
offsetof Should Be A Keyword In C++26
Supporting standard C++23 macros in module std

Document #: P2883R0
Date: 2023-05-12\5
Project: Programming Language C++
Audience: Evolution Incubator
Revises: N/A
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 1

2 Revision history 2
2.1 R0: Varna 2023 . 2

3 Introduction 2

4 Stating the problem 2
4.1 Macros cannot be exported . 2
4.2 Macros mangle C++ . 2
4.3 Unnecessary undefined behavior . 3
4.4 Result cannot be used in pointer arithmetic . 3

5 Proposed resolution 4
5.1 Adopt offsetoff as a keyword . 4
5.2 Specify semantics for the operator . 4
5.3 Define pointer arithmetic with the result of offsetof . 4
5.4 Potential incompatibilities . 4

6 Implementation experience 4

7 Alternative resolutions 5
7.1 Make <cstddef> an importable header unit . 5
7.2 Open a core issue . 5
7.3 Open a library issue . 5

8 Wording 5

9 Acknowledgements 5

10 References 5

1 Abstract
Macros cannot be exported from a C++ module. This proposal suggests that the C++23 Standard Library
macro offsetof would be better specified as a keyword, removing it from the set of library features that are
not made available by importing the standard library module std.

1

mailto:ameredith1@bloomberg.net

2 Revision history
2.1 R0: Varna 2023
Initial draft of the paper.

3 Introduction
C++23 introduced the standard library module std that is intended to import the whole standard library, see
[P2465R3]. However, this module leaves a gap for all the library facilities that are specified as macros. Paper
[P28654R0] is tracking progress of a set of papers that attempt to support all language facilities that are currently
specified with the aid of macros with that single import. This paper addresses the macro offsetof.

One key question is whether offsetof is a significant enough feature to be investing committee time in. I
believe that this macro makes one of the stronger cases for an improved C++ experience by integrating it into
the core language and resolving outstanding issues. As a first paper on moving standard library macros into the
language, it is a good gauge of how much we want to invest resources into such a project.

4 Stating the problem
There are a few issues with the offsetof macro that we would like to address, primarily motivated to start the
word due to the poor interaction with import std;.

4.1 Macros cannot be exported
The macro offsetof is defined in the <cstddef> header, which is not an importable header unit. While the
contents of this header are exported from the standard library module std, such exports cannot include macros,
as the grammar for module interface units is defined only in terms of declarations with external linkage, 10.2
[module.interface], which cannot describe a macro. Likewise, the standard library module std.compat cannot
export macros either.

If <cstddef> were an importable header unit, then macros would be available by importing that header module
15.5 [cpp.import], but as <cstddef> is not an importable header unit, users must directly #include this header to
access the offsetof macro. This does not play well with a long term goal of moving C++ past the preprocessor
as part of how we build code.

4.2 Macros mangle C++
As specific macros are not direct language features, but rather manipulate source text, there are often surprising
outcomes when the C++ source code to be supplied as an argument to a macro includes the , character; the
macro subsystem will see the comma, and treat it as a separator between macro arguments. This problem with
commas often arises with template arguments and brace-initalizers, but does not occur in the common case of
regular function arguments due to the nested brackets, e.g., MACRO(call(1,2)).

The common workaround for such issues is to wrap each macro argument in its own pair of brackets. However,
this does not work for the offsetof macro as neither argument supports parentheses.

Also, it is not clear whether a type expression, such as produced by the decltype operator, is valid for the first
argument or whether you must literally spell the name of a type as the token used preprocessing the macro. In
practice, it appears to work.

4.2.1 Simple Example

import std;
#include <cstddef> // not an imoportable heder unit

2

https://wg21.link/module.interface
https://wg21.link/cpp.import

template <typename A, typename B>
struct Test {

int data;
};

using TestInts = Test<int, int>;
static_assert(offsetof(TestInts, data) == 0); // OK

static_assert(offsetof(Test< int,int>, data) == 0); // error
static_assert(offsetof((Test< int,int>), data) == 0); // error

#define WRAP(...) __VA_ARGS__
static_assert(offsetof(WRAP(Test<int, int>), data) == 0); // OK? Assumes no nested macros in implementation of `offsetof`
#undef WRAP

static_assert(offsetof(decltype(Test<int, int>{}), data) == 0); // OK?

// General case that does not assume default constructability
using namespace std;
static_assert(offsetof(remove_reference_t<

decltype(declval<Test<int, int>>())
>, data) == 0);

4.3 Unnecessary undefined behavior
The valid set of arguments to the offsetof macro is restricted. It is conditionally supported for the first type
argument to be type that is not a standard layout class type; note that “conditionally supported” requires
non-supported cases to be a diagnosable error, so there should be no UB here.

However, for the second argument the standard says:

The result of applying the offsetof macro to a static data member or a function member is undefined.

