
‭P2911R1 - Python Bindings‬
‭with Value-Based Reflection‬
‭Authors:‬ ‭,‬Adam Lach Jagrut Dave
‭Last Updated:‬ Sep 18, 2023
‭Status:‬ ‭In progress‬

‭Abstract‬

‭Python/C++ bindings are heavily used in numerical calculation packages such as NumPy. The‬

‭goal of this paper is to discuss the benefits and challenges of using value-based reflection‬

‭(P2320 and P1240R2) to simplify creating C++/Python bindings. A previous attempt at simplifying‬

‭Python bindings using reflection, focused on Boost.Python and macro-based reflection, can be‬

‭found in the appendix. This paper uses contemporary value-based reflection, which has a path‬

‭forward towards being accepted into the C++ standard, and is aimed at pybind11, a popular open‬

‭source Python library for binding existing C++ code to Python. Familiarity with value-based‬

‭reflection APIs (P2320 and P1240R2) and pybind11 are assumed.‬

‭Updates since P2911R0‬

‭-‬ ‭Clarification about out of scope items.‬

‭-‬ ‭Discussion on reflecting function parameter names, and when that should raise an invalid‬

‭reflection error.‬

‭-‬ ‭Provided a better example of dangerous behavior caused by default bindings‬

‭-‬ ‭Detailed discussion on expanding a range of reflected entities to produce a range of their‬

‭names,‬‭meta::name_of/names_of‬‭functions.‬

‭-‬ ‭Added a section on overloaded operators bindings.‬

‭-‬ ‭Added a section comparing the Classdesc framework with value-based reflection and‬

‭future work.‬

‭-‬ ‭Grammatical improvements.‬

mailto:alach3@bloomberg.net
mailto:jdave12@bloomberg.net

‭Introduction‬

‭Python bindings can be created by the means of the Python/C API‬‭. It is, however, rarely used‬1

‭directly in practice. Instead, wrapper libraries like Boost.Python or pybind11 are frequently used‬‭.‬2

‭For the sake of simplicity, this paper will focus on using C++ reflection to simplify creating Python‬

‭bindings on top of pybind11.‬

‭Out of Scope‬

‭●‬ ‭The Python/C API. Our research has not dwelled on the C API that allows for writing‬

‭Python extensions. Though such an approach may provide performance benefits, we‬

‭believe that most developers would prefer using the ergonomic API provided by pybind11,‬

‭which is friendly to modern C++.‬

‭●‬ ‭For binding data members, pybind11 requires taking their address. However, this approach‬

‭will not work with bit fields. One way to circumvent that problem is to generate setters‬

‭and getters for such data members and bind them as properties‬‭. Automating that using‬3

‭reflection should not pose any difficulties.‬

‭Use Cases‬

‭We have used a simple implementation of an order crossing engine in C++, with a carefully‬

‭tailored implementation to cover many common bindings applications like:‬

‭●‬ ‭Enumerations‬

‭●‬ ‭Data members‬

‭●‬ ‭Function members‬

‭●‬ ‭Constructors‬

‭●‬ ‭Inheritance‬

‭●‬ ‭Function overloads‬

‭●‬ ‭Nested type aliases‬

‭●‬ ‭Operators‬

‭In this document, we discuss a subset of the above applications, which, in our opinion, are the‬

‭most important and informative.‬

‭3‬ ‭See‬‭https://pybind11.readthedocs.io/en/stable/classes.html#instance-and-static-fields‬

‭2‬ ‭There are other ways to create Python bindings like Cython or SWIG, which are not considered in this‬
‭paper since they are not good candidates to be used with C++ reflection.‬

‭1‬ ‭See‬‭https://docs.python.org/3/c-api/index.html‬

https://pybind11.readthedocs.io/en/stable/classes.html#instance-and-static-fields
https://docs.python.org/3/c-api/index.html

‭C/C++‬

‭C/C++‬

‭Enumerations‬

‭Enumerations are a common example of how reflection facilities can improve C++ code. To not‬

‭part with this tradition, we start with an example showing Python bindings for an enum.‬

‭struct‬‭Execution‬‭{‬

‭enum‬‭class‬‭Type‬‭{‬
‭new_,‬
‭fill,‬
‭partial,‬
‭cancelled,‬
‭rejected‬

‭};‬

‭};‬

‭Typical bindings would look like:‬

‭py::enum_<Execution::Type>(‬‭binding‬‭scope‬‭,‬‭"Type"‬‭)‬
‭.value(‬‭"new_"‬ ‭,‬‭Execution::Type::new_)‬
‭.value(‬‭"fill"‬ ‭,‬‭Execution::Type::fill)‬
‭.value(‬‭"partial"‬ ‭,‬‭Execution::Type::partial)‬
‭.value(‬‭"cancelled"‬‭,‬‭Execution::Type::cancelled)‬
‭.value(‬‭"rejected"‬‭,‬‭Execution::Type::rejected);‬

‭From the above, it can be seen that‬

‭●‬ ‭There is plenty of repetition.‬

‭●‬ ‭If‬‭Execution::Type‬‭is modified, then the bindings‬‭code has to be updated manually.‬

‭●‬ ‭If an enumeration value is added to‬‭Execution::Type‬‭no compiler error / warning will‬

‭be emitted hence bindings code can easily diverge from the bound code.‬

‭●‬ ‭The names of individual enumerations have to be repeated as strings, which is prone to‬

‭typos that cannot be detected by the compiler.‬

‭With reflection, we can automate the task:‬

‭C/C++‬

‭C/C++‬

‭bind_enum<Execution::Type>(‬‭binding_scope‬‭);‬

‭Where‬‭bind_enum‬‭can be implemented as‬‭:‬4

‭template‬‭<‬‭typename‬‭T>‬
‭std::string‬‭basename()‬‭{‬

‭auto‬‭name‬‭=‬‭std::string{name_of(^T)};‬‭// ^T reflects‬‭type T‬‭.‬

‭if‬‭(size_t‬‭pos‬‭=‬‭name.rfind(‬‭':'‬‭);‬
‭pos‬‭!=‬‭std::string::npos)‬‭{‬
‭return‬‭name.substr(name.rfind(‬‭':'‬‭)‬‭+‬‭1‬‭);‬

