for an std::vector. Placing noexcept on the declaration places
an explicit requirement on the essential behavior for every input/state
combination, namely that this function shall not throw. The contract is thus
wide, and to be Liskov Substitutable the one thing that a checked vector must
not do is throw. In fact, even applying the weaker requirement of DbC,
CheckedVector fails the test because the range of behaviors for std::vector's
bracket operator is now narrower than the range for that of CheckedVector.

As a matter of coding, it's trivial to exhibit situations in which an expression
involving a CheckedVector would yield radically different code paths from one
that involved an std::vector were it to violate the Lakos Rule and have a
noexcept bracket operator:

template <class C>
void poke(C& container, std::size_t index)
 // Poke the element at the specified `index` of the specified `container`.
 // The behavior is undefined if index is not in range.
{
 if constexpr (noexcept(container[0])) { // fast algorithm
 // ... Do something quick and dirty.
 }
 else { // slow algorithm
 {
 // ... Do something else slow and neat.
 }
}

Regardless of anything else, if the bracket operator of the container passed (as
the first argument) to the generic function poke has a throwing exception
specification, the slow algorithm will be instantiated regardless of anything
else; otherwise, the fast will be instantiated. Given that these algorithms are
entirely separate code paths with potentially entirely different observable
behaviors, placing noexcept on std::vector::operator[]would eliminate an
important design strategy such as this sound, safe, Liskov Substitutable
structural inheritance.

Page 31 of 74

Now the astute reader might ask, why would anyone choose to write a generic
function that branched on the exception specification of the bracket operator of
a container type, knowing full well that it would never throw in contract? The
answer to that question is ideally no one, which is exactly why there is almost
certainly no reason to decorate such an undeserving member function with
noexcept (see "increasingly dubious reasons to use noexcept" below).

4.4 Contract Extension and Backward Compatibility
The examples above with structural inheritance were largely academic and not
necessarily compelling to pragmatic, results-oriented coders who want to
design code that is easy to maintain, support, and extend over time. Perhaps
surprisingly, the notion of Liskov Substitutability applies much more powerfully
to versioning.

Suppose we forget about inheritance completely and instead think of a subtype
S as a subsequent version of the current unit of software T. The substitution
principle we seek here is one that ensures backward compatibility. As it turns
out, what we are looking for is again nothing other than Liskov Substitutability
applied to atomic units of logical and physical design, e.g., .h/.cpp pairs, that
we called components.17,18

Let's now recast LSP to apply more generally, as we're suggesting:

For all current programs P built using component C, if we were to replace the
source code of C with a newer version, D, and rebuild each P, there would be
no observable difference in behavior in any P.

The principle is as powerful as it is simple and is the goal of every group
maintaining, extending, and deploying library software.

As a first example, suppose we have some end-user API consisting of two free
functions, globalLookup and globalSize, that provide access to a global
store of values that can never be negative:

int globalSize(); // Version A1.0
 // Return the number values in the global store.

double globalLookup(int i); // version 1.0
 // Return the value at index position `i`. The behavior is undefined;
 // `0 <= i < globalSize()`.

17 [Lakos20], Section 0.7, “Physically Uniform Software: The Component,” pp. 46–57
18 This real-world, practical notion of substitutability — in addition to all logical behavior —
may comprise many other dimensions of backward compatibility, such as run time, compile
time, executable size, physical dependencies, testability, code quality, licensing, maintenance
costs, and so on.

Page 32 of 74

After the initial release, we determine that clients want to access the one-past-
the-value, and when that happens, they would like the lookup function to
return a negative value (as a flag).

Notice that the initial range of our globalLookup function, i.e., its
postcondition, was to return a non-negative value. But now that we have
widened the domain, the new inputs can do anything without affecting any
previous clients:

int globalSize(); // Version A2.0
 // Return the number values in the global store.

double globalLookup(int i);
 // Return the value at index position `i` unless `i == `globalSize()`,
 // in which case, return `-1.0`. The behavior is undefined unless
 // `0 <= i < globalSize() + 1`.

Over time, out-of-contract calls by clients force another change, this time to a
wide contract in which inputs that are either negative or greater than one past
the end of the store cause an std::range_error to be thrown:

int globalSize(); // Version A3.0
 // Return the number values in the global store.

double globalLookup(int i); // version 2.0
 // If `0 <= i < globalSize()`, return the value at index position `i`;
 // otherwise, if i == globalSize()`, return `-1.0`; otherwise, throw
 // `std::range_error`.

Notice that this sub-subcomponent has a wider range then either of its
predecessors, which is of no consequence because the new range values map
onto what was undefined behavior in the previous version. Because each
version is Liskov Substitutable for the previous one, a new version satisfies a
wider audience without disenfranchising any of its current clients.

Consider now what would have happened had the author of the original version
of the API decided why not just decorate both with noexcept, since neither of
these functions can throw in contract:

int globalSize() noexcept; // Version B1.0
 // Return the number values in the global store.

double globalLookup(int i) noexcept; // version 1.0 (BAD IDEA)
 // Return the value at index position `i`. The behavior is undefined;
 // `0 <= i < globalSze()`.

Because the first function has a wide contract, adding noexcept doesn't violate
the Lakos Rule. On the other hand, adding noexcept to the second one, which
is narrow, does violate the Lakos Rule. Now, as a consequence, the second
version is still in scope but not the third. Hence, violating the Lakos Rule
frequently interferes with making desirable backward-compatible
enhancements, especially those that might not be immediately foreseeable.

Page 33 of 74

Low-level functions are much easier to specify precisely. In practice, however,
the further we go up into applications, the less sable and more malleable19
contracts become. Just because something doesn’t throw in contract today
doesn’t mean that it never will.

Let’s imagine that we have a legacy application-level domain-specific sort
function, businessSort, that is used widely throughout our organization. The
algorithm is tuned to the current business needs, which means that the record
keys on which it sorts are subject to modification and thus not explicitly
specified in the contract:

struct Brec { /* ... */ }; // malleable business record // Version A1.0

void businessSort(std::vector<Brec>& records)
 // Sort the elements in the specified `records` sequence in ascending
 // order according to the currently established primary fields in time
 // proportional to N*log N where N = `records.size()`.

Although not explicitly stated, the contract makes clear that there is no reason
to throw because there is no need to allocate any additional resources to
achieve the stated essential behavior. Because this is a business application,
there are already many cases in which allocating memory could conceivable
throw (e.g., due to memory fragmentation if not exhaustion). Thus, the
application has established a safe-shutdown mechanism to address
std::bad_alloc exceptions thrown from the global allocator.

Imagine now that customers don't like that their nonprimary fields are getting
reordered when they invoke this sort, so management has decreed that the sort
shall be stable. Recall that a stable sort can be executed in O[N*log N] time,
provided that sufficient additional memory is available, otherwise, the best
known in-place algorithm will take (worst case) O[N*log^2 N] time. We have
hard limits on our response time, and if that is exceeded, the request will fail
and the customer will be even more unhappy.

Given the constraints, a decision is made that we will try to allocate the
memory and hope it proceeds, knowing that, specifically, an std::bad_alloc
might have to be handled along with other such exceptions at a higher level:

struct Brec { /* ... */ }; // malleable business record // Version A2.0

void businessSort(std::vector<Brec>& records);
 // Sort the elements in the specified `records` sequence in ascending
 // order according to the currently established primary fields, keeping
 // the relative order of all equivalent records stable in time
 // proportional to N*log N where N = `records.size()`.

19 [Lakos20], Section 0.5, “Malleable vs. Stable Software,” pp. 29–43

Page 34 of 74

Notice that this function is technically not Liskov Substitutable for the other
one. That said, the specific condition in which it is not is (1) exceptionally rare,
(2) easy to understand, and (3) fits right into the already-established
infrastructure to handle such exceptional conditions — specifically failure to
allocate dynamic memory.

Now suppose instead we had decided on our first version that, because our
businessSort function had no need to allocate today, we would go ahead and
promise that it would never throw in any future version:

struct Brec { /* ... */ }; // malleable business record // Version B1.0

void businessSort(std::vector<Brec>& records) noexcept;
 // Sort the elements in the specified `records` sequence in ascending
 // order according to the currently established primary fields in time
 // proportional to N*log N where N = `records.size()`. Does not throw.

Because we have explicitly promised that it doesn't throw now or ever, we
might choose to go ahead and decorate the function with noexcept. The affect
is that, anyone who checks this function using the noexcept operator will
learn that they can write generic functions that will take different code path,
knowing that this specific function will not throw. The extending this contract
to the one in version A2.0 is no longer viable while preserving any semblance of
backward compatibility.

In short, one is well advised to consider — unless its already explicit in the
contract — whether one wants to promise that even a wide contract, let alone a
narrow one, that doesn't throw today never will.

4.5 Wide Implementations for Narrow Interfaces
A contract is an agreement between two parties for a minimum level of service,
assuming all preconditions are met. We can think of any additional service as a
free bonus, provided that all essential behavior stated in the contract on the
interface is satisfied (a.k.a. conforming).

As a second gedankenexperiment, let's imagine that the implementation as
written implies a second (English) contract whose preconditions are a superset
(but whose postconditions are not necessarily subset) of the documented
contract in the interface. Let's further model this hypothetical (implementation)
contract as what is planned to become the public contract for the next version
of the software. For an implementation to be conforming, its implied contract
must be Liskov Substitutable for the contract associated with its interface.

For example, suppose we have a Point class that is designed to hold two
signed integer coordinates x and y:

class Point { // Version A1.0
{

Page 35 of 74

 int d_x; // must hold values in range [-16384 .. 16384]
 int d_y; // " " " " " " " "

 public:
 static bool check(int z); // If `z` is out of range throw "Error!".
 Point(int x, int y) : d_x(x), d_y(y) { check(x); check(y); }
 // Create a point object having the respective `x` and `y` coordinates.
 // The behavior is undefined unless the absolute values of x` and
 // `y` are each no larger than 16384.

 int x() const { return d_x; } // Return the current x-coordinate
 int y() const { return d_x; } // Return the current y-coordinate
}

Despite the wide initial implementation, we expect that we will have too many
points in our, e.g., ICCAD, system to waste over half the space, so we plan to
reimplement the data members as short int in the next version:

class Point { // Version A2.0
{
 short d_x; // must hold values in range [-16384 .. 16384]
 short d_y; // " " " " " " " "
 no changes below this line

Had we instead initially left the contract naturally wide, we would not have
been able to supply the new implementation in a Liskov Substitutable way, and
thus many existing clients might be forced to rework their code.20

Let's now consider the classic application of having an implementation whose
implied contract is wide yet conforms to the narrow contract of its published
interface. Rather than create an example, let me instead reprise a page from
legendary C++ researcher, author, and trainer, Scott Meyers’ final book,
Modern Effective C++21:

It’s worth noting that some library interface designers distinguish functions
with wide contracts from those with narrow contracts. A function with a wide
contract has no preconditions. Such a function may be called regardless of
the state of the program, and it imposes no constraints on the arguments
that callers pass it.22 Functions with wide contracts never exhibit undefined
behavior.

20 An example can be found in [Lakos22a], Section 3.1.“final,” “Use Cases,” “Suppressing
derivation to ensure portability,” pp. 1014–1015. Note that, prior to C++11, we might well have
relied on just a narrow contract, rather than implementing some horrible kluge, e.g., involving
virtual inheritance.
21 [Meyers15], Item 14, pp. 95–96
22 “‘Regardless of the state of the program’ and ‘no constraints’ doesn't legitimize programs
whose behavior is already undefined. For example, std::vector::size has a wide contract,
but that doesn't require that it behave reasonably if you invoke it on a random chunk of
memory that you've cast to a std::vector. The result of the cast is undefined, so there are no
behavioral guarantees for the program containing the cast.”

