
The Need for Design Policies in WG21
Document #: P2979R0
Date: 2023-10-13
Project: Programming Language C++
Audience: Evolution Working Group

Library Evolution Working Group
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>
Harold Bott
<hbott1@bloomberg.net>
John Lakos
<jlakos@bloomberg.net>

Contents
1 Abstract 2

2 Revision History 2
R0 October 2023 (pre-Kona mailing) . 2

3 Introduction 2

4 Previous Work 3

5 Applying Design Policies to the Library Evolution Process 3

6 Applying Principled Design to the Language-Evolution Process 4

7 Roadmap 6
7.1 “Principled Design for WG21,” [P3004R0] . 6
7.2 “Documenting Principled-Design Policies for WG21,” [P3005R0] 6

8 Conclusion 6

9 Acknowledgments 7

10 References 7

1

mailto:ameredith1@bloomberg.net
mailto:hbott1@bloomberg.net
mailto:jlakos@bloomberg.net

1 Abstract
Two risks inherent in large-scale collaborative projects are inconsistent design decisions and the time lost re-
visiting previous decisions when developing new features. The work of WG21 is a prime example of such a
software-design project, including a Standard Library intended for wide reuse. These risks motivate the pro-
posed creation of a standard framework and process for creating a readily accessible curated suite of reusable
design decisions, design policies, that can be used to normalize and streamline the process of C++ Standards
development.

In this paper, we will identify some past attempts to record policy decisions, noting instances of both successful
and unsuccessful outcomes. We then sketch a methodology to develop a regular pattern by which to render
(format), readily access, and thus effectively memorialize design policies, such as the criteria under which cer-
tain language features (e.g., constexper, explicit, and noexcept) are to be used in C++ Standard Library
functions. This uniform rendering of design policies will turn out to be closely associated with a particular
solution-evaluation process, principled design, which is predicated on identifying governing principles, prioritiz-
ing them, and then using this ordered sequence of principles to evaluate – on a per-principle basis — the various
candidate solutions. Finally this paper provides a roadmap for two future papers that will more fully delineate
what we mean by principled design and principled-design policies.

2 Revision History
R0 October 2023 (pre-Kona mailing)
Initial draft of this paper.

3 Introduction
Everyone participating in WG21 does so with the goal of producing the best possible Standard for C++. That
said, not everyone will arrive at their design decisions based on the same principles. Unless all relevant principles
are first agreed upon, design discussions can easily reach an impasse. In cases of agreement, we can later discover
that a majority vote — even one with strong consensus — was uninformed regarding one or more important
and relevant design principles.

Consistent application of principled design — a principles-first design-choice-resolution methodology — has been
demonstrated to effectively help resolve difficult design problems. We propose that WG21, rather than voting on
one of a set of solutions immediately after discussing the related problem, follow our principled-design protocol
and thus first articulate and prioritize the relevant design principles.

Once such priorities are set, nonviable solutions can often be eliminated quickly, and the remaining candidate
solutions evaluated against the ordered set of priorities to establish consensus for a winner. Using this system,
we will avoid the inconsistency and inefficiency that occur when two or more solutions are arguably equally good,
leading to repetitive discussion and voting, with results dependent upon which members are present. We assert
and will demonstrate that a principled-design decision-making process has led, and will continue to lead, to far
greater consistency than our typical ad hoc methods.

Moreover, once a fully informed principled-design decision is made, documenting that resolution as it is made
would streamline any future discussion of that or similar design issues by avoiding reconsideration unless new
circumstances or information warrants it.

This paper outlines high-level parts of what we propose to be a standard process for establishing reusable design
policies, initially targeted for LEWG. In particular, we set the stage in this paper for two future proposals
relating to (1) a principled approach to arbitrating contentious design decisions [P3004R0] and (2) a systematic
mechanism for documenting and accessing established design policies [P3005R0]. Via these proposed techniques,
we can get decisions right the first time and make them readily accessible, thus enhancing WG21’s efficiency and
consistency for its C++ standardization process for C++26 and beyond.