‭}‬
‭return‬‭name;‬

‭}‬

‭template‬‭<‬‭typename‬‭EnumT,‬‭typename‬‭Scope>‬
‭void‬‭bind_enum(Scope&‬‭s)‬‭{‬

‭auto‬‭enum_‬‭=‬‭py::enum_<EnumT>(s,‬‭basename<EnumT>().c_str());‬

‭// members_of() produces an iterable list‬‭.‬
‭// of all the members of an enumeration.‬
‭// `template for` iterates over a range at compile‬‭time.‬

‭template‬‭for‬‭(‬‭constexpr‬‭auto‬‭e‬‭:‬‭members_of(^EnumT))‬‭{‬
‭enum_.value(name_of(e),‬‭[:e:]);‬‭// [:e:] un-reflects‬‭e‬‭.‬

‭}‬
‭}‬

‭Note that the reflection-based implementation does not suffer from any of the shortcomings‬

‭mentioned earlier.‬

‭Data members‬

‭Binding public data members is a seemingly straightforward task. Consider a simple aggregate‬

‭type:‬

‭4‬ ‭https://cppx.godbolt.org/z/T445M639n‬

https://cppx.godbolt.org/z/T445M639n

‭C/C++‬

‭C/C++‬

‭C/C++‬

‭C/C++‬

‭struct‬‭Order‬‭{‬
‭int‬‭side‬‭=‬‭1‬‭;‬
‭size_t‬‭quantity‬‭=‬‭0‬‭;‬

‭};‬

‭The typical bindings code would look like:‬

‭py::class_<Order>(‬‭binding‬‭scope‬‭,‬‭"Order"‬‭)‬
‭.def_readwrite(‬‭"side"‬‭,‬‭&Order::side)‬
‭.def_readwrite(‬‭"quantity"‬‭,‬‭&Order::quantity);‬

‭It can be seen that:‬

‭●‬ ‭The names of data members have to be repeated as strings, which are prone to typos‬

‭that cannot be detected by the compiler.‬

‭●‬ ‭Since side and quantity are mutable public data members, it is reasonable to provide both‬

‭read and write access from Python.‬

‭With reflection, we can automate the task:‬

‭bind_mem_var<Order>(‬‭binding_scope‬‭);‬

‭Where‬‭bind_mem_var‬‭can be implemented‬ ‭as:‬5

‭template‬‭<‬‭typename‬‭ClassT,‬‭typename‬‭Scope>‬
‭void‬‭bind_mem_var(Scope&‬‭s)‬‭{‬

‭template‬‭for‬‭(‬‭constexpr‬‭auto‬‭e‬‭:‬‭data_member_range(^ClassT)){‬
‭constexpr‬‭auto‬‭name‬‭=‬‭name_of(e);‬
‭if‬‭constexpr‬‭(is_public(e)‬‭&&‬‭!is_static_data_member(e)){‬

‭if‬‭constexpr‬‭(has_const_type(e))‬‭{‬

‭5‬ ‭https://cppx.godbolt.org/z/3efezYqEE‬

https://cppx.godbolt.org/z/3efezYqEE

‭C/C++‬

‭s.def_readonly(name,‬‭&[:e:]);‬
‭}‬‭else‬‭{‬

‭s.def_readwrite(name,‬‭&[:e:]);‬
‭}‬

‭}‬
‭}‬

‭}‬

‭Note that the reflection-based implementation does not suffer from any of the shortcomings‬

‭mentioned earlier. However, there is an important caveat related to the choice of the default‬

‭behavior. Frequently, Python bindings expose a more limited API than that offered by the‬

‭underlying C++ code. In that case, it would be beneficial to allow some way of customizing the‬

‭behavior of‬‭bind_mem_var‬‭for select data members.‬‭We discuss bindings customization in more‬

‭detail in the Conclusions section.‬

‭Member functions‬

‭Bindings for member functions can be exposed in a similar way to data members due to existing‬

‭quasi-reflection capabilities of C++. Specifically, it is possible to reflect on the return type and‬

‭argument types of a member function using existing C++ features. Considering a partial‬

‭implementation of an order crossing engine:‬

‭struct‬‭CrossingEngine‬‭{‬
‭std::vector<Order>‬‭const&‬‭getAsks()‬‭const‬‭{‬‭return‬‭asks;‬‭}‬
‭std::vector<Order>‬‭const&‬‭getBids()‬‭const‬‭{‬‭return‬‭bids;‬‭}‬

‭private‬‭:‬
‭std::vector<Order>‬‭asks;‬
‭std::vector<Order>‬‭bids;‬

‭};‬

‭Naive bindings code could look like:‬

‭C/C++‬

‭C/C++‬

‭Python‬

‭py::class_<CrossingEngine>(‬‭binding_scope‬‭,‬‭"CrossingEngine"‬‭)‬
‭.def(‬‭"getAsks"‬‭,‬‭&CrossingEngine::getAsks)‬
‭.def(‬‭"getBids"‬‭,‬‭&CrossingEngine::getBids);‬

‭However, this bindings implementation might not be ideal since, by default, pybind11 will copy‬

‭std::vector<Order>‬‭into a Python list object‬ ‭every‬‭time‬‭getAsks‬‭or‬‭getBids‬‭is invoked‬6

‭from Python.‬

‭We can customize our implementation to avoid copying the return values as follows:‬

‭PYBIND11_MAKE_OPAQUE(std::vector<Order>);‬
‭py::class_<CrossingEngine>(‬‭binding_scope‬‭,‬‭"CrossingEngine"‬‭)‬