Page 36 of 74

Functions without wide contracts have narrow contracts. For such
functions, if a precondition is violated, results are undefined.

If you’re writing a function with a wide contract and you know it won’t emit
exceptions, following the advice of this Item and declaring it noexcept is
easy. For functions with narrow contracts, the situation is trickier. For
example, suppose you're writing a function f taking a std::string
parameter, and suppose f's natural implementation never yields an
exception. That suggests that f should be declared noexcept. Now suppose
that f has a precondition: the length of its std::string parameter doesn't
exceed 32 characters. If f were to be called with a std::string whose
length is greater than 32, behavior would be undefined, because a
precondition violation by definition results in undefined behavior. f is under
no obligation to check this precondition, because functions may assume that
their preconditions are satisfied. (Callers are responsible for ensuring that
such assumptions are valid.) Even with a precondition, then, declaring f
noexcept seems appropriate:

void f(const std::string& s) noexcept; // precondition:
 // s.length() <= 32

But suppose that f’s implementer chooses to check for precondition
violations. Checking isn’t required, but it’s also not forbidden, and checking
the precondition could be useful, e.g., during system testing. Debugging an
exception that’s been thrown is generally easier than trying to track down
the cause of undefined behavior. But how should a precondition violation be
reported such that a test harness or a client error handler could detect it? A
straightforward approach would be to throw a “precondition was violated”
exception, but if f is declared noexcept, that would be impossible; throwing
an exception would lead to program termination. For this reason, library
designers who distinguish wide from narrow contracts generally reserve
noexcept for functions with wide contracts.

This is particularly relevant to the C++ Standard Library as library
implementers will want the flexibility either to strengthen the noexcept
guarantee where that makes sense or perhaps instead to provide a wide
contract for the implied implementation, possibly including one that doesn’t
throw in the published contract.23

23 Just days before [Lakos22a] was going to print (c. September 2014), Scott Meyers called me
at home late one night to ask what all the hubbub was about regarding putting noexcept on
narrow contracts. I said that doing so was a bad idea. He said that everyone was saying that
it’s not and that the only reason you want to avoid doing it in the Standard is so you can use
throwing an exception to test a contract check in your company’s implementation of the
Standard Library. After mumbling a few words inappropriate to repeat here, I shared with Scott
some insights along the lines of this paper’s previous section. I then bade him not to use the
reason he was about to use, i.e., facilitation of negative testing (see “Facilitating Negative
Testing”). Instead of explaining it the way I suggested, he took another route, which was to

Page 37 of 74

4.6 Checked Builds
Until now, we have deliberately avoided using anything related to the Contracts
MVP, which is currently under development in SG21 and expected in time for
C++26. The point of this paper is to show why the Lakos Rule is important
irrespective of contract-checking build modes. The only significant difference
between a wide implementation and checked build modes is that the overhead
of checking in a wide implementation can be removed in an unchecked build
with absolutely no affect on a correct program.

For concreteness, consider again the (slightly simplified) public contract for the
bracket operator defined for std::vector (ignoring the optional allocator
parameter):

template <class T>
T& vector::operator[](std::size_t index);
 Return the element at the specified index. The behavior is undefined
 unless `index < size()`. Throws nothing.

Let's now look at two conforming implementations for the narrow contract
published for this bracket operator:

#include <cassert> // version A 2.0
template <class T>
T& vector::operator[](std::size_t index) {
 assert(index < d_size); // build-dependent defensive check
 return d_array_p[index];
}

#include <stdexcept> // version A 3.0
T& vector::operator[](std::size_t index) {
#ifndef NDEBUG // build-dependent defensive check
 if (!(index < d_size)) throw std::range_error("[]");
#ifndef NDEBUG
 return d_array_p[index];
}

Observe that, because the Standard currently defines the bracket operator not
to throw (in contract), either of these implementations is conforming. Had the
Standard defined the bracket operator to have a nonthrowing exception
specification just because the operator doesn't throw according to its published
contract, then both of these implementations would be conforming, but the
second one would be tantamount to calling std::terminate() on any
contract violation.

Understand that it is never acceptable for an exception to escape from a
function having a nonthrowing exception specification, especially if such might

explain that following the Lakos Rule enabled the implementer with full flexibility to widen the
contract in the implementation to be as useful to the client as possible.

Page 38 of 74

be allowed to happen in one successful build but not the other.24 Were such a
thing possible, it would mean that same program built, say, with and without
checking enabled could execute radically different code paths having radically
different observable behaviors. As a result, the program might work perfectly in
a checked build and expose a bug only in an unchecked one. For a dispositive
proof of this bold claim, see [P2834R0].

5 THE NEED FOR THROWING CONTRACT-CHECKING VIOLATION
HANDLERS

Until now, the reasons given for wanting to follow the Lakos Rule have focused
on conventional software engineering principles that are independent of any
particular contract-checking facility. Given that SG21 is designing a robust
mechanism to be standardized that will vastly improve on the coarse user
control offered by its ancient ancestor, the C assert macro, the Standards
Committee must offer all flexibility that naturally and usefully fits the new
paradigm. Ignoring or even further postponing such functionality would do a
gross disservice to the greater C++ community.

In particular, both business and engineering requirements exist for throwing a
user-specified exception when a contract-violation is detected at run time. The
current design of the MVP for the Contracts facility in all likelihood will have a
link-time-replicable contract-violation handler function that will be handed the
current state of a violation in the form of an attribute object of type
contract_violation. It will then be up to that function to do as it sees fit.
The remainder of this section argues for why this replicable violation handler
function should have a throwing exception specification — i.e., should not be
specified as noexcept in the Standard.25

5.1 Recovery
Saying that once we have a logic error, the program is defective and we must
terminate immediately is easy. But in the real world, that answer doesn't
always satisfy the business needs of the organization, let alone the customer.
In safety-critical applications, none of this applies. There simply is no such
thing as a fault-tolerant program, only fault-tolerant distributed (sometimes
geographically) systems.26

24 We are thinking about proposing a language contract check that, throwing through a
noexcept would invoke the handler, but there would be no ability for a thrown exception to
pass that boundary.
25 A similar argument can and will be made that this violation-handler function prototype
should also not be declared in the Standard to have the [[noreturn]] attribute: A returning
handler is needed to support the observe (as compared to the enforce) semantic, which has
been demonstrated to be useful in a wide variety of non-safety-critical industries (e.g., gaming
and desktop publishing) and applications (e.g., power-point plugins (see [Schoedl]) and long-
running static-analysis tools, such as Coverity).
26 [Lakos22a], Section 3.1.“noexcept Specifier,” “Potential Pitfalls,” “noexcept versus nofail,”
pp. 1122–1123

Page 39 of 74

At the other end of the spectrum, we have safety-noncritical systems for which
the worst thing that can happen is that the program stops, even if what it is
doing isn't quite right. Imagine that you are playing a video game, and you are
racking up points. Now imagine we have a contract-checking facility that is on
in production, and it detects library undefined behavior. The question that
must be asked is, what is the best course of action (1) for the game supplier
and, in turn, (2) for the end user?

In the case of the game, maybe the score isn't quite right or some figure isn't
rendered properly for a half second. Either way, that's a much better result
than terminating the game. The other question is, what's the worst that could
happen if library UB turned into language UB? For programs that are
connected to the internet, the risk of language UB is qualitatively higher than
those that are not.

In particular, consider an application, such as Coverity, whose purpose is to do
extensive static analysis on programs, during runs that can last hours or days.
About the worst thing that can happen during a Coverity run is for the
program to just stop. Hence, it is designed such that it does its absolute best
not to do so.

Consider this real-world anecdote taken (with permission) directly from the
SG21 reflector of the C++ Standards Committee:

A product I previously worked on has an internal conditional assertion
facility that, by default, aborts, but where every such assertion can be
individually disabled at run-time by setting an environment variable to an
appropriate value keyed to the source location of the assert. Programmers
using these asserts are expected to provide some kind of reasonable fallback
in the event execution continues beyond the failed assert; often this means
abandoning some work in progress. That is unfortunate, but far less
unfortunate than a customer having to report a high priority production
down support case that requires the delivery of a patch to address. The
product is not itself a safety critical application, so this kind of graceful
degradation is reasonable. Of course, in practice, programmers are not
particularly good at ensuring they provide a fallback so employing these
workarounds sometimes results in continued execution running straight into
UB and a crash report. That is unfortunate of course, but the ability to at
least try such workarounds to get a customer unstuck to take the pressure
off rushing a (possibly low quality) fix is incredibly valuable.

— Tom Honermann, May 17, 2023

Between these two extremes are industries and applications for which
deliberately and abruptly halting — a.k.a. failing fast — may or may not be
appropriate. Consider, for example a hedge fund that does algorithmic trading.

Page 40 of 74

Although not safety critical, vast amounts of monetary damage could result if
the programs executing the trades are have defects. A classic example of
catastrophic failure was the notorious $440MM trading glitch reported by
Knight Capital on August 2, 2012.27 In most other non-safety-critical use
cases, however, at least trying to save the current state of the computation —
along with any unsaved user data — before gracefully exiting the process might
be deemed safe enough28:

A contract violation is best handled by a separate system (a different
process, or better yet, a separate processor). However, there isn’t always a
second separate “system” to which we can delegate the handling of the “fatal”
error, so we must somehow proceed. The Linux kernel is one such example. I
have seen critical financial systems that are not allowed to terminate
unconditionally because that might leak objects representing financial
entities. Examples that I have heard of but not personally experienced tend
to come from relatively small critical embedded systems, such as scuba
equipment.

— Bjarne Stroustrup

In his paper, “Unconditional termination is a serious problem,”29 Stroustrup
appeals for something more than the binary alternatives offered by classical
facilities, such as the standard C assert macro, and what had until recently
been proposed as the only two build modes that would be available in the MVP
scheduled for C++2630:

1. No_eval: compiler checks the validity of expressions in contract
annotations, but the annotations have no effect on the generated binary.
Functions appearing in the predicate are odr-used.

2. Eval_and_abort: each contract annotation is checked at runtime. The
check evaluates the corresponding predicate; if the result equals false, the
program is stopped [and] an error return value.

Clearly this minimal functionality does not provide any middle ground for a
program that might choose not to terminate immediately upon a precondition
failure.

The use of exceptions to signal contract violations is established practice in a
variety of popular languages, such as Ada,31 Python, Java, JavaScript, Ruby,
and PHP, just to name a few.32 In particular, Ada provides a solid foundation

27 https://archive.nytimes.com/dealbook.nytimes.com/2012/08/02/knight-capital-says-
trading-mishap-cost-it-440-million/
28 [P2698R0]
29 [P2698R0]
30 [P2521R2]
31 [P2698R0]
32 Andrew Tomazos, C++ Standards Committee member, SG21 reflector, May 13, 2023. See
also [P2853R0], Section 4.3.

Page 41 of 74

for some application that might choose to model recovery from unlikely,
systemic, and uniform errors, such as memory exhaustion or contract
violations33:

Ada SPARK may be the most widely used contract system in critical
applications; it uses exceptions to report run-time contract violations.
Ada2002 has adopted that into the standard in the form or the
Assertion_error exception.

— Bjarne Stroustrup

In short, the use of the C assert macro is entirely inadequate for situations in
which an organization has made the decision that fail fast is not a viable option
for either itself or its clients. Until now, the only alternative was a home-grown
solution, typically implemented in terms of macros. The Contracts MVP,
assuming it is implemented in terms of a link-time user-replaceable global
violation-handler function, provides all the machinery to allow the owner of
main (who presumably also oversees the build modes) to provide the ability to
throw an arbitrary exception when a violation is detected at run time. Further
delaying such needed functionality would unnecessarily restrict what could be
a much more widely used feature.

