
Supporting document for Hive proposal 1: outreach for
evidence of container-style use in industry

Audience: LEWG, SG14, WG21
Document number: P3011R0
Date: 2023-10-15
Project: Supporting document for std::hive proposal 1
Reply-to: Matthew Bentley mattreecebentley@gmail.com

Background

While personally I have had multiple contacts with people in various professions over the past 7
years who have been using this style of container, a lot of that stuff is in emails long-since deleted
or in old abandoned accounts. Many members of SG14 and WG21 have stated explicitly in LEWG
and SG14 meetings that they use this style of container, but for reasons unknown, some members
remain unconvinced.
Anyway, this is the result of a brief and not extensive outreach to solicit feedback on use of this
style of container in industry.

First outreach: ~200 emails sent out to various businesses, none of which I have contacted before.
ie. Cold-calling. Full list at end of document.

Second: Posting on reddit and discord.

Third: Posting on TIGsource, an old (but less-active nowadays) independent gamedev website.

Questions asked

While the form differed depending on the company/individual I was contacting, the general form
was as follows:
“To whoever it may concern,
I've been asked by the C++ standards committee to gather evidence for use of a specific type of
technology in industry, such that we can justify standardising it.
To that end I am contacting businesses which may employ the same or similar techniques. I would
greatly appreciate it if you can pass the following quick questions onto a lead engineer in your
company. In the interests of proving my identity, please see the email address on the following C++
standards paper:

Questions for engineers:
1. Are you using the following type of data container in your work: sequential storage, either in
multiple memory blocks or one singular memory block, elements are marked by a boolean/bit/token
when erased and these marked elements are subsequently skipped over during iteration.
2. If so, is the container multiple-memory-block or singular? What do you use the container for (if
allowed to say)?

mailto:mattreecebentley@gmail.com

3. Are you aware of plf::colony and the corresponding std::hive proposal for the standard library?
4. Do you think that there would be benefits to this type of container being standardised?
5. Do you have any additional comments or questions?”

On discord and reddit I truncated these questions, as people are well aware of std::hive/colony. On
TIGsource I forgot to post 3.

Results, tallied

Over email 8 businesses/individuals responded with answers (Radiant Nuclear, Tommy Refenes of
Team Meat, Interance, Mind.be, Essensium, Supergiant Games, StellarScience). Their exact
responses are detailed at the end of this document. A few more responded but turned out not to be
using C/C++ in their frameworks.

Over discord 4 people responded, and on reddit 11 people responded to my questions (many others
responded, but did not answer my questions). On TIGsource 1 person responded. Screenshots are at
the end of this document.

Answers from all sources above will be counted as follows:

“1. Are you using the following type of data container in your work: sequential storage, either in
multiple memory blocks or one singular memory block, elements are marked by a boolean/bit/token
when erased and these marked elements are subsequently skipped over during iteration.”

email: 5/7 yes
discord: 2/4 yes
reddit: 6/11 yes
TIGsource: 1/1 yes

Total: 61% yes

It should be noted that many respondents were utilizing sub-optimal strategies here, such as
unrolled linked lists, or having a vector of pointers to dynamically-allocated elements (same/worse
performance as a linked list). Some people, misunderstanding the aim of this approach, stated they
were swapping-and-popping with the back element (which invalidates pointers/iterators to each
back element as it is moved).

“2. If so, is the container multiple-memory-block or singular?”

Obviously only those who responded yes could answer this one, and not everyone did (even if they
said yes).

Email: 3 multiple, 2 singular, 1 both.
Discord: no responses
Reddit: 1 multiple, 3 singular, 1 both.
TIGsource: 1 singular.

“3. Are you aware of plf::colony and the corresponding std::hive proposal for the standard library?”

email: 4 yes, 3 no.

On discord and reddit I didn’t bother with this and the following question as most were likely to
know about the hive proposal. However a discord user noted that they switched from a custom
implementation to plf::colony for a project several years ago and got a 10-15% performance
increase.

“4. Do you think that there would be benefits to this type of container being standardised?”

email: 6 yes, 1 yes but in the future.
TIGsource: 1 no opinion.

Summary

While my sample size is small, the data fits with my previous experience and observations that this
style of container is common in industry use.

Responses
Note: a few lines which might be considered sensitive/non-disclosable information have been
redacted from some of the responses.

Email:

Team Meat:

"Hey, thanks for reaching out. I hope my answers help!

1. Kinda but not often

2. What we do use is multiple memory block for the most part.

3. It's all sort of custom for us, there isn't really a one size fits all solution

4. I read the proposal and it seems like it's pretty cool

5. I could see the benefits to it being standardized, but I probably wouldn't use it. I have a lot of
stuff in engine that already works and I don't think I would port it and if I needed something new I
would just use what I already have.

I'm not the best person to ask about this...I wrote my own version of std::list decades ago because I
thought it was fun to do and it taught me about templates. That implementation is in everything I
make now haha." - Tommy Refenes

RadiantNuclear:

"Hi Matt,

Thanks for reaching out, happy to offer some advice, our use case for C++ is split between two
domains, simulation software for desktop and embedded software for bare metal applications.