‭.def(‬‭"getAsks"‬‭,‬‭&CrossingEngine::getAsks,‬
‭return_value_policy::reference)‬

‭.def(‬‭"getBids"‬‭,‬‭&CrossingEngine::getBids,‬
‭return_value_policy::reference);‬

‭Note the need for‬‭PYBIND11_MAKE_OPAQUE‬‭and‬‭return_value_policy::reference‬
‭policy.‬

‭While this implementation solves the problem of unwanted data copies, it introduces yet another‬

‭problem which is more subtle. It stems from the difference in object lifetime management in C++‬

‭and Python. In cases of the latter, it is assumed that an object will be kept alive until at least one‬

‭handle to that object exists. However, with our implementation of‬‭CrossingEngine‬‭, the‬

‭references returned by‬‭getAsks‬‭and‬‭getBids‬‭will only‬‭be valid as long as the‬

‭CrossingEngine‬‭object is alive. This has to be taken‬‭into account when creating bindings.‬

‭For example, it is reasonable to expect the following Python code to work correctly:‬

‭def‬‭execute_and_get_remaining_asks(orders):‬
‭engine‬‭=‬‭CrossingEngine()‬

‭6‬ ‭This default approach is quite sensible as it avoids lifetime issues between Python and C++ and makes‬
‭the resulting Python APIs more pythonic.‬

‭C/C++‬

‭C/C++‬

‭C/C++‬

‭for‬‭order‬‭in‬‭orders:‬‭engine.cross(order)‬
‭return‬‭engine.getAsks()‬

‭remaining_asks‬‭=‬‭execute_and_get_remaining_asks(orders)‬
‭print‬‭(remaining_asks)‬

‭It might happen‬ ‭that‬‭engine‬‭will be garbage collected‬‭before‬‭print(remaining_asks)‬‭is‬7

‭called. As a consequence, the C++ object representing‬‭CrossingEngine‬‭instance will be‬

‭destroyed and‬‭remaining_asks‬‭will become a dangling‬‭reference. In order to address this‬

‭shortcoming, it is possible to use‬‭return_value_policy::reference_internal‬‭instead of‬

‭a plain‬‭return_value_policy::reference‬‭.‬

‭PYBIND11_MAKE_OPAQUE(std::vector<Order>);‬
‭py::class_<CrossingEngine>(‬‭binding‬‭scope‬‭,‬‭"CrossingEngine"‬‭)‬

‭.def(‬‭"getAsks"‬‭,‬‭&CrossingEngine::getAsks,‬
‭return_value_policy::reference_internal)‬

‭.def(‬‭"getBids"‬‭,‬‭&CrossingEngine::getBids,‬
‭return_value_policy::reference_internal);‬

‭It is straightforward to automate bindings for the basic case.‬

‭bind_mem_fn<CrossingEngine>(‬‭binding_scope‬‭);‬

‭Where‬‭bind_mem_fn‬‭can be implemented‬ ‭as:‬8

‭template‬‭<‬‭typename‬‭ClassT,‬‭typename‬‭Scope>‬
‭void‬‭bind_mem_fn(Scope&‬‭s)‬‭{‬

‭template‬‭for‬‭(‬‭constexpr‬‭auto‬‭e‬‭:‬‭member_fn_range(^ClassT))‬‭{‬
‭if‬‭constexpr‬‭(is_public(e)‬‭&&‬

‭8‬ ‭https://cppx.godbolt.org/z/aMzdfnKdr‬

‭7‬ ‭But it doesn’t have to, which is even worse.‬

https://cppx.godbolt.org/z/aMzdfnKdr

‭C/C++‬

‭!is_special_member_function(e))‬‭{‬
‭constexpr‬‭auto‬‭name‬‭=‬‭name_of(e);‬
‭if‬‭constexpr‬‭(is_nonstatic_member_function(e))‬‭{‬

‭s.def(name,‬‭py::overload_cast<‬
‭...[:type_of(param_range(e)):]...‬

‭>(&[:e:]));‬
‭}‬‭else‬‭{‬

‭s.def_static(name,‬‭&[:e:]);‬
‭}‬

‭}‬
‭}‬

‭}‬

‭Note that the‬‭py::overload_cast<...>‬‭is just a‬‭static_cast<..>‬‭in disguise that is used‬

‭to disambiguate different overloads of the same function.‬

‭However, it is not possible to solve the problem of unwanted copies and object lifetime‬

‭management without providing some degree of user customization. We discuss the problem of‬

‭bindings customization in more detail in the Conclusions section.‬

‭Constructors‬

‭Constructors are slightly different from member functions since it is not possible to take their‬

‭address. As a consequence, it is not possible to use existing C++ features to inspect the types of‬

‭their parameters. To circumvent this limitation, pybind11 provides a special‬

‭pybind11::init<...>‬‭utility.‬

‭Consider a partial implementation of an Execution class:‬

‭struct‬‭Execution‬‭{‬

‭enum‬‭class‬‭Type‬‭{‬‭new_,‬‭fill,‬‭...‬‭}‬

‭Execution(Order‬‭order,‬‭Type‬‭type);‬
‭Execution(Order‬‭order,‬‭Type‬‭type,‬

‭double‬‭price,‬‭size_t‬‭quantity‬‭=‬‭0‬‭);‬

‭C/C++‬

‭C/C++‬

‭C/C++‬

‭};‬

‭The typical bindings code, excluding enum bindings (which were discussed before), looks as‬

‭follows:‬

‭py::class_<Execution>(‬‭binding_scope‬‭,‬‭"Execution"‬‭)‬
‭.def(py::init<Order,‬‭Execution::Type>(),‬

‭py::arg(‬‭"order"‬‭),‬‭py::arg(‬‭"type"‬‭))‬
‭.def(py::init<Order,‬‭Execution::Type,‬‭double‬‭,‬‭size_t>(),‬