5.2 Negative Testing
The most obvious, concrete, and easy-to-explain motivation for insisting the
Lakos Rule be followed, especially in the C++ Standard Library, is that it
provides an effective way for implementers of a specification to widen the
implied contracts of their implementations in any way they deem appropriate to
best support user-friendly behavior when a library function is called out of
contract. One such friendly behavior would be to throw an exception, e.g.,
std::logic_error or std::range_error, appropriate to the user misuse of
the library function.

For example, suppose we have a function, sqrt, and we want to provide a wide
implementation that throws std::range_error if the function is called with a
negative number:

#include <cmath> // `std::sqrt` // Version A1.0
#include <stdexcept> // `std::range_error`

double mySqrt(double value)
 // Return the positive square root of the specified value rounded up.
 // The behavior is undefined unless `value` is nonnegative.
{
 if (value < 0) throw std::range_error("Hey, you! I said nonnegative!");
 return std::sqrt(value); // narrow square-root routine in `<cmath>`
}

33 [P2698R0]

Page 42 of 74

The wide implementation unconditionally checks the precondition and, if it is
violated, always throws a specific exception with a specific message.

As with any reliable library software, if the function isn't thoroughly unit
tested, it doesn't exist. The question becomes, what would be the easiest, most
effective way to test that this implementation works the way we intended?

There are some pathologically difficult ways to test wide implementations of
noexcept functions having a narrow public contract that would have made
Rube Goldberg proud, but for this non-noexcept function, by far the easiest,
most straightforward, practical, cost-effective, and thorough way to test the
implementation would be to call the function both in and out of contract and
verify its essential behavior directly:

#include <cassert> // standard C `assert` macro

int main() // Example of a minimal ("breathing") unit test.
{
 // ... // Initially, we invoke `mySqrt` *in* *contract.
 assert(4 == mySqrt(16));
 assert(3 == mySqrt(9));
 assert(2 == mySqrt(4));
 assert(1 == mySqrt(1));
 assert(0 == mySqrt(0)); // Tests below this line are *negative tests*.
 try { mySqrt(-1); assert(0); } catch (std::range_error&) { }
 try { mySqrt(-2); assert(0); } catch (std::range_error&) { }
 // ...
 try { mySqrt(-1e-100); assert(0); } catch (std::range_error&) { }
 try { mySqrt(-1e+100); assert(0); } catch (std::range_error&) { }
 // ...
}

Now suppose that we are using the proposed Contracts MVP anticipated for
C++26. To better serve our clients, we've decided to replace the hard-coded
wide implementation above with a build-dependent one, using the new
Contracts MVP. Note that we can do this because the published contract is

Page 43 of 74

narrow and doesn't say anything about what happens when a client mistakenly
calls the library function out of contract34:

#include <cmath> // `std::sqrt` // version A2.0

double mySqrt(double value)
 // Return the positive square root of the specified value rounded up.
 // The behavior is undefined unless `value` is nonnegative.
{
 [[assert: 0 <= value]] // build-dependent defensive check (might throw)
 return std::sqrt(value); // narrow square-root routine in `<cmath>`
}

The Contracts MVP will ideally allow the application owner — i.e., the owner of
main and typically in charge of the build — to install some form of contract
violation handler:

void std_violation_handler(/*...*/);

void assert_attr(bool b) { if (!b) std_violation_handler(/*...*/); };
 // This function maps to the `[[assert]]` contract-checking annotation.

34 As of this writing, the syntax of the MVP has not yet been decided, but for most discussions,
we have been using the same attribute-like syntax adopted for C++20 contracts, which were
subsequently removed prior to its release. Irrespective of the syntax, there are three distinct
types of contract-checking annotations (CCA): pre, post, and assert. The first two are
intended as decorations on the first declaration of the function.
 double sqrt(double x) [[pre: 0 <= x]] [[post r: 0 <= r]];

The third is intended for use anywhere within in the body of the function and can be used to
insulate clients from having to recompile when the implementation of a precondition or
postcondition changes:
 double sqrt(double x)
 {
 [[assert: 0 <= x]] // insulated precondition
 int r = std::sqrt(x);
 [[assert: 0 <= r]] // insulated postcondition
 return r;
 }

Other uses for the assert variant exist, such as nesting a partial check within an algorithm
(e.g., binary search) so as to avoid having to check the precondition (sorted range) thoroughly
or all at once up front.

For the purpose of this demonstration, we have chosen to use the assert kind of CCA as it
most naturally models what we would have done with a home-grown implementation that
throws, but we could have just as easily written the contract check using the pre kind of CCA:

 double mySqrt(double value)
 [[pre: 0 <= value]] // build-dependent defensive check (might throw)
 // Return the positive square root of the specified value rounded up.
 // The behavior is undefined unless `value` is nonnegative.
 {
 return std::sqrt(value); // narrow square-root routine in `<cmath>`
 }

Page 44 of 74

Now if, in a checked build, the contract-checking annotation (CCA) above —
[[assert: 0 <= value]] — is ever observed to be violated, the user-
supplied (or else default) contract-violation handler will be invoked.

Given this framework, how should we go about thoroughly testing our
implementation? The best way by far is essentially the same as above. The only
difference is that we first need to configure the violation handler so that it, if a
contract violation occurs, calls our implementation of the
std_violation_handler to throw our MyTestException:

#include <cassert> // standard C `assert` macro

struct MyTestException { /*...*/ };

void std_violation_handler(/*...*/) { throw MyTestException(/*...*/); }

int main()
{
 // ...
 assert(4 == mySqrt(16.0));
 assert(3 == mySqrt(9));
 assert(2 == mySqrt(4));
 assert(1 == mySqrt(1));
 assert(0 == mySqrt(0));
 try { mySqrt(-1); assert(0); } catch (MyTestException&) { }
 try { mySqrt(-2); assert(0); } catch (MyTestException&) { }
 // ...
 try { mySqrt(-1e-100); assert(0); } catch (MyTestException&) { }
 try { mySqrt(-1e+100); assert(0); } catch (MyTestException&) { }
 // ...
 assert("I made it to the end");
 //assert("I made it to the end" && 0);
}

Note that, for this test to work as designed, we need to make sure that we are
in a checked build mode (either observe or enforce) lest we will violate our
implementation's (narrow) contract and be subject to full-on language UB.

Now consider what would have happened had we decided that, since sqrt is
never going to throw in contracts, we can just make this narrow contract
noexcept. First, we would no longer be able to supply the helpful value-added,
improved QoI that throwing an exception offers. Instead, we would slam
against the noexcept barrier, and the program would be forced to terminate.

But more to the point of this section, we've just made it a whole lot harder to
test the remaining functionality in our wide implementation (which has now
been basically relegated to a C-style assert). In case you are thinking that you
can just comment it out for testing, that doesn't work. Again, for the same
reasons stated above, we simply cannot use conditional compilation to elide the
nonthrowing exception specification in a checked build, even if just for testing

Page 45 of 74

purposes, because we would be testing some other functionality, not the
functionality under test.35 Practical experience also confirms this claim36:

Having thought more and having grown wiser, _NOEXCEPT_DEBUG was a
horrible decision. It was viral, it didn't cover all the cases it needed to, and it
was observable to the user — at worst changing the behavior of their
program.

— Eric Fiselier, on the libc++ switching to death testing

Having a throwing handler is not the only way to test a wide implementation
that employs the proposed new contract-checking facility's MVP, but it is by far
the most straightforward, efficient, and portable one. Moreover, as previously
suggested, having a throwing handler is established practice in a variety of
well-known languages (see Section 5.1). Violating the Lakos Rule, on the other
hand, would render this testing strategy moot, and we would have to adopt
something else. Spoiler alert: The landscape for such alternatives is bleak.37

6 POTENTIAL PITFALLS OF USING NOEXCEPT
The noexcept specifier is among the most notoriously unsafe features of C++.
Hence, it unsurprisingly resides in Chapter 3, “Unsafe Features,” of Embracing
Modern C++ Safely.38 There are many (too many) reasons why the noexcept
specifier is easy to misuse and hard to use (or know when to use) safely and
profitably.

In Embracing Modern C++ Safely, a potential pitfall is characterized as a latent
design or coding defect that can compile, link, run, and potentially even pass
unit testing and peer review, yet likely require subsequent remedial rework if
and when it is discovered. The known pitfalls39 for the noexcept specifier
feature (as distinct from the noxcept operator feature in Chapter 2) include
overly strong contracts guarantees, conflating noexcept with nofail, accidental
terminate, forgetting to use the noexcept operator in the noexcept specifier,
imprecise expressions in a noexcept specification, unrealizable runtime
performance benefits, and theoretical opportunities for performance
improvement.

35 [P2834R0]
36 [Khlebnikov2023]
37 For the best, most comprehensive compendium of knowledge delineating why throwing from
a contact-violation handler is by far the best, most cost-effective, and portable means of
validating a defensive precondition check, see [P2831R0].
38 A robust treatment of all of the uses and misuses of the noexcept specifier are covered in
[Lakos22a], Section 3.1.“noexcept Specifier,” pp. 1085–1152. Please refer to that reference as a
reliable source of truth.
39 [Lakos22a], Section 3.1.“noexcept Specifier,” “Potential Pitfalls,” pp. 1112–1143

Page 46 of 74

In addition to pitfalls, EMC++S makes note of annoyances,40 i.e., issues with
the feature that do not rise to the level of pitfalls but nonetheless indicate
suboptimalities associate with its use. The known annoyances stemming from
attempted use of the noexcept include algorithmic optimization being
conflated with reducing object-code size, code duplication, exception
specifications not being part of a function’s type, ABI changes in future
versions of C++, and exception specifications not triggering SFINAE.

6.1 Overly Strong Contract Guarantees
Recall that contracts are binding agreements between each user of a function
and its provider.41 Once we promise something as part of its essential behavior,
we are obliged to continue providing it in perpetuity or else default on our
implicit obligation to provide stability (in the form backward compatibility) with
our existing client base.

When it comes to promising that a function will never throw, the noexcept
provides the strongest possible guarantee in three ways.

1. It states explicitly and unequivocally that this function does not now and
never will throw an exception.

2. It makes that information programmatically accessible to an unbounded
audience.

3. It enforces the behavior in the language such that an exception simply
cannot — even for a minute during debugging in development —escape
from the function.

Placing noexcept on any function, even one with a wide contract, might well
have unintended implications with respect to its backward-compatible
extensibility. In fact, before we would even think of declaring a function
noexcept, we would first have to be 100 percent comfortable stating directly in
the contract that this function, “does not throw.”

For example, a function whose essential behavior requires it to return on every
value will be expected to do so:

int half(int value);
 // Return an integer that is numerically half of the specified value
 // rounded toward zero --- i.e., half(-3) is -1, not -2.

The contract makes clear that there is no flexibility, no implementation-defined
behavior, no need to allocate resources, and thus no need to throw. Even
without saying the words, “doesn’t throw,” or “throws nothing,” we can be sure
that this function is intended to be nofail. By adding a specific statement that

40 [Lakos22a], Section 3.1.“noexcept Specifier,” “Annoyances,” pp. 1143–1150
41 [Lakos22a], Section 3.1.“noexcept Specifier,” “Potential Pitfalls,” “Overly strong contracts
guarantees,” pp. 1112–1116

Page 47 of 74

this function does not throw, we give undue weight to that property. For
functions that are at a higher level, we might not plan to throw any functions,
but perhaps someday we might find that some subfunctionality we add later
turns out to allocate memory. At that point, we’re no longer in a position to
guarantee that the function will never throw, even if it is extremely unlikely and
unimportant.