2

4 Previous Work
WG21 has attempted to enact and document design policies in the past. An incomplete list of preceding work
would include the following.

— [P1000R5], “C++ IS schedule” — Herb Sutter provides the policy that defines our current “train” model
of delivering a new Standard every three years.

— [P0592R5], “To boldly suggest an overall plan for C++26” — Ville Voutilainen provides a plenary-approved
priority plan for each new revision of the Standard.

— [P2000R4], “Direction For ISO C++” — The Direction Group provides principles to guide the work of
WG21 as a whole.

— [P1369R0], “Guidelines for Formulating Library Semantics Specifications” — Walter Brown provides a
principled update for how to consistently specify Standard Library wording as the Standard has evolved.

— “LWG Reviewing Guidelines” — The LWG presents the oral history of how LWG applies consistent patterns
when reviewing wording.1

We will discuss such previous work in more detail in our second follow-up paper, [P30005R0].

5 Applying Design Policies to the Library Evolution Process
The intended reuse of a fundamental library, such as specified by the C++ Standard, implies a need for maximal
stability. An incorrect or inconsistent decision can result in enormous and often irreparable negative consequences.
Despite our efforts to make the best decisions, we often find that a close-call decision could depend merely on
who happens to be voting at the time.

Sometimes, however, the decision should have been clear, but key people were absent, and the general guiding
design principles and policies that had been discussed previously and applied to similar issues were never con-
sidered. This lack of easy access to prior discussion and decision-making has led to numerous inconsistencies
that we had to address over the years as we designed the C++ Standards. As a classic example, adding an
inconsistent noexcept specification to a defaulted function in C++11, 14, and 17 has different behaviors in each
of these standards: In C++11, it was considered ill-formed; in C++14, it caused the function to be deleted;
and in C++17, it was treated as an override. The principles that reigned were (1) that the semantics could be
implemented and (2) that it did something useful in practice.2

An important and misunderstood example of a principled-design policy is that of the Lakos Rule, which strongly
advocates that the noexcept specifier not be mandated in the Standard (1) for any function having a narrow
contract, (2) unless a client has some compelling need, in a generic context, to query the exception specification
of a function for the purpose of laying down a more efficient algorithm at compile time. This policy, which was
adopted with strong consensus by the entire committee in Madrid (March 2011), remained in effect until a straw
poll in LEWG in Prague (February 2020) narrowly overturned it. The opportunity to reinstate it eventually
presented itself at Varna (June 2023), but, by that time, several components having narrow contracts had been
inconsistently (and therefore wrongly) given a noexcept specifier.

The proposed governing principles included mandating a consistent specification, minimizing object size, max-
imizing runtime performance, requiring better documentation, enabling the creation of backward-compatible
extensions, allowing implementers flexibility in the quality of the implementation to trade off (1) reducing code
size versus (2) not blocking thrown exceptions, and so on.

Once the claim that noexcept itself is a runtime optimization was debunked and it was established that noexcept
on narrow contracts did undesirably interfere with a throwing exception handler for contracts, the entire joint
session of LWG and LEWG at Varna agreed, with seemingly overwhelming consensus (i.e., by verbal acclamation;
no poll was taken), that the Lakos Rule is an essential design policy and, if anything, not restrictive enough.

1https://wiki.edg.com/bin/view/Wg21PersistentInformation/LWGReviewingTips
2Embracing Modern C++ Safely, section 3.1, “noexcept Specifier,” pp. 1085-1152, specifically footnote 2, p. 1086.

3

https://wiki.edg.com/bin/view/Wg21PersistentInformation/LWGReviewingTips

Starting from zero and reconsidering a library design choice, such as whether a particular kind of function
should be declared explicit, constexpr, or noexcept, without first understanding the relevant principles that
led to the previous policy decision, is inefficient and results in inconsistencies, which — even in the rare case of
otherwise equally good solutions — are inherently suboptimal.