‭py::arg(‬‭"order"‬‭),‬‭py::arg(‬‭"type"‬‭),‬
‭py::arg(‬‭"price"‬‭),‬‭py::arg(‬‭"quantity"‬‭)‬‭=‬‭0‬‭);‬

‭While the usage of‬‭init‬‭should not be problematic‬‭to decipher, we simply pass all the argument‬

‭types to the type list of the helper. The usage of‬‭py::arg‬‭allows the bindings module user to‬

‭use a Python feature - keyword arguments.‬

‭With reflection, we can automate the task as follows:‬

‭bind_ctors<CrossingEngine>(‬‭binding_scope‬‭);‬

‭Where‬‭bind_ctors‬‭could be implemented as:‬

‭template‬‭<‬‭typename‬‭ClassT,‬‭typename‬‭Scope>‬
‭void‬‭bind_ctors(Scope&‬‭s)‬‭{‬

‭template‬‭for‬‭(‬‭constexpr‬‭auto‬‭e‬‭:‬‭member_fn_range(^ClassT))‬‭{‬
‭if‬‭constexpr‬‭(is_public(e)‬‭&&‬‭is_constructor(e)‬‭&&‬

‭!is_copy_constructor(e)‬‭&&‬
‭!is_move_constructor(e))‬‭{‬

‭constexpr‬‭auto‬‭params‬‭=‬‭param_range(e);‬
‭s.def(py::init<...‬‭typename‬‭[:type_of(params):]...>(),‬

‭...py::arg(name_of(^[:params:]))...);‬
‭}‬

‭C/C++‬

‭}‬
‭}‬

‭Note that‬

‭●‬ ‭The implementation of bind_ctors cannot be validated with the lock3 implementation of‬

‭P2320, since it lacks pack splicing capabilities;‬

‭●‬ ‭The‬‭type_of‬‭function will not work for this use case.‬‭Instead, the‬‭types_of‬‭function‬

‭should be used, but it is not proposed for P1240 yet; and‬

‭●‬ ‭The syntax for expanding a range of reflections into a parameter list of names seems a bit‬

‭clunky; we will discuss this in more detail in the Challenges section.‬

‭At first glance, the above implementation is straightforward. However, using parameter names for‬

‭keyword arguments is problematic. Parameter names are not part of a C++ function’s signature‬

‭and can change between declaration and definition, or among multiple declarations.‬

‭Consider the following code:‬

‭struct‬‭X‬‭{‬
‭X(‬‭int‬‭name);‬

‭};‬

‭X:X(‬‭int‬‭different_name)‬‭{‬‭(‬‭void‬‭)different_name;‬‭};‬

‭The parameter name that should be provided while reflecting on the input parameter of‬‭X::X‬‭,‬
‭when both the declaration and definition are visible, is ambiguous. The only publicly available‬

‭implementation of P2320 returns names of parameters of the definition when queried directly,‬

‭i.e.,‬‭param_range(^X::X)‬‭. However, it returns the‬‭names of parameters of the declaration when‬

‭accessed indirectly via a reflection of the enclosing class, i.e.,‬

‭param_range(*member_fn_range(^X).begin())‬‭. This problem‬‭becomes even more severe‬9

‭when free functions are considered, since they can have multiple declarations with completely‬

‭different parameter names. We discuss this in more detail in the Conclusions section.‬

‭Overloaded Operators‬

‭9‬ ‭This is true even if the reflection is done inside the definition of‬‭X::X.‬

‭C/C++‬

‭Binding operators is a special problem. It is complicated by the fact that overloaded operators‬

‭can exist as member functions of a class, as inline friend functions, and as free functions, and are‬

‭subject to both ADL and visibility checks.‬

‭Considering a simple class‬‭X‬‭with a set of associated‬‭operator+‬‭overloads‬

‭namespace‬‭xns‬‭{‬

‭struct‬‭X‬‭{‬
‭int‬‭v‬‭=‬‭0‬‭;‬

‭friend‬‭X‬‭operator‬‭+(X‬‭const&‬‭lhs,‬‭int‬‭rhs)‬‭{‬
‭return‬‭X{lhs.v‬‭+‬‭rhs};‬

‭}‬
‭};‬

‭X‬‭operator‬‭+(xns::X‬‭const&‬‭lhs,‬‭X‬‭const&‬‭rhs)‬‭{‬
‭return‬‭X{lhs.v‬‭+‬‭rhs.v};‬

‭}‬

‭}‬‭// ::xns‬

‭namespace‬‭yns‬‭{‬

‭struct‬‭Y‬‭{‬‭double‬‭v‬‭=‬‭0‬‭.;‬‭};‬

‭Y‬‭operator‬‭+(xns::X‬‭const&‬‭lhs,‬‭Y‬‭const&‬‭rhs)‬‭{‬
‭return‬‭Y{lhs.v‬‭+‬‭rhs.v};‬

‭}‬

‭Y‬‭operator‬‭+(Y‬‭const&‬‭lhs,‬‭double‬‭rhs)‬‭{‬
‭return‬‭Y{lhs.v‬‭+‬‭rhs.v};‬

‭}‬

‭}‬‭// ::yns‬

‭A naive bindings implementation could look like:‬

‭C/C++‬

‭C/C++‬

‭py::class_<xns::X>{}‬
‭.def(‬‭"__add__"‬‭,‬‭&xns::X::‬‭operator‬‭+)‬‭// Error:‬‭cannot take address of‬

‭an inline friend function‬

‭.def(‬‭"__add__"‬‭,‬‭static_cast‬‭<‬
‭yns::Y‬‭(*)(xns::X‬‭const&,‬‭yns::Y‬‭const&)‬

‭>(&yns::‬‭operator‬‭+))‬
‭.def(‬‭"__add__"‬‭,‬‭static_cast‬‭<‬

‭yns::Y‬‭(*)(xns::X‬‭const&,‬‭double‬‭)‬
‭>(&yns::‬‭operator‬‭+))‬

‭.def(‬‭"__add__"‬‭,‬‭&xns::‬‭operator‬‭+);‬

‭It is possible to improve on this with pybind11 helpers‬ ‭:‬10

‭py::class_<xns::X>{}‬
‭.def(py::self‬‭+‬‭py::self)‬
‭.def(py::self‬‭+‬‭int‬‭{})‬
‭.def(py::self‬‭+‬‭double‬‭{})‬
‭.def(py::self‬‭+‬‭yns::Y{});‬

‭With that, all overloads are detected and bindings are created correctly.‬

‭While attempting to automate operator bindings, the immediate challenge is how to detect all of‬

‭the reachable‬‭operator+‬‭overloads. The scalable reflection‬‭paper (P1240R2) does not mention‬

‭any specific facilities that would allow us to do that. We have therefore resorted to scanning all‬

‭namespaces recursively starting from the global namespace. It has to be noted, however, that‬

‭based on the initial feedback from compiler implementers, it seems feasible to propose and‬

‭implement the discovery of overloaded operators by name, even with ADL lookup. This would‬

‭most likely be limited to non-template functions since the discovery of those cannot be done‬

‭reliably without knowing all possible parameter types up front.‬

‭With reflection, we can automate the task as follows:‬

‭10‬ ‭https://pybind11.readthedocs.io/en/stable/advanced/classes.html#operator-overloading‬

https://pybind11.readthedocs.io/en/stable/advanced/classes.html#operator-overloading

‭C/C++‬

‭C/C++‬

‭template‬‭<‬‭typename‬‭T,‬‭typename‬‭Scope>‬
‭void‬‭bind_operators(Scope&‬‭scope)‬‭{‬

‭bind_namespace_operators<^::>(scope);‬
‭bind_member_operators<^T>(scope);‬

‭}‬

‭Where‬‭bind_namespace_operators‬‭could be implemented‬‭as‬ ‭:‬11

‭template‬‭<info‬‭refl,‬‭typename‬‭T>‬
‭void‬‭bind_namespace_operators(py::class_<T>&‬‭cls)‬‭{‬

‭template‬‭for‬‭(‬‭constexpr‬‭auto‬‭e‬‭:‬‭member_range(refl))‬‭{‬

‭if‬‭constexpr‬‭(is_function(e))‬‭{‬
‭constexpr‬‭auto‬‭rng‬‭=‬‭param_range(e);‬
‭constexpr‬‭auto‬‭len‬‭=‬‭detail::distance(rng.begin(),‬‭rng.end());‬

‭if‬‭constexpr‬‭(len‬‭==‬‭2‬‭)‬‭{‬
‭constexpr‬‭auto‬‭param1_t‬‭=‬‭type_of(*params_range.begin());‬
‭constexpr‬‭auto‬‭param2_t‬‭=‬‭type_of(*(++params_range.begin()));‬

‭if‬‭constexpr‬‭(addable<T,‬‭typename‬‭[:param2_t:]>‬
‭&&‬‭same_as<‬‭typename‬‭[:param1_t:],‬‭T)‬‭{‬

‭cls.def(py::self‬‭+‬‭typename‬‭[:param2_t‬‭:]{});‬

‭}‬‭else‬
‭if‬‭constexpr‬‭(addable<‬‭typename‬‭[:param1_t:],‬‭T>‬

‭&&‬‭same_as<‬‭typename‬‭[:param2_t:],‬‭T>){‬
‭cls.def(‬‭typename‬‭[:param1_t:]{}‬‭+‬‭py::self);‬

‭}‬
‭}‬

‭}‬‭else‬‭if‬‭constexpr‬‭(is_namespace(e))‬‭{‬
‭bind_namespace_operators<e>(cls);‬

‭}‬

‭11‬ ‭https://cppx.godbolt.org/z/7q4jaxsrn‬

https://cppx.godbolt.org/z/7q4jaxsrn

‭}‬
‭}‬

‭template‬‭<‬‭typename‬‭Lhs,‬‭typename‬‭Rhs>‬
‭concept‬‭addable‬‭=‬‭requires‬‭(Lhs‬‭l,‬‭Rhs‬‭r)‬‭{‬‭l‬‭+‬‭r;‬‭};‬

‭While this works for the overloads residing in the namespace‬‭yns‬‭, the friend inline operator of‬

‭xns::X‬‭could not be detected. This seems to be an‬‭unintended limitation as the friend inline‬

‭operator should either be discoverable as a namespace member or as a class member.‬

‭While the approach we have taken to automate operator bindings is unlikely to scale well‬

‭enough for any practical application, we have determined that there are use cases, especially‬

‭ones involving templated code, where static reflection facilities will be insufficient to perform a‬

‭task completely. In cases like this it would be useful to allow emitting diagnostic information at‬

‭compile time (i.e. to the compiler output) which are not warnings or errors. Fortunately, there is‬

‭already work going on‬ ‭to make that possible.‬12

‭Conclusions‬

‭Advantages‬

‭We have determined that:‬

‭1.‬ ‭As expected, it is possible to achieve significant (~95%) boilerplate code reduction, as‬

‭opposed to manually written bindings code;‬

‭2.‬ ‭Using reflection for generating bindings avoids manual errors in many cases (e.g., enum‬

‭bindings); and‬

‭3.‬ ‭Most bindings can be reasonably automated with carefully selected default behaviors (i.e.,‬

‭we have leveraged the defaults specified by pybind11).‬

‭Challenges‬

‭We have determined that:‬

‭1.‬ ‭Feature gaps between between Python and C++, such as lifetime management, could be‬

‭handled by customizing bindings;‬

‭12‬ ‭https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2758r0.html‬

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2758r0.html

‭2.‬ ‭Some reflection features, like parameter name reflection, can be dangerous and must be‬

