Relocation Has A Library Interface
Exploiting trivial relocatability in the Standard Library

Document #: P2967R0

Date: 2023-10-15

Project: Programming Language C++
Audience: Library Evolution Working Group
Reply-to: Alisdair Meredith

<ameredithl@bloomberg.net >

Contents
1 Abstract 1
2 Revision history 1
RO: October 2023 (pre-Kona mailing) L 1
3 Introduction 1
4 Proposed Additions 2
4.1 relocate e e e 2
4.2 wuninitialized_move_and_desStroy e 2
5 Proposed Wording 3
5.1 Library extensions for trivial relocation Lo Lo 3
5.2 uninitialized_move_and_destroy as a non-optimizing algorithm 4
6 Acknowledgements 7
7 References 8
1 Abstract

Paper [P2786R3| proposes the notion of trivial relocatability for the C++ Standard, and provides the minimal
library interface necessary to detect and exploit that property; it deliberately defers analysis of how to apply
trivial relocation throughout the standard library to this paper, which considers relocation more broadly, both
trivial and non-trivial.

2 Revision history

RO: October 2023 (pre-Kona mailing)
— Initial draft of this paper.

3 Introduction

The goal of this paper is to serve as an adjunct to [P2786R3|, extending the Standard Library to provide better
support for optimizing the use of trivially relocatable types. Paper [P2959R0] handles their interaction in the

mailto:ameredith1@bloomberg.net

semantics and optimization of block-based containers. This paper provides the remaining library support for
users to apply relocation to their own code.

4 Proposed Additions

Our primary proposal ([P2786R3]) is essentially a Core language facility, with the minimal library interface, one
type trait and one function template with a special meaning to the translator. However, in practice we are likely
to want to build user facing library facilities on top of this minimal feature set, to deliver our goal of using
relocation in std: :vector.

Here, we look at library extensions that would put relocation on the same level as move and copy.

4.1 relocate

We propose a new “convenience” function template:

template <class T>
requires (is_trivially_relocatable_v<T> || is_nothrow_move_constructible_v)
&& 'is_const_v<T>
constexpr
T+ relocate(T* begin, T* end, T* new_location);

Which is equivalent to:

if constexpr (is_trivially_relocatable_v<T>) {
trivially_relocate(begin, end, new_location);

}

else if (ranges-do-not-overlap) {
std::uninitialized_move(begin, end, new_location);
std: :destroy(begin, end);

X
else {

// move-and-destroy each member in the appropriate order
}

Note that this function supports overlapping ranges, just like memmove.

This function is similar to uninitialized_relocate in [P1144R8], except that our proposal requires pointers
rather than input iterators for the source, and mandates we always trivially relocate types that support trivial
relocation. The always-trivially-relocate-where-possible requires the input range be contiguous, but in principle
we could relax this to using iterators that model the contiguous_iterator concept.

This function is also constrained to require no-throw move constructible types, as that better reflects its use
case as an efficient relocation with minimal overhead. If an exception were thrown, the user would lack the
information to put the program back into a good state, and the following uninitialized_move_and_destroy
function is intended to support such use cases.

We do not have uninitialized in the name, as relocation already implies that we target range will be overwritten
— but note that we do support overlapping ranges where some of the relocating objects are already initialized
(and being overwritten) in the target range, which would therefore not be fully uninitialized.

4.2 uninitialized_move_and_destroy
We further propose a second “convenience” function template, that takes iterator ranges, supports potentially-
throwing move constructors, but does not support overlapping input and output ranges:

template<class ForwardIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_move_and_destroy(ForwardIterator first,

ForwardIterator last,
NoThrowForwardIterator result);

Design note: the input sequence should probably require no-throw iterators, in order to guarantee
the postcondition that all elements are destroyed, even when an exception is thrown.

This function is directly inspired by uninitialized_relocate in [P1144R8]. However, as per its name in this
proposal, it is mandated to always perform a move-construct followed by destruction and is not given permission
to switch to a trivially relocating implementation for certain types. Implementations may still find ways to
as-if such an implementation if they stare carefully at all the requirements, but we do not explicitly ban such
implementations, we do not anticipate that as a worthwhile optimization.

Note that this function does not accept types that are not move constructible, even if they are trivially relocatable.

We do not support overlapping ranges in this function as, in general, it is undefined behavior to compare iterators
into different sequences when trying to determine if there is an overlap, never mind the cost for non-random
access iterators, and unsupportability of input iterators. Pointers are a special case as arbitrary (valid) pointers
can be compared using std: :less<>.

We provide a single iterator range signature to introduce this facility, but can imagine LEWG wanting to consider
sentinels, std ranges support, and bounded output ranges rather than a single iterator to range-check the output.

Finally, we note that this function is not marked as constexpr, even though we know of no reason it could not
be so marked, with the constexprness being implicitly dependent on the supplied iterators being constexpr
iterators.

5 Proposed Wording

The following wording based on the latest working draft at the time this paper is written, [N4958].
Editors’ note: Uncompleted wording tasks:

— complete specification for uninitialized_move_and_destroy

REVIEW NOTE FOR LEWG

THIS WORDING IS EVOLVING AND INCOMPLETE, BUT WILL GIVE EWG A FLAVOR OF THE TEXT
WE INTEND TO FINALIZE BEFORE SENDING TO LWG. IT WILL BE INTEGRATED INTO A SINGLE
WORDING SECTION, RATHER THAN PER TOPIC, ONCE LEWG DETERMINES HOW MUCH OF THIS
PAPER, IF ANY, SHOULD PROCEED.

5.1 Library extensions for trivial relocation

The following library extensions assume the adoption of some revision of [P2786R3].

5.1.1 relocate

Add to the <memory> header synopsis in 20.2.2 [memory.syn|p3:

// 20.2.6, explicit lifetime management template<class T>

Tx start_lifetime_as(void* p) noexcept; // freestanding

template<class T>

const T* start_lifetime_as(const void* p) noexcept; // freestanding

template<class T>

volatile T* start_lifetime_as(volatile void* p) noexcept; // freestanding

template<class T>

const volatile T* start_lifetime_as(const volatile void* p) noexcept; // freestanding

template<class T>

https://wg21.link/memory.syn

T+ start_lifetime_as_array(void* p, size_t n) noexcept; // freestanding
template<class T>

const T* start_lifetime_as_array(const void* p, size_t n) noexcept; // freestanding
template<class T>
volatile T* start_lifetime_as_array(volatile void* p, size_t n) noexcept; // freestanding

template<class T>
const volatile T* start_lifetime_as_array(const volatile void* p,

size_t n) noexcept; // freestanding
template <class T>
requires (is_trivially_relocatable_v<T> || is_nothrow_move_constructible_v)
&& 'is_const_v<T>
constexpr
T* relocate(T* begin, T* end, T* new_location); // freestanding
Append to Append to 20.2.6 [obj.lifetime]:
template <class T>
requires (is_trivially_relocatable_v<T> || is_nothrow_move_constructible_v)
&& 'is_const_v<T>
constexpr

T* relocate(T* begin, T* end, T* new_location);

Effects: Equivalent to:

if constexpr (is_trivially_relocatable_v<T>) {
return std::trivially_relocate(begin, end, new_location);

}
else if (less{}(end, new_location) || less{}(new_location + begin - end, begin)) {
// No overlap
uninitialized_move(begin, end, new_location);
destroy(begin, end);
return new_location;
}
else if (less{}(begin, new_location) { // move-and-destroy each member, back to front
while (T* dest = new_location + begin - end; dest != new_location) {
::new (--dest) T(std::move(*--end));
destroy_at (end) ;
}
return dest;
}
else { // move-and-destroy each member, front to back
while (begin != end) {
::new (new_location++) T(std::move(*begin++));
destroy_at (begin) ;
}
return new_location;
}

Throws: Nothing.

5.2 uninitialized_move_and_destroy as a non-optimizing algorithm

uninitialized_move_and_destroy is directly inspired by uninitialized_relocate in [P1144R8| and the
uninitialized_move family of algorithms in the standard. This functionality is entirely separable into a pure
library proposal, as it does not rely on any of our language extension features. It is proposed purely for feature

https://wg21.link/obj.lifetime

parity with [P1144R8].

The function name, uninitialized_move_and_destroy, is chosen to provide a clear hint at what the operation
does. We might have preferred uninitialized_move_construct_and_destroy as more descriptive, but follow-
ing the naming of uninitialized_move, we take uninitialized as sufficient information that the output range
will be populated by move constructors, as there cannot be a live object as an alternative to assign to.

Compared to the proposed functions with relocate in their name, these overloads explicitly call the move
constructor, and then the destructor of the source, so element types must support those operations, just as in
[P1144R8]. They are specified as library algorithms using iterators rather than simple pointers. They also have
a precondition excluding overlapping ranges.

We note that blanket wording for clause 27.11.1 [specialized.algorithms.general] guarantees all constructed objects
will be destroyed if an exception is thrown, but we add a Remarks element to ensure that the source range honors
its guarantee to destroy all elements in such cases as well.

The uninitialized_move family inspires the full range of overloads, for parallel algorithms, std: :ranges, and
[iterator, length) sequences.

Contrasting [P1144R8] and uninitialized_move, our design requires forward iterators for the input sequence,
as we are modifying the source elements by moving out, and then destroying them.

5.2.1 uninitialized_move_and_destroy [uninitialized.move.and.destroy]

Add to the <memory> header synopsis in 20.2.2 [memory.syn|p3:

// 27.11, specialized algorithms
// 27.11.2, special memory concepts

//

template<class Inputlterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_move(InputlIterator first, // freestanding
InputlIterator last,
NoThrowForwardIterator result);
template<class ExecutionPolicy, class ForwardIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_move(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, ForwardIterator last,
NoThrowForwardIterator result);
template<class Inputlterator, class Size, class NoThrowForwardIterator>
pair<InputIterator, NoThrowForwardIterator>
uninitialized_move_n(InputIterator first, Size n, // freestanding
NoThrowForwardIterator result);
template<class ExecutionPolicy, class ForwardIterator, class Size,
class NoThrowForwardIterator>
pair<ForwardIterator, NoThrowForwardIterator>
uninitialized_move_n(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, Size n, NoThrowForwardIterator result);
namespace ranges {
template<class I, class 0>
using uninitialized_move_result = in_out_result<I, 0>; // freestanding
template<forward_iterator I, sentinel_for<I> Si,
nothrow-forward-iterator 0, nothrow-sentinel-for <0> S2>
requires constructible_from<iter_value_t<0>, iter_rvalue_reference_t<I>>
uninitialized_move_result<I, 0>
uninitialized_move(I ifirst, S1 ilast, 0 ofirst, S2 olast); // freestanding
template<forward_range IR, nothrow-forward-range OR>

https://wg21.link/specialized.algorithms.general
https://wg21.link/memory.syn

requires constructible_from<range_value_t<OR>, range_rvalue_reference_t<IR>>
uninitialized_move_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>
uninitialized_move(IR&%& in_range, OR&& out_range); // freestanding

template<class I, class 0>
using uninitialized_move_n_result = in_out_result<I, 0>; // freestanding
template<forward_iterator I,
nothrow-forward-iterator 0, nothrow-sentinel-for <0> S>
requires constructible_from<iter_value_t<0>, iter_rvalue_reference_t<I>>
uninitialized_move_n_result<I, 0>
uninitialized move_n(I ifirst, iter_difference_t<I> n,

0 ofirst, S olast); // freestanding
}
template<class ForwardIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_move_and_destroy(ForwardIterator first, // freestanding

ForwardIterator last,

NoThrowForwardIterator result);
template<class ExecutionPolicy, class ForwardIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_move_and_destroy(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,

NoThrowForwardIterator result);
template<class ForwardIterator, class Size, class NoThrowForwardIterator>

pair<ForwardIterator, NoThrowForwardIterator>
uninitialized_move_and_destroy_n(ForwardIterator first, Size n, // freestanding
NoThrowForwardIterator result);
template<class ExecutionPolicy, class ForwardIterator, class Size,
class NoThrowForwardIterator>
pair<ForwardIterator, NoThrowForwardIterator>
uninitialized_move_and_destroy_n(ExecutionPolicy&& exec, // see 27.3.5
ForwardIterator first, Size n, NoThrowForwardIterator result);

namespace ranges {
template<class I, class 0>
using uninitialized_move_and_destroy_result = in_out_result<I, 0>; // freestanding
template<forward_iterator I, sentinel_for<I> Si,
nothrow-forward-tterator 0, nothrow-sentinel-for <0> S2>
requires constructible_from<iter_value_t<0>, iter_rvalue_reference_t<I>>
uninitialized_move_and_destroy_result<I, 0>
uninitialized_move_and_destroy(I ifirst, S1 ilast, 0 ofirst, S2 olast); // freestanding
template<forward_range IR, nothrow-forward-range OR>
requires constructible_from<range_value_t<0OR>, range_rvalue_reference_t<IR>>
uninitialized_move_and_destroy_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>
uninitialized_move_and_destroy(IR&& in_range, OR&& out_range); // freestanding

template<class I, class 0>
using uninitialized_move_and_destroy_n_result = in_out_result<I, 0>; // freestanding
template<input_iterator I,
nothrow-forward-iterator 0, nothrow-sentinel-for <0> S>
requires constructible_from<iter_value_t<0>, iter_rvalue_reference_t<I>>
uninitialized_move_and_destroy_n_result<I, 0>
uninitialized_move_and_destroy_n(I ifirst, iter_difference_t<I> n,
0 ofirst, S olast); // freestanding

Add a new subclause between 27.11.6 [uninitialized.move] and 27.11.7 [uninitialized.fill]:

uninitialized_move_and_destroy [uninitialized.move.and.destroy]

template<class ForwardIterator, class NoThrowForwardIterator>

NoThrowForwardIterator uninitialized_move_and_destroy(ForwardIterator first, // freestanding
ForwardIterator last,
NoThrowForwardIterator result);

Preconditions: destination is not in the range [first, last).

Effects: Equivalent to:

for (; first != last; ++destination, (void)++first) {
::new (wvotidify(*destination)) iter_value_t<NoThrowForwardIterator>(*first);
destroy_at (addressof (xfirst));

}

return destination;

Throws: Nothing, unless an exception is thrown by a move constructor.

Remarks: If an exception is thrown, all objects in both the source and destination ranges are destroyed.

namespace ranges {
template<forward_iterator I, sentinel_for<I> S1i,
nothrow-forward-iterator 0, nothrow-sentinel-for <0> 52>
requires constructible_from<iter_value_t<0>, iter_rvalue_reference_t<I>>
uninitialized_move_and_destroy<I, 0>
uninitialized_move_and_destroy(I ifirst, S1 ilast, 0 ofirst, S2 olast); // freestanding

}

namespace ranges {
template<forward_iterator IR, mothrow-forward-range OR>
requires constructible_from<range_value_t<OR>, range_rvalue_reference_t<IR>>
uninitialized_move_and_destroy_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>
uninitialized_move_and_destroy(IR&& in_range, OR&& out_range); // freestanding

}

template<class ForwardIterator, class Size, class NoThrowForwardIterator>
pair<ForwardIterator, NoThrowForwardIterator>
uninitialized_move_and_destroy_n(ForwardIterator first, Size n, // freestanding
NoThrowForwardIterator result);

namespace ranges {
template<forward_iterator I,
nothrow-forward-iterator 0, nothrow-sentinel-for <0> S>
requires constructible_from<iter_value_t<0>, iter_rvalue_reference_t<I>>
uninitialized_move_and_destroy_n_result<I, 0>
uninitialized_move_and_destroy_n(I ifirst, iter_difference_t<I> n,
0 ofirst, S olast); // freestanding

}

Editors’ note: Preconditions and throws clause implicit from Effects:, but stated for clarity while
in Evolutionary groups.

6 Acknowledgements

Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from Mark-
down.

https://wg21.link/uninitialized.move
https://wg21.link/uninitialized.fill

Thanks to Arthur O’Dwyer for the inspiration for an interface that goes beyond just a relocate function.

7 References
[N4958] Thomas Képpe. 2023-08-14. Working Draft, Programming Languages — C++.
https://wg21.link /n4958

[P1144R8] Arthur O’Dwyer. 2023-05-14. std::is_ trivially_relocatable.
https://wg21.link /p1144r8

[P2786R3] Mungo Gill, Alisdair Meredith. 2023-10-15. Trivial Relocatability For C++26.
https://wg21.link /p2786r3

[P2959R0] Alisdair Meredith. 2023-10-15. Relocation Within Containers.
https://wg21.link /p2959r0

https://wg21.link/n4958
https://wg21.link/p1144r8
https://wg21.link/p2786r3
https://wg21.link/p2959r0

	Abstract
	Revision history
	R0: October 2023 (pre-Kona mailing)r0-october-2023-pre-kona-mailing

	Introduction
	Proposed Additions
	relocate
	uninitialized_move_and_destroy

	Proposed Wording
	Library extensions for trivial relocation
	uninitialized_move_and_destroy as a non-optimizing algorithm

	Acknowledgements
	References