Consider the function, businessSort that sorts its record elements in place
according to some subset of its fields:

void businessSort(Record* start, int n);
 // Modify the range of contiguous double values beginning at the specified
 // start address and extending n elements so that it is sorted in
 // ascending order in time that is O(n * log(n)).

Imagine that, at some later point, the business requires that this sort become
stable. No known implementation satisfies the performance requirements with
allocating additional memory. Hence, this sort originally could not fail, but now
it can. Had we explicitly stated, “doesn’t throw,” we’d have overpromised. For
cases in which memory exhaustion is not an issue, if instead we just don’t
mention that it throws something, we’re implicitly saying that we don’t intend
to throw, but if we happen to hit memory exhaustion, throwing
std::bad_alloc is a remote possibility.

Let’s now consider again the sqrt function:

double sqrt(double x);
 // Return the positive square root of the specified `x`.
 // The behavior is undefined unless `x` is nonnegative.

This function has a narrow contract. If we were to explicitly say “does not
throw,” we would not be saying the same thing as noexcept because “does not
throw” applies only to the range that has defined behavior. Still, saying
something we don’t mean is not a good idea. Consider that the contract, as
stated, says that the only precondition is that the input x be nonnegative. Well,
is a NaN considered non-negative? One could make an argument that it is.
(Had we written the precondition as, “the behavior is undefined unless 0 <=
x,” then a NaN could much more easily be seen to be out of contract.) Now, if
we decide to add to the essential behavior of this contract that the function
throws if it is passed a NaN, how can we reconcile that if we already said it
doesn’t throw in contract?

Again, before we consider adding an explicit statement, “does not throw,” to
any contract, we need to convince ourselves that we really truly are not ever
going to want to extend this contract to one that might, even vanishingly rarely,
throw. Once we’ve done that, then if the contract is wide, adding noexcept
would not affect the letter of the contract, but it would affect the contract’s
enforcement in two ways.

Page 48 of 74

1. The essential behavior is now programmatically accessible to an
unbounded number of potential clients. This programmatic dependency
further cements into the contract that the contract can never, ever throw.

2. Because the language itself interdicts exceptions from passing a
nonthrowing exception specification boundary, our inability to throw an
exception — even if we wanted to — is mechanically enforced.

In short, most of the time not stating that something throws is good enough to
know that it doesn’t throw or is unlikely to throw, other than std::bad_alloc.
In cases in which not throwing is essential for the client to know, stating that
the function doesn’t throw (in contract) is more than sufficient. The use of
noexcept, therefore, is needed only when we have reason to believe that
generic client code will be using the noexcept operator, directly or indirectly, to
instantiate a better algorithm if it can be known, at compile time, that invoking
a particular function (on a particular set of arguments) is not going to throw.

6.2 Accidental Terminate
An exception thrown from a noexcept function will cause std::terminate to
be invoked. Two possible scenarios lead to accidental termination.42 Both
involve using code from a third-party library. (Our code examples illustrate
Scenario 2.)

1. You write a noexcept function that uses a third-party function whose
contract explicitly says it doesn’t throw.

2. You write a noexcept function that uses a third-party function whose
contract says nothing about throwing exceptions.

6.2.1 Scenario 1
You use a third-party noexcept function in your own noexcept function, and
the third-party contract explicitly says it doesn’t throw. Errors result and
return error codes. Under circumstances not tested by the third party, your
function could throw an exception. Because you made your function noexcept,
your program terminates unexpectedly, and this termination eliminates any
opportunity for you to handle that exception.
6.2.2 Scenario 2
You use a third-party noexcept function in your own noexcept function, and
the third-party contract says nothing about throwing exceptions. The current
implementation doesn’t throw, so you assume it never will and use it in your
noexcept function. The third-party vendor might eventually discover a bug and
decide to add a throw. Again, because you decorated your function with the
noexcept specifier, this change causes your program to terminate
unexpectedly, which again means that you can’t handle the exception:

42 [Lakos22a], Section 3.1.“noexcept Specifier,” “Potential Pitfalls,” “Accidental terminate,” pp.
1124–1128

Page 49 of 74

// From <thirdparty.h>:
double g(double a, double b);
 // Do a calculation and return -1 on error.

// Code under development:
double f(double a, double b) noexcept
 // Do a slightly different calculation and return -1 on error.
{
 double c = a + b;
 double d = a - b;
 return g(c, d); // Note: Pass-through status might prove brittle.
}

Use of g in the example code above creates a dependency on the other library,
which contains g’s implementation:

// In thirdparty.cpp:
#include <iostream> // std::cerr
double g(double a, double b)
{
 // ... (some non-throwing calculation)
 if (error)
 {
 std::cerr << "Some problem occurred\n";
 return -1.0;
 }
 return result;
}

Next, let’s suppose that, unbeknownst to us, the maintainers of that library
take it upon themselves to add additional, file-based logging using a third-party
logging library, FILE_LOGGER, that emits an exception when it fails to write to
the log file (due to, e.g., issues with permissioning or disk space):

// Library code file
g(double a, double b)
{
 // ... (some non-throwing calculation)
 if (error)
 {
 FILE_LOGGER << "Some problem occurred" << FILE_LOGGER_ENDL;
 return -1.0;
 }
 return result;
}

If logging ever fails to write to a file and emits an exception, the noexcept
specification on our f will force the entire program to terminate.

One straightforward way to prevent these unexpected terminations is to
assume that any function that is not guaranteed not to throw might throw and
thus wrap every such function in a try block:

// Code under development:
double f(double a, double b) noexcept
 // Do a slightly different calculation and return -1 on error.

Page 50 of 74

{
 double c = a + b;
 double d = a - b;
 try
 {
 return g(c, d); // Note: Pass-through status might prove brittle.
 }
 catch (...) { return -1.0; }
}

• The more uses of the noexcept specifier there are in a codebase, the
greater the chances of std::terminate. Generic code, in particular, will
fall victim to this.

• If a generic library is designed not to use exceptions, that need not be a
problem in and of itself.

• If a generic library uses noexcept specifiers, client code is effectively
forced into a programming style where it must avoid exceptions.

#include <cstdlib> // std::abort
#include <exception> // std::terminate__handler, std::set__terminate
static void emergencySave()
 // Make a best effort to save all existing instances of client data to
 // special recovery files. This function is intended to be called by
 // std::terminate during an emergency program shutdown, e.g., if an
 // unexpected exception occurs. Importantly, the save algorithm is
 // designed to work with just 5MB of available memory.
{
 // ... (Save as much client data as possible.)
 std::abort(); // Kill the program immediately.
}
int main()
{
 std::terminate_handler prevTermHandler = std::set_terminate(&emergencySave);

 // ... (application code)

 std::set_terminate(prevTermHandler); // Restore previous terminate handler.
}

In the code above, an unexpected call to std::terminate anywhere in the
application calls the installed terminate_handler, namely, emergencySave.

#include <exception> // std::terminate_handler, std::set_terminate
#include <new> // std::new_handler, std::set_new_handler

static void emergencySave() {/*...*/ } // same as before

static void* reservedMemoryBlock = nullptr; // memory reserved for emergencies

static void handleOutOfMemory()
// Free reserved memory block and call std::terminate.
{
 ::operator delete(reservedMemoryBlock); // Make memory available.
 reservedMemoryBlock = nullptr;
 std::terminate(); // (hopefully) graceful termination
}

Page 51 of 74

int main()
{
 std::terminate_handler prevTermHandler = std::set_terminate(&emergencySave);

 // Reserve 10MB memory to use during graceful termination.
 reservedMemoryBlock = ::operator new(10U * 1024U * 1024U);
 std::new_handler prevNewHandler = std::set_new_handler(&handleOutOfMemory);

 // ... (application code --- might exhaust memory)

 std::set_new_handler(prevNewHandler); // Restore previous new handler.
 ::operator delete(reservedMemoryBlock);// Free reserved memory.
 reservedMemoryBlock = nullptr;
 std::set_terminate(prevTermHandler); // Restore previous terminate handler.
}

The skeletal solution sketched out above, in addition to setting the terminate
handler, allocates 10MB at the start of main and registers handleOutOfMemory
as the new handler. If an allocation fails, handleOutOfMemory frees that 10MB
to give the emergencySave function more than enough headroom to allocate
the memory it requires.

7 INCREASINGLY DUBIOUS OPTIONAL USE OF THE NOEXCEPT SPECIFIER
The noexcept specifier was invented in a hurry (c. March 2010) as a patch to
enable efficient use of move operations in the presence of the strong exception-
safety guarantee already promised by the contracts for certain append
functions along with the strong exception-safety guarantee in the C++03
Standard Library. Since that time, other uses have evolved, some more useful
than others. In this section, we have curated several known uses of the
noexcept specifier in decreasing comparative utility relative to forgoing their
use entirely — even on wide contracts — so as to minimize unintended
consequences such as overly strong contract guarantees and accidental
terminate.

7.1 Declaring Nonthrowing Move Operations
The raison d’être for inventing noexcept was to make it easy for a developer to
specify to the compiler that the contract for that copy function (operator or
contractor) guarantees that, invoked properly (in contract), the function will
never throw an exception.43

As a simplified example, consider a vector-like container, MyVector, that has a
push_back-like function, pushBack, that also provides the strong exception-
safety guarantee, meaning that if an exception is thrown while inserting an
element, the state of the original object (and ideally the state of the program as
a whole) remains unchanged.

43 [Lakos22a], Section 3.1.“noexcept Operator,” “Use Cases,” “Appending an element to
std::vector,” pp. 635–639

Page 52 of 74

If we check the element at compile time to see whether moving it can throw,
and it isn't declared noexcept, the only way to be sure when resizing the array
is to create a temporary with the new capacity and then (nondestructively) copy
all the elements over first in increasing order. If an exception is thrown, RAII
will clean up the original object, which was never touched. If that works, we
can then destroy all the originals, replace the new block with the old one, and
then proceed with enough space to insert the new element. This is what C++03
had to do:

template<class T>
void MyVector<T>::pushBack(const T& value)
{
 const std::size_t nextCapacity = d_capacity ? d_capacity * 2 : 1; // no tr.
 // throwing move

 MyVector<T> tmp; // may throw
 tmp.reserve(nextCapacity); // may throw
 void* address = tmp.d_array_p + d_size; // no throw
 for (std::size_t i = 0; i != d_size; ++i) // for each existing element
 {
 void* addr = tmp.d_array_p + i; // no throw
 ::new(addr) T(d_array_p[i]); // may throw
 }
 ::new(address) T(value); // may throw (last one)
 tmp.d_size = d_size + 1; // no throw
 tmp.swap(*this); // no throw, committed
}

Unfortunately, the algorithm above requires an extra N copies (instead of
moves) every log N inserts, which could be arbitrarily expensive and perhaps
result in an embarrassing pause.

If, however, we can programmatically determine at compile time that — in this
generic context — a (perhaps destructive) copy operation on the user-supplied
element will never throw, then we can use a different, faster algorithm: Create a
temporary MyArray object, tmp, and reserve the new capacity. If that works,
place the new element at the end. If at any point up until now something
throws, RAII will kick in and nothing happens. Otherwise, we’re fine because
copying the rest of the elements over isn't going to throw44,45:

template<class T>
void MyVector<T>::pushBack(const T& value)
{
 const std::size_t nextCapacity = d_capacity ? d_capacity * 2 : 1; // no tr.

 if (noexcept(::new((void*)0) T(std::move(*d_array_p)))) // is no throw?
 { // nonthrowing move
 MyVector<T> tmp; // may throw
 tmp.reserve(nextCapacity); // may throw

44 [Lakos22a], Section 3.1.“noexcept Specifier,” “Use Cases,” “Declaring nonthowing move
operations,” pp. 1094–1097
45 [Lakos22b]

Page 53 of 74

 void* address = tmp.d_array_p + d_size; // no throw
 ::new(address) T(value); // may throw (last one)
 for (std::size_t i = 0; i != d_size; ++i) // for each existing element
 {
 void* addr = tmp.d_array_p + i; // no throw
 ::new(addr) T(std::move(d_array_p[i])); // no throw (move)
 }
 tmp.d_size = d_size + 1; // no throw
 tmp.swap(*this); // no throw, committed
 return; // early return
 }

 // throwing move
 // ...
 // ... classic (C++03) implementation elided
 // ...
}

Notice that once we get to the point where we have allocated the new block and
constructed the new component, only because of the non-throwing exception
specification can we confidently proceed to just move all the old elements over,
knowing that no exceptions are forthcoming.

