
Remove Deprecated Arithmetic Conversion on Enumerations From
C++26

Document #: P2864R0
Date: 2023-05-15
Project: Programming Language C++
Audience: Evolution

SG22 C interoperability
Revises: N/A
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 1

2 Revision History 2
2.1 R0: Varna 2023 . 2

3 Introduction 2

4 Rationale 2

5 Analysis 2
5.1 Implementation experience . 2

6 Past Feedback 3
6.1 Initial review: Telecon 2020/06/09 . 3

7 Proposal 4

8 Alternative Proposals 4
8.1 Undeprecate both forms . 4
8.2 Remove floating-point comparison but retain deprecated enum comparisons 4
8.3 Remove floating-point comparison but retain deprecated enum comparisons 4

9 Proposed Wording 4

10 Acknowledgements 6

11 References 6

1 Abstract
C++ has deprecated a number of features related to implicit conversions of enumeration values in comparison
operators that are often misleading and easily used accidentally. This paper proposes removing those features
from C++26.

1

mailto:ameredith1@bloomberg.net

2 Revision History
2.1 R0: Varna 2023
Initial draft of this paper, based on [P2139R2].

3 Introduction
At the start of the C++23 cycle, [P2139R2] tried to review each deprecated feature of C++ to see which we
would benefit from actively removing and which might now be better undeprecated. Consolidating all this
analysis into one place was intended to ease the (L)EWG review process but in return gave the author so much
feedback that the next revision of the paper was not completed.

For the C++26 cycle, a much shorter paper, [P2863R0], will track the overall analysis, but for features that
the author wants to actively progress, a distinct paper will decouple progress from the larger paper so that the
delays on a single feature do not hold up progress on all.

This paper takes up the deprecated arithmetic conversion on enumerations, D.2 [depr.arith.conv.enum].

4 Rationale
With the introduction of the three-way comparison “spaceship” operator, committee members were concerned
with avoiding some implicit comparisons that might be lossy (due to rounding of floating point values) or giving
up intended type safety (by using enumeration rather than integer types to indicate more than just a value).
While the three-way comparison operators are specified to reject such comparisons, the pre-existing comparison
operators were granted ongoing compatibility in these cases but were deprecated. Most but not all such usage
relying on implicit conversion is likely a latent bug, and reading such code would always be clearer if the implicit
conversions were made explicit. Note that avoiding explicit casts is still possible by using unary operator+,
forcing integral promotion.

5 Analysis
Certain arithmetic conversion on enumerations were deprecated for C++20 by [P1120R0] as part of the effort
to make the new spaceship operator Do The Right Thing. These deprecations potentially impact code written
according to C++98 and later Standards.

Specifically, enum objects comparing against floating point values were deprecated by C++20 as were comparisons
between different enum types and arithmetic operations between different enum types. For clarity, operations
between integer types and enumerations are not impacted, so promoting an enum value to an integer with unary
operator+ is often a quick fix:
int main() {

enum E1 { e };
enum E2 { f };
int k = f - e; // deprecated
int x = +f - e; // OK

}

Note that these conversions are deprecated only when evaluating comparison operators; in all other contexts,
such conversions are already ill-formed.

5.1 Implementation experience
The following program was tested on Godbolt compiler explorer, pulled from Annex D of the Standard.

2

https://wg21.link/depr.arith.conv.enum

int main() {
enum E1 { e };
enum E2 { f };
bool b = e <= 3.7; // deprecated
int k = f - e; // deprecated

}

Built in (sometimes experimental) C++20 mode, we find deprecation warnings from the following compiler
versions:
clang 10
GCC 11.1
MSVC 19.22 (floating point only)
EDG/Intel Does not warn with EDG front end

6 Past Feedback
6.1 Initial review: Telecon 2020/06/09
Concerns were raised about ongoing C compatibility. Any recommendation on removing deprecated support in
D.1 will be forwarded to our WG14 liaison to hopefully have a coordinated process for removing such features.

Concerns were raised over several issues of interoperating with different enumeration types, including expressions
used to initialize global variables, and for expressions used to define array bounds. Similarly, metaprogramming
idioms from C++98 often used enumerations to denote result values (saving on storage for a static data member),
and comparing such named values from different instantiations of the same template is the expected usage.