‭used with caution;‬

‭3.‬ ‭Reflection-based automation is not foolproof. It can hide subtle problems and give a false‬

‭sense of security; and‬

‭4.‬ ‭The syntax for expanding a range of reflections into a parameter list of names is a bit‬

‭clunky.‬

‭In the following sections, we will discuss the various challenges in detail.‬

‭Customization‬

‭Bindings customization is needed in at least two applications:‬

‭●‬ ‭Overriding and/or improving binding defaults‬

‭●‬ ‭Bridging the gap between languages‬

‭In some cases, automatically produced bindings may be correct, but suboptimal, and cause‬

‭resource leaks or crashes. Suppose an object is returned from C++ code that holds a raw pointer‬

‭to a resource, such as a file or a memory buffer. The default behavior of copying out results from‬

‭C++ to Python would cause a shallow copy of the pointer, assuming the copy constructor is‬

‭implicitly generated. Now, both Python and C++ have access to the pointer, and could try to‬

‭manipulate the underlying resource independently. E.g., one side might close the underlying file,‬

‭while the other expects it to be open, and tries to write to it. In case the pointer held a memory‬

‭buffer, and concurrent access was allowed, the concurrency control mechanism may not work as‬

‭it would not account for non-native language access, or the buffer itself could be deleted or‬

‭re-allocated. Thus, automatically produced bindings could lead to dangerous behavior, and the‬

‭programmer does need to be aware of the intricate behavior of the C++ classes that are bound.‬

‭The second point is more about the specific features that both languages do and do not support.‬
‭Some notable examples might be keyword arguments and garbage collection in Python and‬
‭function overloading and polymorphism in C++. While pybind11 does a reasonably good job at‬
‭providing facilities for bridging that gap, those facilities typically require additional work. Some of‬
‭that work can be automated, e.g., function overloading, but some might require manual‬
‭intervention, e.g., specifying the reference management policy.‬

‭It should be clear at this point that some user customization is necessary for any reflection-based‬
‭Python bindings implementation. We can approach that problem in two ways:‬

‭●‬ ‭By providing library-specific hooks‬
‭●‬ ‭By creating custom attributes‬

‭C/C++‬

‭C/C++‬

‭Library-specific hooks can be implemented in a multitude of ways. A simple way is to create a‬
‭constexpr list of modifications for reflected entities, like in the example below:‬

‭constexpr‬‭auto‬‭customizations‬‭=‬‭{‬
‭{^CrossingEngine::getAsks,‬
‭return_value_policy::reference_internal},‬
‭{^Order::side,‬
‭value_access_policy::readonly},‬

‭};‬

‭bind_class<CrossingEngine>(scope,‬‭customizations);‬
‭bind_class<Order>(scope,‬‭customizations);‬

‭On the positive side, with this approach, it is possible to create and customize bindings of a code‬

‭base that the bindings implementer has no control over. On the negative side, the customizations‬

‭are disjoint from the C++ code that is being bound; therefore, there is a risk of the two diverging,‬

‭and errors being introduced.‬

‭Another option is to attach custom attributes to the code that is being bound:‬

‭struct‬‭CrossingEngine‬‭{‬
‭[[refl_bind::return_policy(‬‭"reference_internal"‬‭)]]‬
‭std::vector<Order>‬‭const&‬‭getAsks()‬‭const‬‭{‬‭return‬‭asks;‬‭}‬

‭[[refl_bind::return_policy(‬‭"reference_internal"‬‭)]]‬
‭std::vector<Order>‬‭const&‬‭getBids()‬‭const‬‭{‬‭return‬‭bids;‬‭}‬

‭...‬
‭};‬

‭On the positive side, with this approach, customizations would naturally evolve alongside the‬

‭code. On the negative side, adding user-defined attributes requires control of the source code‬

‭that is the subject of bindings and, what is probably more important, adding the support for‬

‭user-defined attributes to the C++ language, lifting the requirement of ignorability of attributes‬ ‭,‬13

‭and adding support for reflecting on attributes.‬

‭13‬ ‭https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2552r0.pdf‬

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2552r0.pdf

‭C/C++‬

‭We believe that both approaches to customizations are valuable in their own right, with‬

‭user-defined attributes being less error-prone, and, therefore, preferable where applicable.‬

‭Parameter Names‬

‭Python’s keyword arguments allow specifying function parameter names and their values at the‬

‭point where a function is called. This feature improves readability and so is used quite heavily.‬

‭Therefore, it is desirable to make keyword arguments automatically available with C++/Python‬

‭bindings. The natural way of doing so is to reflect on parameter names. However, this is‬

‭dangerous. C++ parameter names are not part of the function signature and can change between‬

‭function declaration and definition – and even across different declarations of the same function.‬

‭The code below‬ ‭illustrates this problem:‬14

‭#‬‭include‬‭<experimental/meta>‬
‭#‬‭include‬‭<iostream>‬

‭using‬‭namespace‬‭std::experimental::meta;‬

‭// declaration 1‬
‭void‬‭func(‬‭int‬‭x,‬‭int‬‭y);‬

‭void‬‭print_func_params1()‬‭{‬
‭std::cout‬‭<<‬‭"func param names are: "‬‭;‬
‭template‬‭for‬‭(‬‭constexpr‬‭auto‬‭e‬‭:‬‭param_range(^func))‬‭{‬

‭std::cout‬‭<<‬‭name_of(e)‬‭<<‬‭", "‬‭;‬
‭}‬
‭std::cout‬‭<<‬‭"\n"‬‭;‬

‭}‬

‭// declaration 2‬
‭void‬‭func(‬‭int‬‭a,‬‭int‬‭b);‬

‭void‬‭print_func_params2()‬‭{‬
‭std::cout‬‭<<‬‭"func param names are: "‬‭;‬
‭template‬‭for‬‭(‬‭constexpr‬‭auto‬‭e‬‭:‬‭param_range(^func))‬‭{‬