More generally, the only candidate suitable for a noexcept specifier to achieve
its intended purpose is copy operation, which is generally limited to six
possible function types, namely: move constructor, move assignment, copy
constructor, copy assignment, member swap, and (at least for now) global
swap. If your reason to add noexcept is not to improve algorithm performance
using the noexcept operator in a generic context, then you don't need to use
the noexcept specifier.

7.2 A Wrapper that Provides noexcept Move Operations

The real world is not always like what is taught in school. (More accurate, it
rarely is.) As pragmatic software engineers, we sometimes have to choose
between the lesser of two evils. Suppose you're running a batch, back-office
operation. There is nothing safety critical or even monetarily risky. All you need
to do is get the job done with maximum throughput.

You have a long-running application that makes use of modern C++ containers,
but you find yourself using a variety of older, legacy components, some of
which allocate resources on copy construction and some don't, but almost
none of them, when recompiled under C++11 or higher, default to having
nonthrowing move semantics. Many of the folks who wrote these components
have moved on, and they weren't especially careful at documenting or testing
their code. (Perhaps that's part of the reason they’ve gone.)

You have the some of the largest machines money can buy, and exhausting all
memory is virtually unimaginable. Moreover, if you did run out of memory, you
would want to know that darn quickly, so you could go buy an even bigger

Page 54 of 74

machine, rather than silently plodding on. Besides, the software crashes
regularly, so you have to restart it often anyway. What should you do?

One solution might be to essentially lie to the Standard Library and claim that
none of your C++03 vintage components ever throw. It's almost true, and
you've made the informed decision that if one does throw, you're fine with
having your program abruptly terminated without warning. Here is what such
a wrapper might look like46:

#include <utility> // std::move, std::forward

template <typename T>
class NoexceptMoveWrapper : public T
{
 public:
 NoexceptMoveWrapper() = default;
 NoexceptMoveWrapper(const NoexceptMoveWrapper&) = default;
 NoexceptMoveWrapper& operator=(const NoexceptMoveWrapper&) = default;
 // defaulted implementations

 NoexceptMoveWrapper(const T& val) : T(val) { }
 // implicit copy from a T

 template <typename... Us>
 explicit NoexceptMoveWrapper(Us&&... vals)
 : T(std::forward<Us>(vals)...) { }
 // perfect forwarding value constructor

 NoexceptMoveWrapper(T&& val) noexcept : T(std::move(val)) { }
 NoexceptMoveWrapper(NoexceptMoveWrapper&&) noexcept = default;
 NoexceptMoveWrapper& operator=(NoexceptMoveWrapper&&) noexcept = default;
 // override the default exception specification to be nonthrowing
 // moves terminate if the corresponding T operation should ever throw
};

As the last three lines of the example wrapper above illustrates, we use the
C++23 Standard to override whatever the compiler thinks the default exception
specification should be to be unconditionally noexcept. If a move operation
ever throws, the program will be forced to terminate. Sometimes an engineer
has to make choices, and this use of the noexcept specifier is a perfectly
reasonable and arguably necessary one. Importantly, it’s not a violation of the
Lakos Rule.

7.3 Callback Frameworks
A relatively unusual situation where the noexcept specifier can potentially
make the client's life simpler is a framework that is configured by supplying
callbacks. A recent example of this sort of use case came to light when Dietmar
Kühl pointed out that the way senders and receivers are implemented in C++
fits this niche use case. Before digging too far into the details, the way the

46 [Lakos22a], Section 3.1.“noexcept Specifier,” “Use Cases,” “A wrapper that provides
noexcept move operations,” pp. 1099–1101

Page 55 of 74

sender/receiver paradigm breaks things down, as I understand it, you have the
ability to supply a principle callback function, f, and two additional callbacks,
g and h. The g callback is supplied to handle the output, and the h callback is
invoked if an exception is thrown.

Consider implementing the “then” sender, which per Dietmar, “essentially sets
up an object by moving/copying around objects. If anything throws during that
time, nothing interesting happens. The real business is, essentially, its actual
operation which consists of calling a function, f”:

void someThread(/*...*/)
{
 // ...
 state s = connect(just() | then(f), some_receiver());

 // Here we have an operation state s which can be started:

 start(s);
}

Roughly, the general implementation is something like this (forwarding of
args... omitted):

void set_value(state&& self, auto&&... args)
{
 try {
 set_value(std::move(self.receiver), self.f(args...));
 }
 catch (...) {
 set_error(std::move(self.receiver), std::current_exception());
 }
}

The only thing that can throw is f. If f is known not to throw, the try/catch
block is superfluous and can be omitted (and the call to set_error never
happens). Dietmar points out that, for custom receivers that don't throw, not
allowing them to be noexcept would mean we must manually write an
additional, never-used completion function, h.

To abstract the problem to a pattern that is more easily recognizable, I asked
Pablo Halpern to write the simplest analogous code that he could think of to
capture this use case. His solution was to express the situation as a pair of
overloaded function templates such that when doThisThenThat is supplied a
nonthrowing f, no h is required:

template <invocable F, invocable G, invocable H>
void doThisThenThat(F doThis, G thenThat, H doOnException);

template <invocable F, invocable G>
 requires noexcept(declval<F1>()())
void doThisThenThat(F1 doThis, F2 thenThat) noexcept(noexcept(doThis()));

Page 56 of 74

Put another way, when doThisThenThatto is invoked with three callback
functions, it works for all manner of f, but when it is supplied only two
callbacks, the code will not compile unless f is declared noexcept.

Note that the second overload does not have a doOnException argument and
participates in overload resolution only if doThis can be programmatically
known at compile time — via the noexcept operator never to throw, which is
made conspicuous by embedding it in a conditional noexcept specification for
the second overload. If F2::operator()is known not to throw but is not
marked noexcept, then we cannot use the second overload, and we are forced
to create a dummy argument for doOnException, a likely candidate for which
would be the address of std::terminate.

We have several ways to work around this problem when we are handed a
function with a nonthrowing exception specification that we, as programmers,
know will not throw. Perhaps the easiest is just to wrap it in a nonthrowing
wrapper function:

template <typename F, typename... Us>
explicit void noexceptWrapperFunction(F f, Us&&... vals) noexcept
{
 f(std::forward<Us>(vals)...);
 // perfect forwarding to argument function `f` of void return type `F`
}

Finally, if the function is under our own control and is wide, there is no issue
with the Lakos Rule. If it is narrow, then we need to ask ourselves whether all
the other downsides of violating the Lakos Rule add up to a good reason here,
which is unlikely given all the obvious workarounds. For the Standard, my
preference would be to design the framework in such a manner that the
supplier can omit the third argument, have the presumption that it doesn't
throw, and terminate if it does throw. Apart from modestly smaller object code
size (which is generally the case), it's unclear what noexcept‘s benefit is here,
and we know the downsides.

7.4 Enforced Explicit Documentation
We might sometimes have no expectation that anyone will ever apply the
noexcept operator to the invocation of a function, and still we feel compelled to
tag it with noexcept because (1) it’s wide, (2) we are sure, beyond a reasonable
doubt, that it will never need to throw, and (3) it must not throw, so much so
that we want to make that statement directly in the code.

We know that saying “does not throw” for a narrow contract means “does not
throw in contract” and the published contract stays narrow, whereas placing
noexcept on a function that otherwise had a narrow public contract would
force it to become permanently wide. So, for a wide contract, what is the

Page 57 of 74

difference between saying “does not throw” and just putting noexcept on the
function?

1. Once you put noexcept on the function, that's it. Not only are you
stating that this thing will never throw, you can never take it off
because now you've made it part of the programmatically accessible
interface. Changing it back would be a breaking change, and code
might start to behave differently. That's not to say that taking “does
not throw” off a contract doesn't change it; it certainly does, which is
why, unless you are extremely sure that you really mean it, avoiding
even putting that in English is wise, because as code, especially
application code, evolves, functions that depend on other functions
that previously didn't allocate memory might start to and have to
break their promise, and that discrepancy will come back to haunt
you, even if you didn't agree to it.

2. By placing noexcept on a wide contract, you are getting a bit more
support than you would with just an English contract. If your library
function is called out of contract and it doesn't slam into language
UB, you can count on this function not throwing past the noexcept
barrier, or if it does, it’s guaranteed to terminate. Sadly, however, if
we do encounter language UB, the function is not required to do
anything at all, and, at least in theory, it could even allow a thrown
exception to bypass the noexcept barrier (but in practice that's
probably quite unlikely).

The bottom line is that, if a function has a wide contract that is unlikely to
change and if you are certain that it cannot or must not ever throw, then state
that explicitly in the contract. If you then feel compelled to decorate it with
noexcept, be my guest. A typical example in the Standard would be a const
member function with a wide contract, such as std::vector::size(). As
ever, for a function having a narrow contract, forget about it.

7.5 Reducing Object-Code Size
Unfortunately, people are seemingly rewarded when they place noexcept on a
function and both the object and binary code size goes down. This reduction
typically achieves no useful purpose. Making code smaller by removing
exception code on the cold path doesn't measurably, let alone significantly,
make the code run any faster on average. The only place where binary size
matters is embedded systems, and for those, one would typically disable
exceptions entirely, rendering any such use of noexcept moot.47

Just to make a noticeable difference in binary code size, even though doing so
accomplishes no useful goal, one would have to use (overuse) noexcept widely,
thereby needlessly increasing the likelihood of creating overly strong contracts

47 [Lakos22a], Section 3.1.“noexcept Specifier,” “Use Cases,” “Reducing object-code size,” pp.
1101–1111

Page 58 of 74

and especially by increasing the probability of accidental termination. This
reason to use noexcept is the least compelling (except, of course, for the final
one, below) and should be used only when (1) the function’s contract is wide,
(2) not throwing is already part of its guaranteed essential behavior, and ideally
(3) you reasonably believe that code you depend on is not likely to change.

7.6 Unrealizable Runtime Performance Benefits
The claim that noexcept improves runtime performance — even a little bit — is
unfounded and specious. No evidence (theory or data) supports this claim, and
copious amounts of both to suggest otherwise.48,49,50

All modern platforms use the zero-cost exception model.51,52 In this model,
literally all the extra cost lies on the cold path in the sense that, if an exception
is triggered, the flow of control will deviate from the expected (hot, branch-
predicted) path to other, distant code that is potentially not even be paged in.
The tradeoff is that not throwing costs you literally nothing in run time, but
heaven help you if you throw one.

So, though difficult to believe, anyone who claims that noexcept speeds up
your code — even someone whose knowledge and/or veracity you (used to)
respect — is mistaken. Please never go littering your code with noexcept in the
futile hope that doing so will speed up your code at all: It will not. In fact, the
bell curve of noise due to cache line placement — in either direction — will
overwhelm even any pathological performance gains you think you might be
realizing.