Another concern was raised regarding idioms that externally extend another enumeration without intruding on
the original, e.g.,
enum original { e_FIRST, ... , e_LAST };
enum extended { e_NEXT = e_LAST + 1, ... , e_MORE };

with the intent that the extended enumeration can interoperate with the original.

Fewer concerns arose for removing the interoperation with floating point types, although some discussion focused
on the workarounds. Concerns were raised that the “simple” forced promotion through unary operator + is too
clever/cute but that static_cast, or C-style casts, are verbose and risk converting to a different type than the
previous implicit integer promotion.

An ongoing concern focuses on gaining more specific feedback on implementation experience with the deprecation
warning before making any change and on gaining experience with any removal that might silently change
behavior in SFINAE contexts.

6.1.1 Polls:

Q1: In C++23, un-deprecate enum vs. enum?
| SF F N A SA
| 1 2 7 6 4

No consensus.

Q2: In C++23, un-deprecate enum vs. floating-point?
| SF F N A SA
| 8 1 4 8 6

No consensus.

3

Q3: In C++23, remove the deprecated enum vs. enum facilities?
| SF F N A SA
| 1 2 10 7 1

No consensus.

Q4: In C++23, remove the deprecated enum vs. floating-point facilities?
| SF F N A SA
| 7 10 4 0 1

Consensus.

7 Proposal
This paper proposes removing both kinds of deprecated conversions. Note that enum conversions and comparisons
for enum class were never supported, but both changes would be a backward compatibility concern for code
that compiles with both C and C++.

8 Alternative Proposals
We might also consider a few options.

8.1 Undeprecate both forms
If we believe the proposed changes are actively harmful to good code and best practices, we should undeprecate
both behaviors. Anecdotal data from resolving deprecation warnings in our own code shows that the warnings
raised were good to consider and relatively simple to resolve, so we reject this option.

8.2 Remove floating-point comparison but retain deprecated enum comparisons
Noting the feedback from the C++23 cycle, acting on only removing the floating-point comparisons while
retaining, as deprecated, the support for different enum types might be preferred.

The question with this approach is what we expect to gain by retaining the deprecated conversions. Compilers
have been warning for a few years, and two Standards have shipped. What more would it take to persuade us
to change the status of those conversions?

8.3 Remove floating-point comparison but retain deprecated enum comparisons
Noting the feedback from the C++23 cycle, acting on only removing the floating-point comparisons and restoring
the support for different enum types might be preferred.

We note that the earlier polling leaned more strongly against undeprecation than it did toward removal, hence the
recommendation for outright removal as the primary proposal. However, if we do not expect to learn anything
new in the next one or two Standard cycles, we should consider undeprecating a feature if we lack the confidence
to ever remove it.

9 Proposed Wording
All changes are relative to [N4944].

7.4 Usual arithmetic conversions [expr.arith.conv]

4

1 Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield
result types in a similar way. The purpose is to yield a common type, which is also the type of the result. This
pattern is called the usual arithmetic conversions, which are defined as follows:

— If either operand is of scoped enumeration type (9.7.1 [dcl.enum]), no conversions are performed; if the
other operand does not have the same type, the expression is ill-formed.

— Otherwise, if one operand is of enumeration type and the other operand is of a different enumeration type
or a floating-point type, the expression is ill-formed.

— Otherwise, if either operand is of floating-point type, the following rules are applied:
— If both operands have the same type, no further conversion is needed.
— Otherwise, if one of the operands is of a non-floating-point type, that operand is converted to the

type of the operand with the floating-point type.
— Otherwise, if the floating-point conversion ranks (6.8.6 [conv.rank]) of the types of the operands are

ordered but not equal, then the operand of the type with the lesser floating-point conversion rank is
converted to the type of the other operand.

— Otherwise, if the floating-point conversion ranks of the types of the operands are equal, then the
operand with the lesser floating-point conversion subrank (6.8.6 [conv.rank]) is converted to the type
of the other operand.

— Otherwise, the expression is ill-formed.
— Otherwise, each operand is converted to a common type C. The integral promotion rules (7.3.7 [conv.prom])

are used to determine a type T1 and type T2 for each operand. Then the following rules are applied to
determine C:

— If T1 and T2 are the same type, C is that type.
— Otherwise, if T1 and T2 are both signed integer types or are both unsigned integer types, C is the type

with greater rank.
— Otherwise, let U be the unsigned integer type and S be the signed integer type.

— If Uhas rank greater than or equal to the rank of S, C is U.
— Otherwise, if S can represent all of the values of U, C is S.
— Otherwise, C is the unsigned integer type corresponding to S.

2 If one operand is of enumeration type and the other operand is of a different enumeration type or a floating-point
type, this behavior is deprecated (D.2 [depr.arith.conv.enum]).

C.1.X Clause 7: Expressions [diff.cpp23.expr]

Affected subclause: 7.4 [expr.arith.conv]

Change: Cannot compare nor perform arithmetic on enumerations with enumerations of a different type nor
with a floating-point type.

Rationale: The old behavior was confusing, as it did not compare the contents of the two arrays but their
addresses. Depending on context, this would either report whether the two arrays were the same object or have
an unspecified result.

Effect on original feature: A valid C++ 2023 program directly comparing two enumeration objects of different
type or an enumeration object with a floating-point object will be rejected as ill-formed in this International
Standard. [Example 1:
enum E1 { e };
enum E2 { f };
bool b = e <= 3.7; // ill-formed; previously well-formed
int k = f - e; // ill-formed; previously well-formed

—end example]

C.5.3 Clause 7: expressions [diff.expr]

Affected subclause: 7.4 [expr.arith.conv]

5

https://wg21.link/dcl.enum
https://wg21.link/conv.rank
https://wg21.link/conv.rank
https://wg21.link/conv.prom
https://wg21.link/depr.arith.conv.enum
https://wg21.link/expr.arith.conv
https://wg21.link/expr.arith.conv

Change: Cannot compare nor perform arithmetic on enumerations with enumerations of a different type nor
with a floating-point type.

Rationale: Reinforcing type safety in C++, consistent with the three-way comparison operator.

Effect on original feature: Well-formed C code will not compile with C++26.

Difficulty of converting: Violations will be diagnosed by the C++ translator.

How widely used: Uncommon.

D.2 Arithmetic conversion on enumerations [depr.arith.conv.enum]
1 The ability to apply the usual arithmetic conversions (7.4 [expr.arith.conv]) on operands where one is of one

enumeration type and the other is of a different enumeration type or a floating-point type is deprecated.

[Note 1: Three-way comparisons (7.6.8 [expr.spaceship]) between such operands are ill-formed. —end note]

[Example 1:
enum E1 { e };
enum E2 { f };
bool b = e <= 3.7; // deprecated
int k = f - e; // deprecated
auto cmp = e <=> f; // error

—end example]

10 Acknowledgements
Thanks to Michael Parks for the pandoc-based framework used to transform this document’s source from Mark-
down.

Thanks again to Matt Godbolt for maintaining Compiler Explorer, the best public resource for C++ compiler
and library archaeology, especially when researching the history of deprecation warnings!

11 References
[N4944] Thomas Köppe. 2023-03-22. Working Draft, Standard for Programming Language C++.

https://wg21.link/n4944

[P1120R0] Richard Smith. 2018-06-08. Consistency improvements for <=> and other comparison operators.
https://wg21.link/p1120r0

[P2139R2] Alisdair Meredith. 2020-07-15. Reviewing Deprecated Facilities of C++20 for C++23.
https://wg21.link/p2139r2

6

https://wg21.link/expr.arith.conv
https://wg21.link/expr.spaceship
https://wg21.link/n4944
https://wg21.link/p1120r0
https://wg21.link/p2139r2

	Abstract
	Revision History
	R0: Varna 2023

	Introduction
	Rationale
	Analysis
	Implementation experience

	Past Feedback
	Initial review: Telecon 2020/06/09

	Proposal
	Alternative Proposals
	Undeprecate both forms
	Remove floating-point comparison but retain deprecated enum comparisons
	Remove floating-point comparison but retain deprecated enum comparisons

	Proposed Wording
	Acknowledgements
	References