‭std::cout‬‭<<‬‭name_of(e)‬‭<<‬‭", "‬‭;‬
‭}‬
‭std::cout‬‭<<‬‭"\n"‬‭;‬

‭}‬

‭14‬ ‭https://cppx.godbolt.org/z/coq6KhvdK‬

https://cppx.godbolt.org/z/coq6KhvdK

‭C/C++‬

‭int‬‭main()‬‭{‬
‭print_func_params1();‬‭// prints: func param names‬‭are: x, y,‬
‭print_func_params2();‬‭// prints: func param names‬‭are: a, b,‬

‭}‬

‭Thus, reflecting on parameter names makes the code fragile, as developers don’t expect that‬

‭changing forward declaration parameter names will impact the output of the program in any way.‬

‭A quick survey of different compilers has found that there’s no fixed pattern of how function‬

‭signatures are evaluated across the different declarations of a function that are accessible from a‬

‭translation unit. Some compilers use the first declaration that they parse, while others use the‬

‭last. A solution that has gained consensus in SG7 is that if reflecting on parameter names results‬

‭in more than one name for a parameter, then that reflection should be considered invalid, and a‬

‭compile time error should be raised. Alternatively, the first or last declaration could be chosen,‬

‭provided a diagnostic is emitted, letting the developer know about the choice and its line of‬

‭code.‬

‭Another approach for creating unique parameter name lists is to introduce an attribute that‬

‭explicitly specifies a function declaration or definition that should be used to infer parameter‬

‭names. A function declared with that attribute, e.g., “infer_param_names” could be used to infer‬

‭parameter names, rather than any other declaration or definition. This approach assumes that the‬

‭C++ code to be bound is accessible to the developer who generates Python bindings, and the‬

‭attribute is used in only one declaration, or the definition. E.g.,‬

‭// A declaration of function foo. Parameter names used here are‬
‭ignored.‬

‭void‬‭foo(‬‭int‬‭n,‬‭int‬‭m);‬

‭// Another declaration of function foo, with the special‬
‭attribute.‬

‭C/C++‬

‭[[refl_bind::infer_param_names]]‬‭// Parameter names‬‭seen by‬
‭Python are taken from this declaration.‬

‭void‬‭foo(‬‭int‬‭apples,‬‭int‬‭bananas);‬

‭// Function definition. Parameter names used here are ignored.‬

‭void‬‭foo(‬‭int‬‭a,‬‭int‬‭b)‬‭{‬

‭return‬‭a‬‭+‬‭b;‬

‭}‬

‭In the above example, the function foo()’s parameter name list as seen by Python would be‬

‭{“apples”, “bananas"}, as indicated by the attribute infer_param_names.‬

‭Expanding a Range of Parameters‬

‭Consider a use-case where we need to expand a function parameter range into a range of names‬

‭of those parameters:‬

‭struct‬‭X‬‭{‬
‭void‬‭fun(‬‭int‬‭y,‬‭float‬‭z)‬‭{};‬

‭};‬
‭void‬‭print(std::vector<py::arg>‬‭args)‬‭{‬

‭for‬‭(‬‭auto‬‭const&‬‭arg‬‭:‬‭args)‬
‭std::cout‬‭<<‬‭arg.name‬‭<<‬‭','‬‭;‬

‭std::cout‬‭<<‬‭'\n'‬‭;‬
‭}‬

‭int‬‭main()‬‭{‬
‭constexpr‬‭auto‬‭param_range‬‭=‬‭param_range(^X::fun);‬
‭print({/*‬‭expand‬‭to‬‭a‬‭vector‬‭of‬‭py::arg(param_name)‬‭*/});‬

‭}‬

‭There are multiple ways to achieve this.‬

‭1.‬ ‭py::arg(meta::name_of(param_range))...‬

‭It is unclear whether this syntax would work, as we see no examples of range pack‬

‭expansion for a range of reflections, without using the splicing operator in P1240r2.‬

‭2.‬ ‭...py::arg(meta::name_of([:param_range:]))...‬

‭The‬‭meta::name_of(meta::info)‬‭takes a‬‭meta::info‬‭object,‬‭so this is unlikely to‬

‭work; in fact we can confirm‬ ‭that‬‭meta::name_of([:*param_range.begin():])‬15

‭does not compile.‬

‭3.‬ ‭...py::arg([:meta::name_of(param_range):])...‬

‭Similarly applying‬‭meta::name_of(meta::info)‬‭inside‬‭a splicing expression also‬

‭does not compile‬ ‭.‬16

‭4.‬ ‭...py::arg(meta::name_of(^[:param_range:]))...‬

‭This will probably work since‬‭meta::name_of(^[:*param_range.begin():])‬
‭compiles fine‬ ‭, though the need to utilize ^ operator‬‭twice seems a bit clunky‬17

‭...py::arg(meta::name_of(^[:meta::param_range(^X::fun):]))...‬

‭5.‬ ‭py::arg(meta::names_of(param_range))‬

‭This was an alternative proposed during the SG7 meeting where the initial draft of this‬

‭paper was presented. While the proposed‬‭names_of‬‭library‬‭function would produce a list‬

‭of strings from a range of parameters, it would not be able to generate‬‭py::arg‬‭s from a‬

‭range of parameters. Simply doing‬‭py::arg(meta::names_of(param_range))‬
‭would result in‬‭py::arg(“y”s,“x”s)‬‭instead of the‬‭desired‬‭{ py::arg(“y”s),‬
‭py::arg(“x”s) }‬‭.‬

‭ABI Compatibility‬

‭While the discussion of ABI compatibility is not strictly related to the usage of reflection for‬

‭creating Python bindings, it has been an important consideration in C++/Python bindings‬

‭discussion. ABI compatibility issues could occur in two cases:‬

‭1.‬ ‭Bindings were created with a Python library version that is incompatible with the Python‬