This is also a statically determined property at the point the macro is called, so should also be a diagnosable
error in C++. This situation does not arise in C.

4.4 Result cannot be used in pointer arithmetic
The result of the offsetof macro cannot be used with regular pointer arithmetic to produce a pointer with the
address of a non-static data member, as pointer arithmetic on the address of an object, or its first non-static
data member, is not defined (7.6.6 [expr.add]p4). For example, the following program has undefined behavior
on the commented line:
#include <cstddef>
#include <cstdio>

struct T {
int i;
double j;
short k;
void *p;

};

int main() {

3

https://wg21.link/expr.add

using namespace std;

T x = {};
size_t y = offsetof(T, k);
short *p = (short*)((byte*)&x + y); _// `operator+` has undefined behavior_
*p =123;
printf("%d", x.k);

}

Note that the equivalent program in C has well-defined behavior, and every C++ compiler/library I have tried
consistently produced the same behavior as the C program as their own manifestation of UB.

See [EMCS] Generalized PODs for a detailed discussion, and examples making well-defined use of the offsetof
macro.

5 Proposed resolution
5.1 Adopt offsetoff as a keyword
Add offsetof to the list of keywords and non-overloadable operators. No conforming code breaks, as C++
users cannot define an offsetof macro, but can they define an offsetof function as long as they do not include
any standard headers.

5.2 Specify semantics for the operator
Define the semantics of the offsetof operator under 7.6.2 [expr.unary]

Ensure errors are diagnosable, not UB.

5.3 Define pointer arithmetic with the result of offsetof
Define restricted pointer arithmetic on std::byte* pointing to the address of a standard layout class object,
such that the increment would match a result from offsetof on that type. Similar arithmetic in non-standard
layout classes is conditionally supported.

Note that, as far as we can tell, all current compilers already behave in this manner, even though the standard
imposes no requirements on such a program.

5.4 Potential incompatibilities
As offsetof is a macro, it appears can be used in the predicate of a #if directive. However, to make sense of
the type argument, the compiler must already have parsed source to the point that it knows that identifier is a
class type, and that does not happen during preprocessing.

Users may have used offsetof as an identifier in their own code. However, valid use of this identifier by users
is very restricted.

The implementation of the headers <stddef.h> and <cstddef>, when included by a C++ compiler, must avoid
defining the offsetof macro if the C++ feature macro cpp_offsetof_keyword is defined.

6 Implementation experience
None.

4

https://wg21.link/expr.unary

7 Alternative resolutions
7.1 Make <cstddef> an importable header unit
This would allow us to import std; without requiring a #include, to allow users the bare minimum support to
modernize their code, if they desire. The main benefit of import over #include though, other than supporting
coding conventions, is to constrain the header to be idempotent, which would mostly affect the library imple-
menters rather than the library consumers. Most of the other benefits of making this header an importable
header unit were resolved by the introduction of the std library module, e.g., the definition of common type
aliases such as size_t and ptrdiff_t.

7.2 Open a core issue
Open a core issue to make the pointer arithmetic well-defined.

7.3 Open a library issue
Open a LWG issue to diagnose functions and static data members, rather than UB.

8 Wording
All wording is relative to [N4944], the latest working draft at the time of writing.

N O T E : W O R D I N G T O B E D O N E

9 Acknowledgements
Thanks to Michael Parks for the pandoc-based framework used to transform this document’s source from Mark-
down.

Thanks to Aaron Ballman for insights into the corresponding feature in C.

10 References
[EMCS] John Lakos, Vittorio Romeo, Rostislav Khlebnikov, and Alisdair Meredith. 2021. Embracing Modern

C++ Safely.
[N4944] Thomas Köppe. 2023-03-22. Working Draft, Standard for Programming Language C++.

https://wg21.link/n4944

[P2465R3] Stephan T. Lavavej, Gabriel Dos Reis, Bjarne Stroustrup, Jonathan Wakely. 2022-03-11. Standard
Library Modules std and std.compat.
https://wg21.link/p2465r3

[P28654R0] Alisdair Meredith. 2023-05-15. Macros And Standard Library Modules.
https://wg21.link/p2654r0

5

https://wg21.link/n4944
https://wg21.link/p2465r3
https://wg21.link/p2654r0

	Abstract
	Revision history
	R0: Varna 2023

	Introduction
	Stating the problem
	Macros cannot be exported
	Macros mangle C++
	Unnecessary undefined behavior
	Result cannot be used in pointer arithmetic

	Proposed resolution
	Adopt offsetoff as a keyword
	Specify semantics for the operator
	Define pointer arithmetic with the result of offsetof
	Potential incompatibilities

	Implementation experience
	Alternative resolutions
	Make <cstddef> an importable header unit
	Open a core issue
	Open a library issue

	Wording
	Acknowledgements
	References