8 THE C++ STANDARD SUPPORTS THE MULTIVERSE
As software developers, we have each amassed our own, sometimes formidable,
design experience. The totality of that experience, however, will be unique to
each individual. Developers in a particular industry, such as finance, safety-
critical systems, desktop publishing, or gaming, may find synergies and
commonalities that simply don't exist across industry boundaries. As a result,
what may seem like an obvious “no-brainer” design choice to a competent
developer in one industry might be considered an untenable (if not
unfathomable) choice by an equally competent application developer in
another.

48 [Lakos22a], Section 3.1.“noexcept Specifier,” “Potential Pitfalls,” “Unrealizable runtime
performance benefits,” pp. 1134–1143
49 [Dekker19a]
50 [Dekker19b]
51 [Lakos22a], Section 3.1.“noexcept Specifier,” “Potential Pitfalls,” “Unrealizable runtime
performance benefits,” “The zero-cost exception model,” p. 1136
52 [Mortoray13]

Page 59 of 74

After years of experience working with the best developers on the C++
Standards Committee, one comes to learn that two dissimilar design
approaches can each be optimal for their respective universes. As Standards
Committee members, therefore, our responsibility is to design the C++
language and its Standard Library such that they enable if not support all
industries.

Stroustrup refers to the superposition of the respective realities that arise in all
relevant industries as the multiverse. Hence, rather than inadvertently
attempting to maximally satisfy the needs of any one particular industry (e.g.,
and isn’t that all too often our own?), as members of the Standards Committee
we must deliberately take a step back and ensure that we are striving to
maximize the satisfaction of the union of the requirements of all such
industries.

The diverse and sometimes conflicting needs of the multiverse abound. For
example, C++ should be easy for a novice to understand and use yet enable an
expert to do pretty much anything remotely reasonable. In this case,
Stroustrup's design advice would be to keep simple things simple yet not
preclude more sophisticated use, perhaps at some later time.

Some organizations use C++ primarily because of its runtime efficiency, others
for its scalability, and still others due to its ability to get close to the hardware.
Some industries, such as medicine and aerospace, involve safety-critical
systems. An undetected defect in such systems might lead to catastrophic
results, even loss of life. Hence, the cost of design, development, testing, and
deployment in such industries is typically disproportionately high. Other
industries, such as desktop publishing, have no safety-critical components. For
products in those industries, an inexpensive development strategy that admits
the occasional defect in a new release is often preferred.

As previously discussed, in some industries, such as gaming, an application
might have an explicit design goal that it never intentionally self terminates.
Stopping the game might be deemed as bad or worse than anything else that
might reasonably happen, and there's always the chance that the player won't
notice the current defect. In finance, however, failing fast or at least not
continuing as if nothing had happened is often preferred over allowing a
program to just keep going, possibly losing enormous sums of money for the
firm.

These distinct universes do not always overlap, and yet they are all contained
in the same multiverse. To provide the widest possible applicability and utility
to its prospective clients, the C++ Standard Library along with the C++
Language itself must support this multiverse. That is, C++ must enable design
without making a value judgment as to whether a particular design choice is
acceptable because such subjective decisions simply cannot be reached in our

Page 60 of 74

multiverse in which the same design might be perfect in one context and
entirely unacceptably in another. Instead, the Standards Committee must
withhold judgment and instead design with flexibility to serve all industries.

For example, suppose we decided that C-style casts are so bad that we want to
deprecate them. Should we do that? Of course not. Why? Some developers
want to use them, perhaps for good reason. Moreover, these casts are already
in use. Hence, if you think they're bad and shouldn't be used, just don't use
them. Live and let live; the multiverse goes on.

When it comes to new features, the bar is a bit higher. In that case, we are
typically increasing the complexity of the language for all implementers and
users so the test is whether the added functionality provides real capability,
theoretical value, or just syntactic sugar. On the other hand, sometimes adding
a feature adds little complexity compared to the new capabilities it would bring
to many users.

For example, choosing to specify that the contract-violation handler cannot
return by specifying it as [[nothrow]] in the Standard would aggressively
enforce one policy over another, thereby disenfranchising users who would
otherwise avail themselves of this capability, which comes essentially free in
the current MVP. Similarly, specifying in the Standard that the replicable
violation_handler function in the MVP is necessarily declared noexcept
would preclude two important, effective, and widely applicable use cases
described earlier (see Section 5).

The Standard must support all the universes of all industries, organizations,
and well-intentioned, reasonable developers. Sometimes we will have to choose
between two policies. For example, when the expression in the contract check
throws needs to be defined to do something, we need to choose what we think
will ratify the widest set of use cases without overly inconveniencing the typical
or novice user. (That decision will likely be to catch the exception in the contact
check, treat it as a contract-violation, and pass the deception along with all the
rest of the relevant information into the handler where it could even be
rethrown if desired.

In the case of whether to allow continuation or throwing, the answer is simple.
Let's say that not allowing something is decision X and allowing something is
decision Y. If the Standard imposes X, then anyone who would have preferred Y
is just out of luck. On the other hand, if instead we standardize Y, then those
who prefer X don't have to do Y, and those that prefer Y can still use that
option. The obvious conclusion is that we should standardize a contract-
checking handler declaration that allows that handler to (1) continue, (2)
throw, and (3) whatever else the user decides is appropriate (because it’s C++
code). By the same token, the Lakos Rule, being the more permissive

Page 61 of 74

requirement, should be standardized, with implementers permitted to
strengthen the exception guarantees or otherwise provide a better QoI, e.g., a
wide implementation employing the new Contracts MVP.

The design goals, rules, and guidelines for a development team in one industry
might be radically different from those for a team in another industry, and yet
neither team is doing anything wrong. Different engineering tradeoffs will be
made for good reasons. The forces that govern these tradeoffs — e.g., safety,
security, government regulation, and economics — will play a dominant role in
how programs are designed. Understanding that, given different exigent
requirements, smart people will naturally write good C++ programs differently
is critically important to designing a maximally useful Standard. Hence, when
making a policy decision, standardizing a less restrictive one that still admits
the other is often the better choice.

9 THE LAKOS RULE
The Lakos Rule (note that I didn't name it) is nothing more than a simple
observation based on classic principles of software design in terms of contracts.
Over the years, much has been read into the rule, but what makes it elegant
and useful is its inherent truth and simplicity. In fact, the rule (observation,
really) is the title of this paper:

The Lakos Rule:
Narrow contracts and noexcept are inherently incompatible.

The obvious interpretation of this rule is that, if you have a contract that is
naturally narrow and will absolutely never throw when called in contract and if
you feel that it's important that developers know this, note in the English
documentation that the function “does not throw” or “throws nothing.”
Otherwise, do nothing. If this public contract should someday widen or if the
implied contract of the implementation is deliberately made wide (possibly only
in certain build modes) to detect client misuse (aka defensive programming),
those options will be preserved.

Beyond that, whether to declare a function having a wide contract noexcept
comes down to whether it is possible to predict whether this function might
someday evolve or be ported to a different context where the need to throw an
exception in contract might emerge.

Coming from the opposite perspective, having more functions declared
noexcept than justifiably need to be does nothing to help reduce the likelihood
of accidental termination, especially when exceptions are used widely to
communicate across multiple levels of function calls.

The noexcept specifier is rarely necessary, and when it is needed, it’s for niche
uses, almost always having to do with efficient copies in the presence of a

Page 62 of 74

stronger-than-standard exception-safety guarantee. Unless a function is
anticipated to be queried at compile time from a generic context using the
noexcept operator (directly or indirectly), any use of the noexcept specifier
can be safely omitted and with zero loss in observable average runtime
performance.

TL;DR: Avoid declaring a function that would otherwise have a narrow contract
noexcept unless there is a compelling engineering or business reason to do so.

9.1 Exception(s) to the Lakos Rule
The original Lakos Rule of 2011 claimed three operations that were given
special consideration: move construction, move assignment, and swap. With
over a decade of experience, no new compelling examples have been found, and
swap does not clearly qualifiy as special.

The move constructor and move assignment operator are special as they are
used to relocate elements, and useful guarantees can be given if relocation
never fails. Never failing (nofail) is a stronger constraint than never throwing,
but was deemed a reasonable, if imperfect, approximation for most libraries.

Recall that the noexcept operator was conceived solely to preserve the strong
exception-safety guarantee provided by C++03 when a vector grows by insertion
at the end. Especially to expand the capacity of the vector and preserve the
succeed-or-no-change semantic, we must guarantee that the relocate operation
moving elements from one region of memory to another cannot fail. The
performance change switching from copy to move to achieve such a relocate is
well known, so we choose to guarantee that move operations do not fail (at
least not by throwing), rather than preserving the freedom of potentially
throwing in a future implementation of the contract.

Hence, we consider move operations in particular to be a very special case such
that even if a move operation were somehow narrow, we would nonetheless
prefer it to be declared noexcept anyway since the property of allowing the
noexcept operator to be used to query its (non-throwing) exception
specification is critically important essential behavior for its primary use case
(i.e., enabling algorithmically better implementations in generic contexts).

In our decade of using the noexcept operator, we have not run into the same
sort of benefits for the swap function that we were expecting. While best
practice remains to write a swap function that guarantees to not throw (in
contract), and with constant complexity, we have not seen the benefit of
making that guarantee in the type system; no algorithm that we have
encountered has a different optimal code path given the guarantee. (On the
other hand, its contract can often give stronger postconditions when the plain

Page 63 of 74

language contract for the swap function gives the nonthrowing — or better,
nofail — guarantee.)

If there were to be an exception to the Lakos Rule, it would have to satisfy four
properties:

1. The operation the function provides has an inherently narrow
contract.

2. A primary use case would be lost if it had a throwing specification.
3. To disallow throwing in response to a contract violation is acceptable.
4. No better design alternative is available (or foreseeable).

First, by inherently narrow, we are talking about the contract for a function,
such as a real sqrt or the bracket operator for std::vector, for which there is
no obvious wide interpretation. Second, a generic client will be expected to
employ the noexcept operator (directly or indirectly) to determine whether a
particular invocation of the function cannot throw so that it may instantiate (at
compile time) an algorithmically superior implementation. Third, we need to be
fine with the idea that, if we call that function out of contract and an exception
is thrown in response, the program will be forced to terminate. Forth, we
simply cannot think of any other, better practicable way to solve the problem.

9.2 Are swap Operations Exceptions to the Lakos Rule?

Let us consider whether the standard swap function merits an exception to the
Lakos Rule. The primary template, i.e., the basis for customization relying on
ADL lookup, has a wide contract that has no nonthrowing constraints in the
plain language contract. Hence, it does not have an inherently narrow contract,
it should always be wide, and it may throw exceptions when called in contract.
Thus, swap does not qualify for an exemption from the Lakos Rule, and there is
no need to consider the remaining items in our list of properties.

For purpose of illustration, however, we would like to know if there is a primary
use case that would query the noexcept operator that we would lose without a
noexcept specification? When we drafted the original rule, we believed that,
given the importance of no-throw swap to plain language contracts, it would be
an important operation to support a nonthrowing exception specification where
possible, so we applied a conditional exception specification when the move
constructor and move-assignment operator had a nonthrowing exception
specification.

With a decade or more of experience, though, we have not encountered
functions or algorithms that benefit from use of the noexcept operator on this
operation. Instead, we continue to run into guarantees of the plain language
contract that do not lean on the noexcept operator itself. Hence, if we were to
specify swap for the Standard today, it would not merit even its conditional
exception specification.

Page 64 of 74

For item 3, we cannot possibly presume that all software built on top of the
Standard Library can accept disallowing exceptions in response to contract
violations. As a foundation for the C++ ecosystem, our specification cannot
reach into user requirements in this way. Hence, std::swap fails on the third
item as well.

Finally, we come to the question of whether no better design alternative is
available. The main alternative we lean on these days is customization-point
objects (CPO), and while the complexity of such types goes beyond the simple
swap template, the user experience seems better. So perhaps if failing on all
four, then we’d have to repeat this analysis for the CPO!