‭interpreter that is loading them.‬

‭17‬ ‭https://cppx.godbolt.org/z/9qnbn9x5G‬

‭16‬ ‭https://cppx.godbolt.org/z/a8ee54Ehe‬

‭15‬ ‭https://cppx.godbolt.org/z/rKb5WjGj9‬

https://cppx.godbolt.org/z/9qnbn9x5G
https://cppx.godbolt.org/z/a8ee54Ehe
https://cppx.godbolt.org/z/rKb5WjGj9

‭2.‬ ‭A type that is passed between two Python/C++ binding libraries has different binary‬

‭representations between the two.‬

‭Point 1 is a ubiquitous problem for many Python features, and we will not be discussing it here.‬

‭For point 2, the problem can typically occur when bindings are shared across libraries owned by‬

‭different teams. To visualize this, consider three C++ libraries: A, B, and C, with the caveat that‬

‭both A and B depend on C. It can be easily observed that if A creates an object of a type X‬

‭belonging to C, which is subsequently passed to B, both A and B must use the same binary‬

‭representation of X. To solve this problem at scale, we can see two approaches - using an‬

‭integration build or fat bindings.‬

‭Integration Build‬

‭With this approach, all libraries and their bindings are built from source together and are‬

‭deployed together. This way, the possibility of having multiple libraries with the same‬

‭dependency, but different ABI representations, is eliminated‬

‭Pros‬

‭●‬ ‭Allows bindings to be re-used across libraries‬

‭●‬ ‭Each library is comprised only the necessary binary code‬18

‭●‬ ‭Handles singletons without additional work‬

‭Cons‬

‭●‬ ‭Build and deployment time increase, all dependent libraries must be available when the‬

‭integration build starts‬

‭●‬ ‭Can’t be safely used out of the box with the Python Package Index (PyPI)‬

‭Fat Bindings‬

‭With this approach, every binding library statically links its dependencies, hides symbols, and‬

‭exposes every C++ type as a distinct type in Python, hence avoiding collisions.‬

‭Pros‬

‭●‬ ‭No library re-use and hence no ABI problems‬19

‭●‬ ‭Safe to use with the Python Package Index (PyPI)‬

‭19‬ ‭Notably pybind11 has an added feature that tries to recognize “compatible” types by additional means,‬
‭which might still cause ABI compatibility problems.‬

‭18‬ ‭Only the code that is the subject of bindings and the bindings code itself. External dependencies and‬
‭their bindings can be dynamically loaded by Python at runtime.‬

‭Cons‬

‭●‬ ‭Not possible to share singletons among libraries without additional logic‬20

‭●‬ ‭Library sizes are larger, as each library comprises both its own binary code and the binary‬

‭code of all its dependencies‬

‭●‬ ‭Bindings cannot be re-used out of the box‬

‭Comparison with Classdesc‬

‭In the absence of type information from the compiler, the C++ language exposes limited type‬

‭information to the programmer, and so some form of a preprocessing system is required to obtain‬

‭this information. Classdesc could be considered a static reflection system. At its core, it is a C++‬

‭preprocessor that reads C++ header files and generates overloaded function templates (or‬

‭functor objects in later versions) that recursively call themselves on members of the class. The‬

‭collection of overloaded functions is called a descriptor, and they are global functions. Classdesc‬

‭consists of a simplified C++ parser/code generator along with support libraries implementing a‬

‭range of reflection tasks, such as serialization and Python bindings. Classdesc classes are‬

‭integrated with the build system, e.g., with a Makefile, and thus evolve with the evolution of the‬

‭underlying C++ classes.‬

‭Classdesc has been used for generating Python bindings via Boost.Python. pybind11 ‘s roots are‬

‭also in Boost.Python, and thus the syntax for creating Python bindings is similar in both libraries.‬

‭Value-based reflection APIs have the benefit of being able to work on meta-information from the‬

‭compiler itself, without having to pre-process code to produce an additional layer of classes that‬

‭enable reflection. Classdesc suffers from some implementation nuances, such as not being able‬

‭to reflect on functions that return pointers, while value-based reflection suffers from issues such‬

‭as not having a complete set of reflection APIs, or missing or buggy implementation features in‬

‭the compiler.‬

‭In terms of lines of code eliminated, the boilerplate lines of code eliminated by Classdesc are‬

‭offset by the new code for shim classes needed for specific C++ features, such as containers,‬

‭const and mutable attributes.‬

‭In terms of build times and memory consumed, experiments need to be carried out compiling the‬

‭same application package using Classdesc vs. value-based reflection, to arrive at comparative‬

‭numbers. Both approaches lead to increased build times and memory usage.‬

‭20‬ ‭Since each extension links in all their dependencies and hides symbols, each module has its own version‬
‭of a singleton. We do not know of any generic solution to this problem.‬

‭Appendix‬

‭1.‬ ‭Classdesc: C++ Reflection for Python Binding -‬

‭https://accu.org/journals/overload/27/152/standish_2682/‬

‭2.‬ ‭P2320R0 - The Syntax of Static Reflection -‬

‭https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2320r0.pdf‬

‭3.‬ ‭P1240R2 - Scalable Reflection in C++ -‬

‭https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1240r2.pdf‬

‭4.‬ ‭Pybind11 -‬‭https://pybind11.readthedocs.io/en/stable/‬

‭5.‬ ‭Programming for every language, everywhere all at once - CoreCpp ‘22 talk -‬

‭https://www.youtube.com/watch?v=43Tmqn-sFsk‬

‭6.‬ ‭Reflection on attributes:‬‭https://wg21.link/p1887‬

https://accu.org/journals/overload/27/152/standish_2682/
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2320r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1240r2.pdf
https://pybind11.readthedocs.io/en/stable/
https://www.youtube.com/watch?v=43Tmqn-sFsk
https://wg21.link/p1887