We assert that a standard framework for documenting design policies — vetted design patterns established
through consensus resulting from a principled-design process (see below) — is essential for correct, consistent,
and efficient design and will play a crucial role in establishing clear priorities, providing guidance, and ensuring
consistency in the decision-making and implementation processes.

6 Applying Principled Design to the Language-Evolution Process
Before we can capture policies in LEWG, we first need to formally delineate a standard process by which we,
as a group, can reliably decide how to formulate the best policies. As part of the process of developing the
minimum viable product (MVP) version of Contracts for C++26, we have been faced with many unusually
complex design decisions, some of which have been open questions for more than a decade. To demonstrate the
power of our approach to principled design, we present two such decisions that might still be openly questioned
without principled design.3

1. If a noexcept function has a precondition, and evaluation of that precondition throws an exception, should
that exception propagate to the caller of the function or invoke std::terminate()?4

A primary motivation for the Lakos Rule was to allow a function having a narrow contract — i.e., one
with preconditions — to detect an out-of-contract call and optionally throw an exception (one known valid
use being negative testing5). Declaring a function having a narrow contract noexcept, however, would
obviously bar an exception from escaping the evaluation of that function. This restriction would apply
even if the exception came from the evaluation of an assertion of the preconditions on the function.

The C++20 (and C++26 MVP) contract-checking facilities allowed both precondition and postcondition
decorations on the function declaration itself. If we allow the precondition and postcondition checks to
occur on the outside of the boundary of the noexcept specifier that applies to the function invocation, we
could potentially throw back to the client when a contract-checking annotation (CCA) identifies that a
contract has been violated. Is this a good idea, and why?

Allowing exceptions to propagate might seem like a naturally useful step to take; client code could recover
from contract violations without needing to worry about unexpected program termination, and unit testing
narrow contracts would become straightforward to accomplish. The ramifications of this decision, however,
are hard to evaluate without enumerating the basic principles that might apply and seeing whether the
decision is consistent or in violation of those principles.

As described in detail in [P2834R0] and later revisited in [P2932R1], Contracts in the C++ language must
adhere to the following principle if they are to remain viable tools for detecting defects: Changing whether
a CCA is checked or unchecked, i.e., the CCA semantic6 with which the CCA is evaluated, must not alter
the compile-time semantics of a program. If enabling or disabling CCAs results in changes to program
semantics, then we open the door to having a production defect (in a build with all CCAs disabled) that
magically goes away when we turn contract-checking on.

Allowing exceptions to propagate from a CCA on a noexcept function — but only in a checked build
— would necessarily mean that the result of the noexcept operator would change as well, leading to
potentially vastly different code paths taken in surrounding code. A common example of this highly

3The following two examples are taken from [P2834R0] and elaborated on in [P2932R1].
4Note this question is distinct and independent from whether the evaluation of the preconditions and postconditions should be

implemented on the client side, implementation side, or both.
5Pablo Halpern and Timur Doubler CppCon’23, “Noexcept? Enabling Testing of Contract Checks,”

https://cppcon2023.sched.com/event/1Qtgc/noexcept-enabling-testing-of-contract-checks
6The Contracts MVP proposes three potential semantics. The ignore semantic does nothing and is considered unchecked. The

observe and enforce semantics evaluate the CCA’s predicate and invoke a violation handler on violations, and both are considered
checked. See [P2900R1] for details on the current MVP.

4

undesirable scenario would be whether a vector copies or moves its elements on some operations based
on whether the move operation is noexcept.

Given that propagation of exceptions thrown as the result of a failed precondition (or postcondition) would
significantly alter such statically observable properties, we then know that such a decision would violate
an imperative design principle (viz. Contracts do not change the meaning of a valid program), one that is
absolutely essential for Contracts to fulfill their goals. Thus, principled design guides our hand to choose
to always consider CCA evaluation to be within the noexcept boundary of that function — including even
those tempting pre and post CCAs, which are attached to a function declaration.

2. When a local variable is referenced from within a lambda, that variable must be captured, either by
reference or value, within the lambda closure object. If the predicate of a CCA is the only place within a
lambda where a variable is referenced and thus is the only source of a need to capture the variable, then
we potentially have a few choices.

a. Add the implicit capture to the closure object only when we build the program in a way that would
evaluate and check the CCAs (sometimes called a checked build).

b. Add the implicit capture to the closure object independently of whether the CCA’s predicate will be
evaluated, i.e., in all potential build configurations.

c. Make such a use of a local variable ill-formed.

Again we must ask what principles apply to this question.

The same principle that clearly determined our choice for exception propagation through noexcept — that
the semantics of a CCA must not alter the compile-time semantics of a program — immediately rules out
option (a).

Another important principle for Contracts, as described in [P2932R1], is what we call the zero-overhead
principle. This principle again comes from a motivation that a Contracts facility that does not detect bugs
is a failed Contracts facility. By extension, a Contracts facility that does not become ubiquitously used is
a failed Contracts facility.

To be used reliably with no need for second thoughts, a successful Contracts facility must, when turned off,
have absolutely zero runtime overhead on a program. Any implicit capturing of variables due to a CCA
predicate would introduce the overhead of initializing and destroying the member variable of the closure
object as well as increasing the size of the lambda’s closure object. Both of these overheads, though typically
small, can subtly become very large in otherwise reasonable situations. Perhaps more importantly, that we
cannot state emphatically that no runtime overhead is implied merely by installing Contracts would give
rise to FUD, which could easily slow the rapid adoption of Contracts. Therefore, option (b) has prodigious
drawbacks and hence should probably not be considered viable either.

This leaves option (c) as our only remaining choice. Option (c) also fits well with another principle for
Contracts described in [P2932R1]: Make undecided behaviors ill-formed.7 This principle indicates that,
when no consensus is reached on a path for a particular decision or when the optimal solution for a particular
problem remains unclear, choose to make ill-formed those programs that would need a definition for the
undecided behavior. This choice allows compilers to experiment with potential solutions as conforming
extensions and future Standards to settle on a better choice if ill-formed turns out to be wrong.

Therefore, option (c) wins on two counts: It is the only truly viable option that does not violate one of our
strong fundamental principles for Contracts, and should it be the wrong choice, it naturally leaves open
a fully backward-compatible evolutionary path to add a well-formed behavior to implicitly capture from
CCA predicates in the future.

The purpose of this paper, then, is twofold: Standardize a process for (1) making systematic design decisions
that lead to the overall best solution to a given problem based on what we all agree are the most important
governing principles, and (2) capture, document, and make readily accessible these decisions along with how the

7This principle is a special case of the more general form, which states that given two seemingly equally good alternatives, select
the one that, if you are wrong, is easiest to migrate to the other.

5

design process was applied, including the relevant principles (along with any established relative priorities) upon
which the resulting policy is based.

7 Roadmap
Given the needs we describe in this paper, we anticipate two follow-up papers.

7.1 “Principled Design for WG21,” [P3004R0]
This paper (expected 23Q4) will delve into the concept of principled design — in the general context of the
WG21 — and its role in solving design problems, presenting a framework that identifies objective and verifiable
imperative principles to guide solutions, while also admitting for consideration more subjective and controversial
ones. We will describe how we collect relevant principles, categorize and order them, and then eliminate obviously
nonviable solutions. After that, we will discuss how to evaluate the remaining candidate solutions (and their
variants) against a priority-ordered sequence of principles, leading to highly effective, tabular rendering, for ease
of comparison.

After thoughtful consideration, one solution will ultimately emerge as a clear best answer for moving forward.
Note that the degree and detail to which this process is applied is adjustable to fit the needs of each particular
application.