 Yes

 Singular

 N/A

 No

 Yes

 I would like to see it also paired with a fixed width type similar to boost::container::static_vector
or the fixed_capacity_vector proposal. These sorts of fixed type representations are extremely
important for embedded / bare-metal / OS development applications and most projects in the space
reimplement them. Closest thing in the embedded space to a usable standard library is ETL:
https://www.etlcpp.com/ I’ve ended up rebuilding a lot of the same container types multiple times
for different embedded projects, and our use case seems generally underrepresented or considered
in the standards committee. I think the best evidence for this is the recent deprecation and
subsequent undeprecation of compound assignments to volatile storage, which fundamentally broke
multiple massive codebases I have designed or contributed to due to the nature of how memory
mapped device drivers are implemented.

That’s all, happy to answer more questions in the future.

Bob Urberger

CTO"

Interance:

"Hi Matt,

1. No.

2. -

3. We do use containers such as std::list, but not because of the stable iterators. For example, our
JSON implementation maps JSON arrays to lists with a monotonic buffer resource allocator to
avoid re-allocations (that would punch holes into the consecutive buffer space).

4. I’m occasionally checking for updates on the standardization process and have seen hive/colony
pop up before. But I haven’t looked at the paper in detail.

5. Definitely. While we don’t have an immediate use case right now, I think having a container like
this would be great.

6. Keep up the good work! It takes a lot of dedication to get something standardized. The standard
library needs people like you. :)

Best,

Dominik"

Mind.be:

"Hi Matt,

Thanks for consulting us, it's much appreciated! :-)

Here after, the quick answers:

1 - Rarely

2 - Both (multi and single memory blocks) / Cascading asynchronous tasks (detached threads,
timeout-based cleaning, garbage-collector like...), Delayed operation on maybe-obsolete data,
delayed or split image processing...

3 - Sometime array/vector + shared_ptr

4 - Now I am, thanks

5 - Probably not to incorporate into the standard soon, but definitely relevant in an extension library,
especially relevant in boost. Since big data, IA, parallel calculation and async architectures are
getting widespread, and more and more developers will face such contexts, this design is worth
being available. But it probably better suits an external and/or dedicated library for now, since the
API and complexity goes one step too far to be part of the coming standards.

6 - If standardized, please avoid diverging from the existing containers APIs, do not make the
language yet more complex; it's already very difficult to keep beginners onboard!!! Take more time
to propose something clean and stable, do not hurry up. Avoid API changes after release.

Kind Regards,

--

Francois Gerin "

Note: Francois was unaware of the long development time that has occurred.

Essensium:

"Hello Matt,

I've briefly discussed your questions with François and mostly share his points of view. (i.e.
std::hive might be a too specific use case, there is a need to not complexify the stl if it can be
avoided).

However since it's in preparation since a while now and backed by Nicolai Josuttis, I would say go
for it.

Just my 2 cents.

BR,

Patrick Havelange "

Supergiant games:

"

Hi Matt,

Thanks for reaching out with your questions! My name is Nikola and I'm an engineer at Supergiant
Games. I'd be glad to answers any questions you may have.

1. Are you using the following type of data container in your systems: sequential element storage,
either in multiple memory blocks or one singular memory block, elements are marked by a
boolean/bit/token when erased and these marked elements are subsequently skipped over during
iteration (enables erasure without invalidating pointers to elements).

- In one place in our codebase, we use a very large std::array containing data structures that contain
{ actualData, NextFreeIndex }. We do not want to change the size of this container at runtime
because we want to control memory use closely due to memory constraints on consoles. In all other
places, we don't need stable iterators and we use a lot less memory, so we generally use classic
arrays and vectors, but also hashmaps in multiple places.

2. If so, is the container multiple-memory-block or singular?

- Single memory block, since it's a std::array

4. Are you aware of the std::hive proposal for the standard library, or it's precursor plf::colony?

- I've investigated plf::colony a few years ago, it looked like an interesting proposal, however we
didn't find much use in switching because our code base is already established

5. Do you think that there are benefits to this style of container being standardized?

- I definitely see its uses. There are two main barriers to its use (that probably apply to any new
proposal): For established smaller game engines, like ours, it may not be worth it to switch to using
std::hive, since we have smaller engineering teams and established low-level codebases; and most
AAA studios have their own specialized containers and aren't relying on std. However, for new
projects, I see the appeal of using a container like this.

6. Any additional comments or questions?

- My concern with using hive would be that it can balloon in memory use with a bunch of memory
blocks with one a few active elements. Any use of this container would have to be carefully vetted
and tested, so I wouldn't consider it a drop in replacement to any other container.

I'm open to any futher discussion on this topic, feel free to contact me

Best,

Nikola

"

Note: I have subsequently clarified to Nikola that the memory waste will only happen if there were
many random erasures and no insertions (ie. a situation where blocks lose all but a few elements
and therefore don’t get freed) – in which case one would be in the same situation as when using
vector and popping or erasing, till one calls shrink_to_fit.