9.3 Are move Operations Exceptions to the Lakos rule?

The other two exceptions to the Lakos Rule that were blessed with conditional
exception specification are the move constructor and move assignment
operator. Let us again apply the four tests and see if we learn anything.

First, neither the move constructor nor move assignment operator are inherently
narrow, although there are some artificially narrow move-assignment operators
in the Standard Library (more on those assignment operators later). Hence, the
first test fails, so we do not get an exception to the Lakos Rule. However, let us
continue analysis as before.

For item 2, we ask if we would lose a primary use case if we could not query
these operations with the noexcept operator. The answer here is a strong
affirmative, since the primary use case of the noexcept operator in the paper
that proposed the feature for the language53 is to optimize relocation of
elements in a vector under a variety of operations such as growing the
capacity, inserting, and removing elements, and so on. Hence, even if the
contract were somehow narrow, we would nonetheless make an exception for
move operations because that’s the only way in which they can be used for
their singular intended purpose. As for the final two check boxes, yes we would
be OK with a checked build that terminated the program due to an out-of-
contract call to a narrow move, and, no, we don’t have a better idea.

The remaining concern that we promised to address is the artificially narrow
contracts in the Standard Library for move assignment on standard containers
where allocators do not propagate and do not compare equal. This constraint is
artificial since there is no inherent reason such containers could not move their
elements by copying; after all, the motivation for move assignment was as an
optimization to copy assignment, so copying when the optimization is not
available should be the expected semantic (move-only types exempted). We note

53 [N3050]

Page 65 of 74

that the Standard still does not mark these operations as unconditionally
noexcept but places a conditional noexcept on those operators instead that
means, for example, pmr containers do not have nonthrowing move-assignment
operators. Hence, although enabling nonthrowing move-assignment for the pmr
containers might seem desirable, the artificial rather than inherent constraint
does not satisfy the first test, and we still do not apply a noexcept
specification here.54

9.4 Are There Any Exceptions to the Lakos Rule?
Yes! There is one. Implicit in every contract is the precondition that the client
does not pass in an argument having an indeterminate value that the function
intends to read:

int f0() {
 double x; // indeterminate value

 double y = std::move(x); // precondition: `x` is initialized

}

The built-in scalar type int has a noexcept move constructor that requires its
argument not to be of indeterminant value. Hence that move operation
hypertechnically has a precondition such that calling the move constructor
with that specific input is undefined behavior, and hence the move constructor
(like pretty much any function that takes any argument) has undefined
behavior, and therefore a narrow contract! But, as we discussed earlier, a
narrow move operation has special privileges because it passes all four of our
check boxes. Here is a second example in terms of std::array55:

using A = std::array<float, 1>;

static_assert(std::is_nothrow_move_constructible_v<A>);

int f1() {

 A a0; // indeterminate valueb

 A a1 = std::move(a0); // precondition: a0 is initialized
}

Again, the implicit nonthrowing move constructor for std::array has a move
constructor that expects its source object to be initialized. And again, move is a
special case satisfying all four of the requirements: (1) this move function is
inherently (albeit barely) narrow, (2) a nonthrowing exception specification is
essential to its primary purpose, (3) we would much rather have faster

54 Note that the authors of [Shearer20] and [P0178R0] intend to address this concern by
making move assignment in these cases well defined; the authors are aiming to bring a revised
paper to Kona later this year.
55 Courtesy of Neven Liber, SG21 Reflector, May 16, 2023.

Page 66 of 74

algorithms than try to preserve extensibility or worry over a thrown exception
in pathological contract violation (that we can’t even test for), and (4) we don’t
have a plan B.

As a practical matter, we do not consider a contract that would otherwise be
considered wide to become narrow due to irrelevant abuse of the language,
such as passing in a destroyed or otherwise unusable object, since that would
eliminate any utility in distinguishing narrow from wide contracts. Hence all
the above move functions would be considered wide, and passing in an
indeterminant or destructed object is simply a bug.56

tl;dr: The Lakos Rule is about as close to absolute as any rule with an
exception (pun intended) can be.

10 RECOMMENDED USE OF THE NOEXCEPT SPECIFIER
No recommendation fits all situations for using noexcept; use it where it
affirmatively adds value, and don't use it where it doesn't (because we can
always add it later) or, worse, where it subtracts value.

10.1 The C++ Standard Library
If we were starting from scratch, I would advocate using noexcept only where
we anticipate standard containers will need it (typically only copy, move, and
swap functions). I see no compelling reason to force implementers to do more
against their will. Given what we have now, the trend seems to be also to
declare const member functions having wide contracts that will never throw to
be noexcept, and that seems nonproblematic yet has the ever-so-slight benefit
of producing slightly less (but not faster) code on average.

Hence, our recommendation for the Standard Library specification, which is a
foundation for almost all C++ software, is that the Lakos Rule be observed for
every library function having a narrow contract and that future flexibility be
considered carefully before applying the noexcept specifier to nonthrowing
wide contracts. On the other hand, move operations have demonstrated the
importance of communicating their nonthrowing nature via use of the
noexcept operator, so even conditionally nonthrowing (but invariably wide)
move contracts merit applying noexcept.

10.2 Standard-Library Implementations
In anticipation of the Contracts MVP, we want to strongly encourage (if not
mandate57) Standard Library developers to follow the Lakos Rule so that they

56 Note that passing an indeterminant value by value is automatically UB whereas passing an
indeterminant value by reference is allowed as long as the function does not attempt to read it;
assigning to it and taking its address, however, is not (language) UB.
57 [P2837R0]

Page 67 of 74

will be able to widen their implementation to incorporate the full capability of a
throwing contract-violation handler if they so choose.

That said, it is ultimately the responsibility of each C++ library implementor to
make the business and engineering tradeoff of how they want to spend the
unspecified behavior afforded them by minimal use of noexcept in the
Standard Library’s specification. In particular, an implementor is free to
strengthen the exception specifications of any function whose current contract
that doesn’t require it to throw (not recommended). Alternatively, implementors
may preserve the narrow public contract and instead provide a wide
implementation that incorporates the new Contracts MVP, on track for C++26.

Although narrow contracts and nonthrowing exception specifications are
inherently incompatible, they are not entirely so. If an implementor chose to
widen the public contract to permanently disallow any thrown exception from a
narrow contract and later add checking that attempted to check the original
narrow contract, then some of the benefit of the checking would be realized; the
only problem is that, if an application were counting on recovering from a
contract-violation calling a standard function, and the implementor has cut off
throwing as a possibility in an extended implementation, and then the natural
(well-defined) consequence will be program termination.

10.3 Third-Party Libraries
The Lakos Rule applies to all software, not just the Standard; hence the general
advice to ardently avoid (where unnecessary) placing noexcept on functions
having a narrow contracts pertains. That said, each third-party library vendor
must make an informed decision as to the extent to which optional use of
noexcept on wide contracts serves their business needs and client base.

As a (strong) general recommendation, a noexcept specification should not be
used unless the following three conditions are met.

1. Functions are expected to be implemented with an optimized code-
path by querying the noexcept operator on this function.

2. The plain language function contract is wide.
3. The function guarantees not to throw; if the function guarantees not

to throw under only specific circumstances, those circumstances can
be described by a predicate in the exception specification

When used in software written above foundation layers, pragmatic engineering
values may relax even these constraints, such as in an environment in which
failing an operation (in any build mode) can terminate the program.

10.4 End-User Libraries
The Lakos Rule applies generally, even to end-user software, the only
substantive difference being that the organization is in complete control of all

Page 68 of 74

its internal clients; hence, backward incompatibility, though still painful, might
not be irreparable. Again, each library implementation will make its own
informed determination as to tradeoffs between retaining a narrow contract
and permanently assigning requirements for all syntactically valid state and
input combinations that explicitly preclude ever throwing for any reason.

11 CONCLUSION
This paper provides an in-depth elaborate, tutorial-level support for the simple
observation that nonthrowing exception specifications are inherently and
fundamentally incompatible and inconsistent with narrow contracts. That is, a
function that otherwise would have a narrow contract loses its narrow status as
soon as its exception specification becomes nonthrowing because now there is
no syntactically valid combination of input and state values for which the
function exhibits undefined behavior (i.e., behavior having no requirements).

We started by considering the value proposition of designing software having
narrow contracts rather than necessarily always making them wide. Then, after
reviewing some basic principle of classical software engineering, including
Design by Contract (DbC) and the Liskov Substitution Principle (LSP), we
explored the benefits of narrow contracts as a means of extending software
APIs in a backward-compatible manner over a sequence of versions. We
observe that, had we initially declared to be noexcept a function otherwise
having a narrow contract, the benefits of unfettered backward compatibility
were lost --- further proof that the `noexcept` function’s contract simply cannot
be considered narrow in any practical senses.

In particular, we observed that the ability to provide a wide implementation to a
narrow public contract serves as an opportunity to render increasingly valuable
QoI without affecting the behavior of any programs currently written to that
narrow (interface) contract. Only then did we introduce SG21's burgeoning
Contracts facility and argue that failure to follow the Lakos Rule in the
Standard would disenfranchise (1) clients of the Standard who want to make
use of such QoI and (2) implementers of the Standard (or parts thereof) who
might want to create effective negative tests without having to resort to a
complicated, nonportable, grossly inefficient single (“death”) test per thread (or
worse, per process).

Next we considered the consequences of just generally inappropriate or
unnecessary (over)use of the noexcept specifier, especially in the C++
Standard Library. Having more nonthrowing exception specifications does
nothing to help avoid accidental termination, especially for applications that
make heavy use of exceptions to communicate across multiple levels of
function calls.

Page 69 of 74

We then took a hard look at various purported uses of the noexcept specifier.
Importantly, we observed that any need for the noexcept specifier, is rare,
highly specific, and typically geared to maximizing algorithmic runtime
performance in the presence of (dubious) strong exception-safety guarantees
imposed by a few (e.g., insert) member functions of standard containers. By
contrast, SG21's robust runtime contract-checking facility, for which an MVP is
on track to be released for C++26, will offer value in terms of correctness,
safety, security, and robustness, for any program that makes use of libraries —
especially the C++ Standard Library — having functions with narrow contracts.

Considering that excessive forced use of the noexcept specifier adds
substantial risk whereas widespread (optional) use of the C++ Contracts MVP
does just the opposite, the choice of which to favor seems obvious, yet the
Standards Committee does not need to make that choice! By simply following
the Lakos Rule in the C++ Standard Library specification, we leave open the
possibly for implementers to (1) strengthen the exception specifications
themselves or (2) provide a wide implementation that supports optional
contract checking in the appropriate build modes or (3) both at the same time.
(However, due to the inherent incompatibility identified by the Lakos Rule, a
violation handler throwing into a noexcept specification will necessarily result
in a call to std::terminate.)

Next, we restated the Lakos Rule and discussed its application. We then
clarified the Lakos Rule in the context of all we have learned about modern C++
and proceeded to tested its applicability on some previously thought-to-be
exceptions. For completeness, we provided its one and only known
(hypertechnical) exception, which involves the passing of indeterminate values
to a move constructor (or move assignment operator).

Finally, we provided recommendations for codifying the Lakos Rule as design
guidance geared toward the C++ Standard Library specification,
implementations of the Standard Library, arbitrary third-party library
providers, and ultimately end-user libraries. The conclusion is that Lakos Rule
has no known practical exceptions, pertains generally, and is especially
important for the Standard Library, which must support the multiverse.

12 ACKNOWLEDGEMENTS
I want to thank MIT Institute Professor of EE&CS Barbara Liskov, Ph.D.,
(Stanford, 1968) for her pioneering work on abstraction and, in particular, her
seminal observation, properly referred to as the Liskov Substitution Principle,
which has become the gold standard of backward-compatible versioning in
software. Separately, I would also like to thank everyone who inadvertently
motivated me to write down this cornucopia of rationale for what I thought was
“obviously” just sound modern software design.

Page 70 of 74

13 APPENDIX

13.1 How did we get here?
At the March, 2010, Standards Committee meeting in Pittsburgh, David
Abrahams brought to the Standards Committee's attention that, if a move
constructor is not known at compile time not to throw, there is no way to use it
to its full efficiency and still achieve the requisite strong exception guarantees,
e.g., appending to a std::vector.

In response to this unanticipated emergency, both the noexcept specifier and
noexcept operator were quickly concocted for the niche use of determining, at
compile time, whether a copy, move, or swap operation on a type was
nonthrowing. No other use was envisioned.

As this new language feature was being added to the Standard, some began to
question whether widening use of this nascent feature might be appropriate to
include other functions for which there was no fathomable reason why generic
code would ever need to query such a property.

Those intimately familiar with contract-checking in practice knew that, when
some form of contract-checking was eventually adopted into the Standard, one
of the viable (and useful) behaviors resulting from a detected precondition
violation would be to somehow throw a (e.g., user-provided) exception.

The Lakos Rule, which in essence states that a function having one or more
preconditions shall not have a nonthrowing exception specification, was
articulated to provide the needed appropriately conservative, objective guidance
since the hastily conceived noexcept specifier was about be summarily
distributed across the entire Standard Library during that frantic final meeting
in Madrid (March, 2011) before C++11 was shipped. After considerable
discussion, this important guidance58 was adopted with strong consensus
(>75%).

Over the years, several attempts to introduce contract checking into the C++
Standard have come and gone and, as yet, the Standard has nothing concrete
to show for it. We have, however, learned quite a bit about what is needed to
support contract checking at scale and are now poised to propose a solution
and a foundation for something that will be truly seminal to safety and
correctness in the C++ language.

In the meantime, we’ve had much discussion about certain alleged benefits of
employing noexcept much more liberally. A widely touted yet unsupported
claim states that declaring an arbitrary function noexcept can somehow

58 [N3248]

Page 71 of 74

measurably, let alone significantly, improve its runtime performance on
modern, general-purpose architectures. Any such claims are flat-out wrong.
Through controlled experiments and empirical measurement, this conjecture
has since been repeatedly and thoroughly debunked (see Section “Unrealisable
runtime performance benefits”).

These and other misguided beliefs and ideas about what noexcept can achieve
are likely responsible for the gross overuse of the noxcept specifier, which
already threatens the safe, valid use of C++ exceptions in practical
applications. Excessive unnecessary use of the noexcept specifier is destined
to become even more problematic and contraindicated once the highly
anticipated MVP for a general-purpose C++ contract-checking facility becomes
available (expected for C++26).

13.2 Structurally Inherited Functions and Contracts
This section is forthcoming in a future release of this paper.

13.3 const Member Functions and Contracts

This section is forthcoming in a future release of this paper.

13.4 Virtually Functions and Contracts
This section is forthcoming in a future release of this paper.

14 REFERENCES

[N3050] David Abrahams, Rani Sharoni, and Doug Gregor, “Allowing Move
 Constructors to Throw,” N3050R1, ISO, Geneva, March 12, 2010
 https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/
 n3050.html

[N3248] Alisdair Meredith and John Lakos, “noexcept Prevents Library
 Validation,” N3248, ISO, Geneva, February 28, 2011
 https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/
 n3248.pdf

[N3279] Alisdair Meredith and John Lakos, “Conservative use of noexcept
 in the Library,” N3279, ISO, Geneva, March 25, 2011
 https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/
 n3279.pdf

[P0178R0] Alisdair Meredith, “Allocators and swap,” P1078R0, ISO, Geneva,
 February 15, 2016
 https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/
 p0178r0.html

Page 72 of 74

[P1656R2] Agustín Bergé, “‘Throws: Nothing’ should be noexcept,” P2834R0,
 ISO, Geneva, February 11, 2020
 https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/
 p1656r2.html

[P2300R6] Michał Dominiak et al., “std::execution,” P2300R6, ISO,
 Geneva, January 19, 2023
 https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/
 p2300r6.html

[P2521R2] Gašper Ažman , Joshua Berne , Bronek Kozicki, Andrzej
 Krzemieński , Ryan McDougall, Caleb Sunstrum, “Contract
 support — Working Paper,” P2521R2, ISO, Geneva, March 15,
 2022
 https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/
 p2521r2.html

[P2646R0] Parsa Amini, Joshua Berne, and John Lakos, “Explicit Assumption
 Syntax Can Reduce Run Time,” P2646R0, ISO, Geneva, October
 15, 2022
 https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/
 p2646r0.pdf

[P2698R0] Bjarne Stroustup, “Unconditional termination is a serious
 problem,” P2698R0, ISO, Geneva, November 18, 2022
 https://www.openstd.org/jtc1/sc22/wg21/docs/papers/2022/
 p2698r0.pdf

[P2821R0] Jarrad J. Waterloo, “span.at(),” P2821R0, ISO, Geneva, February
 20, 2023
 https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/
 p2821r0.html

[P2831R0] Timur Doumler and Ed Catmur, “Functions having a narrow
 contract should not be noexcept,” P2831R0, ISO, Geneva, May
 15, 2023
 https://isocpp.org/files/papers/P2831R0.pdf

[P2834R0] Joshua Berne and John Lakos, “Semantic Stability Across
 Contract-Checking Build Modes,” P2834R0, ISO, Geneva, May 15,
 2023
 https://isocpp.org/files/papers/P2834R0.pdf

Page 73 of 74

[P2837R0] Alisdair Meredith and Harold Bott, Jr., “Planning to Revisit the
 Lakos Rule: The Lakos Rule is Foundational for Contracts,”
 P2837R0, ISO, Geneva, May 10, 2023

[P2853R0] Andrew Tomazos, “Proposal of std::contract_violation,” P2853R0,
 ISO, Geneva, April 24, 2023
 https://isocpp.org/files/papers/P2853R0.pdf

[Cargill92] Tom Cargill, C++ Programming Style (Reading, MA: Addison-
 Wesley, 1992).

[Dekker19a] Niels Dekker, “noexcept_benchmark.” published via GitHub,
 January 18, 2019
 https://github.com/NDekker/noexcept_benchmark/blob/main
 /LICENSE

[Dekker19b] Niels Dekker, “Lightning Talk: noexcept considered harmful???”
 C++ on Sea, 2015
 https://www.youtube.com/watch?v=dVRLp-Rwg0k

[gehad17] Gehad Alkady, Hassanein H. Amer, and Ramez M. Daoud,
 “Remotely configurable fault-tolerant FPGA-based pacemaker,”
 2017 12th International Conference on Computer Engineering and
 Systems (ICCES), Cairo, Egypt, 2017, pp. 19–24
 https://ieeexplore.ieee.org/abstract/document/8275270

[indepth21] Jakub Šimánek, “Building A Fault Tolerant Rebreather: Our Path
 to Simplicity,” InDepth, February 2, 2021
 https://gue.com/blog/building-a-fault-tolerant-rebreather-our-
 path-to-simplicity/

[Khlebnikov2023] Rostislav Khlebnikov, “Function Contracts in Practice,”
 ACCU, 2023

[Lakos15a] John Lakos, “Value Semantics: it Ain’t About the Syntax, Parts I,
 and II,” CppCon, 2015
 https://www.youtube.com/watch?v=W3xI1HJUy7Q
 https://www.youtube.com/watch?v=0EvSxHxFknM

[Lakos15b] John Lakos, “Value Semantics: it Ain’t About the Syntax," ACCU,
 2015
 https://accu.org/conf-docs/PDFs_2015/JohnLakos-
 Value%20Semantics.pdf

Page 74 of 74

[Lakos20] John Lakos, Large-Scale C++, Volume I, Process and Architecture,
 Boston: Addison-Wesley, 2020

[Lakos22a] John Lakos, Vittorio Romeo, Alisdair Meredith, and Rostislav
 Khlebnikov, Embracing Modern C++ Safely, Boston: Addison-
 Wesley, 2022

[Lakos22b] John Lakos, “Embracing noexcept Operators and Specifiers
 Safely,” CppCon, 2022
 https://www.youtube.com/watch?v=VXPw1FJPhLA

[Liskov87] Barbara Liskov, “Data Abstraction and Hierarchy,” OOPSLA, 1987
 https://www.cs.tufts.edu/~nr/cs257/archive/barbara-
 liskov/data-abstraction-and-hierarchy.pdf

[Meyers15] Scott Meyers, Effective Modern C++: 42 Specific Ways to Improve
 Your Use of C++11 and C++14. 1st edition. Sebastopol, CA: O’Reilly,
 2015

[Mortoray13] Edaqa Mortoray, “The true cost of zero cost exceptions.” Musing
 Mortoray Blog, September 12, 2013
 https://mortoray.com/2013/09/12/the-true-cost-of-zero-cost-
 exceptions/

[O’Dwyer] Arthur O'Dwyer, “The Lakos Rule,” Stuff mostly about C++, blog,
 April 25, 2018
 https://quuxplusone.github.io/blog/2018/04/25/the-lakos-rule/

[Schoedl] Arno Schoedl, “A Practical Approach to Error Handling,” C++ on
 Sea, 2022
 https://www.youtube.com/watch?v=k7jjaS3FMWo

	Abstract
	0 Revisions
	1 Introduction
	2 Synopsis
	3 Terminology
	3.1 Essential and Implementation-Defined Behaviors
	3.2 Implementation Failure
	3.3 Preconditions and Undefined Behavior
	3.4 Library UB versus Language UB
	3.5 Narrow versus Wide Contracts
	3.6 noexcept and Contracts

	4 The Need For Narrow Contracts
	4.1 Cost-Effective Design, Development, Testing, and Performance
	4.2 Design by Contract (DbC) and the Liskov Substitution Principle (LSP)
	4.3 Structural Inheritance and Safe Substitutability
	4.4 Contract Extension and Backward Compatibility
	4.5 Wide Implementations for Narrow Interfaces
	4.6 Checked Builds

	5 The Need for Throwing Contract-Checking Violation Handlers
	5.1 Recovery
	5.2 Negative Testing

	6 Potential Pitfalls of Using noexcept
	6.1 Overly Strong Contract Guarantees
	6.2 Accidental Terminate
	6.2.1 Scenario 1
	6.2.2 Scenario 2

	7 Increasingly Dubious Optional Use of the noexcept Specifier
	7.1 Declaring Nonthrowing Move Operations
	7.2 A Wrapper that Provides noexcept Move Operations
	7.3 Callback Frameworks
	7.4 Enforced Explicit Documentation
	7.5 Reducing Object-Code Size
	7.6 Unrealizable Runtime Performance Benefits

	8 The C++ Standard Supports the Multiverse
	9 The Lakos Rule
	9.1 Exception(s) to the Lakos Rule
	9.2 Are swap Operations Exceptions to the Lakos Rule?
	9.3 Are move Operations Exceptions to the Lakos rule?
	9.4 Are There Any Exceptions to the Lakos Rule?

	10 Recommended Use of the noexcept Specifier
	10.1 The C++ Standard Library
	10.2 Standard-Library Implementations
	10.3 Third-Party Libraries
	10.4 End-User Libraries

	11 Conclusion
	12 Acknowledgements
	13 Appendix
	13.1 How did we get here?
	13.2 Structurally Inherited Functions and Contracts
	13.3 const Member Functions and Contracts
	13.4 Virtually Functions and Contracts

	14 References