7.2 “Documenting Principled-Design Policies for WG21,” [P3005R0]
This paper (expected 24Q1) will propose a framework for capturing and maintaining policies within WG21 but
focusing (at least initially) on the use of language features in library components. Policies serve as approved
criteria for employing specific features, such as attributes, allocators, explicit, constexpr, and noexcept. The
framework aims to establish a consistent and generalized approach that can be expanded over time to include
almost any recurring decisions that we might find ourselves making, especially when the decisions encompass
business, economic, or otherwise nontechnical situations. Each policy will follow a regular form, consisting of
a name, purpose, concise wording, goals, relevant principles, and their imputed priority order. This proposed
framework emphasizes the importance of stability, consistency, safety, performance, clarity, ready accessibility,
and maintainability in policy development.

8 Conclusion
Software engineering typical comprises many trade-offs that can sometimes be highly nuanced in nature. We
have identified a pressing need to reimagine how design decisions are made throughout WG21 to motivate a more
consistent, more accessible way to document design policies, such as the recommended idiomatic use of specific
language features in Standard Library components. Closely associated with this uniform rendering, we propose a
principled-design process: Determine relevant principles, prioritize those principles to establish a priority-based
sequence, evaluate each solution against that ordered list, tabulate the results, select an optimal solution, and
memorialize it as as an easily accessible principled-design policy. Finally, we offer a road map for producing two
additional papers:

1. [P3004R0], “Principled Design for WG21”
2. [P3005R0], “Documenting Principled-Design Policies for WG21”

Principled design is a valuable tool that helps us to inform and focus our thinking but is not in itself a substitute
for intelligence, experience, or good taste. By advocating for a principles-first design process for capturing
and maintaining design policies, we will create a sound, consistent, easily accessible, maintainable, collectively
curated repository of reusable software capital.

6

9 Acknowledgments
The authors would like to thanks Joshua Berne, Mungo Gill, and Mike Verschell for providing initial engineering
and managerial feedback on this proposal. Thanks also goes to Michael Park for the pandoc-based framework
used to transform this document’s source from Markdown.

Lastly, we’d like to thank Lori Hughes for reviewing this paper and providing editorial feedback.

10 References
[P0592R5] Ville Voutilainen. 2022-10-15. To boldly suggest an overall plan for C++26.

https://wg21.link/p0592r5

[P1000R5] Herb Sutter. 2023-05-10. C++ IS schedule.
https://wg21.link/p1000r5

[P1369R0] Walter E. Brown. 2018-11-25. Guidelines for Formulating Library Semantics Specifications.
https://wg21.link/p1369r0

[P2000R4] Roger Orr, Howard Hinnant, Roger Orr, Bjarne Stroustrup, Daveed Vandevoorde, Michael Wong.
2022-10-15. Direction for ISO C++.
https://wg21.link/p2000r4

[P2834R0] Joshua Berne, John Lakos. 2023-05-15. Semantic Stability Across Contract-Checking Build Modes.
https://wg21.link/p2834r0

[P2900R1] Joshua Berne, Timur Doumler, Andrzej Krzemieński. 2023-10-15. Contracts for C++.
https://wg21.link/p2932r1

[P2932R1] Joshua Berne. 2023-10-15. A Principled Approach to Open Design Questions for Contracts.
https://wg21.link/p2932r1

7

https://wg21.link/p0592r5
https://wg21.link/p1000r5
https://wg21.link/p1369r0
https://wg21.link/p2000r4
https://wg21.link/p2834r0
https://wg21.link/p2932r1
https://wg21.link/p2932r1

	Abstract
	Revision History
	R0 October 2023 (pre-Kona mailing)r0-october-2023-pre-kona-mailing

	Introduction
	Previous Work
	Applying Design Policies to the Library Evolution Process
	Applying Principled Design to the Language-Evolution Process
	Roadmap
	“Principled Design for WG21,” [P3004R0]
	“Documenting Principled-Design Policies for WG21,” [P3005R0]

	Conclusion
	Acknowledgments
	References