StellarScience:

“Hi Matt,

Sorry for the delay. Here’s what I’ve gathered:

1. We do not have that type of container (or no one recognized anything as such).

2. N/A

3. There may be a few extremely isolated cases where we need stable iterators or pointers, but
no one could point me to any current examples.

4. Yes, I am aware of hive.

5. Although we don’t seem to use that kind of container, I could see others needing it.

6. No, but thank you!

K.R Walker

“

Discord:

Reddit:

TIGsource:

Text reproduced as image is small to fit on page:

“Is this what's called an object pool?

I use this sort of design pattern when I'm making particle systems and don't want to have to
constantly shrink and grow a container because of paranoia about creating garbage in c#. Its
possible using c#'s list collection would do this work for me, and I could just remove and add
particles at will with list.remove and list.add without worrying about allocations, but I never really
trust the structures that are part of the language. To some extent, for me, its faster to just write my
own code rather than read all the fine print associated with a language feature.

The way I do it is to have a particle object and a flag or other data member that determines if the
particle is alive so that new particles can be created by iterating the array without destroying or
creating memory. Since I never have more than a few thousand particles on screen its pretty simple
to deal with. I'm not really taking advantage of the stable pointer situation though, it seems like c#
automatically keeps pointers to objects stable even if I were using a list there because the list would
just be a list of pointers rather than actually keeping the memory in a block.

I'm not really a c++ guy anymore, so I can't say you should make such a thing part of STL or
whatever, but its not too difficult to roll your own, and someone who knows why they would need
such a structure is likely not going to need an implementation as part of STL for them.“

Note: I have subsequently explained the disadvantages of this person’s approach to them
(branching, non-O(1) iteration, wasted memory etc)

List of businesses contacted over email

reddit cpp jobs listings:

Nokia
https://www.missionbuddies.de/

Freeform.co

qt.io

nyriad

Tenzir

stellarscience

Otherside Entertainment

Objectbox

Soundradix

Interance

rev.ng

Johnson and Johnson

severalnines

guardsquare

wolverine trading

sonarsource

chess.com

zivid

ARA

IAR

mind.be

Atomos space

California Technical Media

img.ly

google, robotics:

Shield AI
Graymatter robotics

Cruise Cars

Magna International

May Mobility

Apptronik

Relativity space

Spaceex

Sierra Space

Honeybee robotics

SCythe Robotics

Arrow Electronics

google, HFT:

virtu financial
2sigma
tower research

Jump trading

DRW

Hudson river trading

xtx markets

Flow traders

Optiva

IMC

Xr TRADERS

beacon

seldon.io

Robinhood

Lykke

Turbo power systems

Lonk

Celoxica

Springdew

OA Systems

PrimeXM

Xcell

google, gaming:

aaa studios
kevuru
double fine

toys for bob

Mike Acton (Unity)

Harebrained schemes

Obsidion entertainment

Thunder lotus

Epic Games

Poncle

Tencent

CD project red

Grinding gear games

Croteam

Mundfish

Bioware

4A games

Yacht Club Games

Playdead

google, HPC/AI:

IBM
DDN
Rescale

AdvancedHPC

Penguin Computing

Nesi (Niwa)

Monad

Atom Computing

Qindra

Qblocks.cloud

Fluidstack

Anabrid

Universal Quantum

Ampd

Kaleidosim

HRL

Riverlane

Tachyum

sima.ai

meetiqm

Optalysis

Altair

Kitware

ciq.co

GRCooling

Hadean

tech-x

SiPearl

Blueshift memory

Kalray

Ceremorphic

Cascade Technologies

Avicena

google, physics:

https://www.sibyllabiotech.it/
Ansys
Arete

Radiant Nuclear

TWI UK

Kuano

Brelyon

Metron Science

First Light Fusion

Sarcos

CFD research

BAE Systems

google, random:

JpMorgan and Chase
JK Barnes
Amentum

Chevron

Akuna Capital

Intelliswift

Rocketlab NZ

GSC-games

Team Meat

Terry Cavanagh

Thunderful games

Black Salt Games

Frictional games

Supergiant games

Sorath Games

Gearbox Games

Petroglyph games

Nicalis

Joymasher

Daniel Mullins Games

Aminita design

Flying Wild Hog

Zojio

Aceteam

Yager games

Increpare

Dinosaur Polo Club

Derek Yu

Heart Machine

That game company

Innersloth

Extremely OK games

Eric Barone

Studio MDHR

Hello Games

Night School Studio

Giant Squid Games

	Supporting document for Hive proposal 1: outreach for evidence of container-style use in industry
	Background

	Questions asked
	Results, tallied
	Summary
	Responses
	Email:
	Team Meat:
	RadiantNuclear:
	Interance:
	Mind.be:
	Essensium:
	Supergiant games:
	StellarScience:

	Discord:
	Reddit:
	TIGsource:

	List of businesses contacted over email
	reddit cpp jobs listings:
	google, robotics:
	google, HFT:
	google, gaming:
	google, HPC/AI:
	google, physics:
	google, random:

