Contract assertions, the noexcept
operator, and deduced exception
specifications

Timur Doumler

Document #: P3113R0
Date: 2024-02-01
Audience: SG21 (Contracts)

Every C++ expression is:

» elther potentially-throwing
- or not potentially-throwing

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

|lexcept.spec]

° An expression Eis potentially-throwing if

61— Eis a function call whose postfix-expression has a function type, or a pointer-to-function type,
with a potentially-throwing exception specification, or

62) — Eimplicitly invokes a function (such as an overloaded operator, an allocation function in a new-
expression, a constructor for a function argument, or a destructor if E is a full-expression) that
has a potentially-throwing exception specification, or

63) — Eis a throw-expression ([expr.throw]), or

64— Eis a dynamic_cast expression that casts to a reference type and requires a runtime check
([expr.dynamic.cast]), or

650 — Fis a typeid expression applied to a (possibly parenthesized) built-in unary * operator applied
to a pointer to a polymorphic class type ([expr.typeid]), or

66) — any of the immediate subexpressions of E is potentially-throwing.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 4

Every C++ expression is:

» elther potentially-throwing
- or not potentially-throwing

It matters In two situations:

. result of noexcept(expr)

- whether defaulted special member functions are noexcept
(exception specification is deduced by the compiler)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

Are contract assertions potentially-throwing?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

Are contract assertions potentially-throwing?

It doesn’'t matter for pre and post:

noexcept(pre(f()) // ill-formed (pre/post are not expressions)

struct X

{
X pre(f()) = default; // ill-formed (consensus in Kona)

}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

Are contract assertions potentially-throwing?

It matters for contract assert:

noexcept(contract_assert(false)); // true or false?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

Are contract assertions potentially-throwing?

It matters for contract assert:

noexcept(contract_assert(false)); // true or false?

noexcept((contract_assert(x.a()), x.b())); // true or false?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

Are contract assertions potentially-throwing?

It matters for contract assert:

noexcept(contract_assert(false)); // true or false?

noexcept((contract_assert(x.a()), x.b())); // true or false?

class B {

int 1 = (contract_assert(true), 17); // default member initialiser

B(int j = (contract_assert(true), 34)); // default arqument
s
class D : B {}; // noexcept(D{}) true or false ?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

10

Fact: contract_assert(x) can throw an exception.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

11

Fact: contract_assert(x) can throw an exception.

#include <contracts>

using namespace std::contracts;

handle contract violation(const contract violation&) A
throw 666;

int main() {

contract_assert(false); // this statement throws an exception

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

12

Design principle: "Concepts do not see Contracts™ (P2932)

Adding a contract annotation to an existing program must never
alter the compile-time semantics of the program:

- Whether a concept or constraint is satisfied
- SFINAE

 Overload resolution

- which branch is taken by 1f constexpr

 the result of operator noexcept

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

13

Design principle: "Concepts do not see Contracts™ (P2932)

Adding a contract annotation to an existing program must never
alter the compile-time semantics of the program:

- Whether a concept or constraint is satisfied
- SFINAE

 Overload resolution

- which branch is taken by 1f constexpr

 the result of operator noexcept

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

14

15

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

Options

1.

Make contract_assert(x) potentially-throwing
(P2969R0, option 3.1)

noexcept(contract_assert(false)); // -> false

noexcept((contract_assert(x.a()), x.b())); // -> false

class B {

int 1 = (contract_assert(true), 17); // default member initialiser
B(int j = (contract_assert(true), 34)); // default argument

3

class D : B {}; // noexcept(D{}) -> false

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 16

Options

2. Make contract_assert(x) not potentially-throwing

~ "operator noexcept assumes no contract violations happen”
(P2969R0, option 3.2)

noexcept(contract_assert(false)); // -> true

noexcept((contract_assert(x.a()), x.b())); // -> true

class B {
int 1 = (contract_assert(true), 17); // default member initialiser
B(int j = (contract_assert(true), 34)); // default argument

s

class D : B {}; // noexcept(D{}) -> true

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 17

Options

3. When determining if a set of expressions is potentially-throwing, CCAs

are not considered. If there are no non-CCA expressions the query is ill-
formed. (P2932R2, proposal 7A)

noexcept(contract_assert(false)); // -> ill-formed, like noexcept()

noexcept((contract_assert(x.a()), x.b())); // -> true

class B {
int i = (contract_assert(true), 17); // default member initialiser
B(int j = (contract_assert(true), 34)); // default argument

s

class D : B {}; // noexcept(D{}) -> true

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 18

Options

4. Allow both options, via an extra annotation
(P2969R0, option 3.3)

int f(int i) pre (1 > 0); // potentially-throwing contract check
int g(int i) pre noexcept (i > 0); // non-throwing contract check

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 19

Options

4. Allow both options, via an extra annotation
(P2969R0, option 3.3)

int f(int i) pre (1 > 0); // potentially-throwing contract check
int g(int i) pre noexcept (i > 0); // non-throwing contract check

— not proposed; exact syntax and semantics unclear, no paper,
default case still violates Concepts do not see Contracts

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 20

Options

5. Allow erroneously thrown exceptions to escape deduced non-throwing
exception specifications

(P2969R0, option 3.4)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

21

Options

5. Allow erroneously thrown exceptions to escape deduced non-throwing
exception specifications

(P2969R0, option 3.4)

— not proposed; we have SG21 consensus to not do this:

Poll, 2023-05-18

Throwing an exception from a contract violation handler shall invoke the usual
exception semantics: stack unwinding occurs, and i1f a noexcept barrier 1is
encountered during unwinding, std::terminate 1s called, as proposed in P2811.

S

F FNASA
10 7 2 00

Result: Consensus

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 22

Options

6. contract_assert is neither potentially-throwing nor not potentially-

throwing. Any use of contract_assert iIn a situation where this must be

determined is ill-formed. (P2969R0, option 3.5; P2832R2, proposal 7B)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

23

Options

6. contract_assert is neither potentially-throwing nor not potentially-
throwing. Any use of contract_assert in a situation where this must be
determined is ill-formed. (P2969R0, option 3.5; P2832R2, proposal 7B)

a. Make contract_assert a statement, not an expression

b. Make it ill-formed if a contract_assert appears as a subexpression
of the operand of noexcept or while deducing an exception
specification

c. Make it ill-formed if a contract_assert appears as a subexpression
of the operand of noexcept or while deducing an exception
specification, and no other subexpression is potentially-throwing

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 24

Options

6. contract_assert is neither potentially-throwing nor not potentially-

throwing. Any use of contract_assert in a situation where this must be
determined is ill-formed. (P2969R0, option 3.5; P2832R2, proposal 7B)

a. Make contract_assert a statement, not an expression

— not proposed
c. Make it ill-formed if a contract_assert appears as a subexpression

of the operand of noexcept or while deducing an exception
specification, and no other subexpression is potentially-throwing

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 25

Options

6a. Make contract_assert a statement, not an expression

noexcept(contract_assert(false)); // ->

noexcept((contract_assert(x.a()), x.b(Q))); // ->

class B {
int 1 = (contract_assert(true), 17); [/ ->
B(int j = (contract_assert(true), 34)); // ->
}s

111-formed
111-formed

111-formed
111-formed

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

26

Options

6c. Make it ill-formed if a contract_assert appears as a subexpression of
the operand of noexcept or while deducing an exception specification,
and no other subexpression is potentially-throwing

noexcept(contract_assert(false)); // -> ill-formed

noexcept((contract_assert(false), true)); // -> ill-formed

noexcept((contract_assert(false), throw 666)); // -> 0K, returns false

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 27

Options

7. Address the issue via coding guidelines or diagnostics
 with contract_assert potentially-throwing or not potentially-throwing

 with diagnostics being normative, recommended practice, or Qol

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

28

Options

7. Address the issue via coding guidelines or diagnostics
 with contract_assert potentially-throwing or not potentially-throwing

 with diagnostics being normative, recommended practice, or Qol

— not proposed; not really a solution as we still need to define the
normative behaviour

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

29

Options

8. Make contract_assert(x) not potentially-throwing and the contract-
violation handler always noexcept (P2969R0, option 3.7: "Remove
support for throwing contract-violation handlers™).

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

30

Viable options — Overview

1. Make contract_assert(x) potentially-throwing
2. Make contract_assert(x) not potentially-throwing

3. When determining if a set of expressions is potentially-throwing,
contract_assert is not considered; if there are no expressions other
than contract_assert, the query is ill-formed

6a. Make contract_assert a statement rather than an expression

6¢c. contract_assert Iis neither potentially-throwing nor not potentially-
throwing; if a contract_assert appears as a subexpression of the
operand of noexcept or while deducing an exception specification, and
no other subexpression is potentially-throwing, the program is ill-formed.

8. Make contract_assert(x) not potentially-throwing and the contract-
violation handler always noexcept (= remove throwing violation handlers)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 31

Instead of talking about solutions,
let's talk about the underlying design goals and principles!

The Swan, The Pike, and The Crab
— Fable by Ivan Krylov, 1814

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

32

Desiderata for this problem:

- Maximises teachability - Minimises ability to write useless code

- Minimises chance of standardising - Maximises backward-compatible evolution of
something suboptimal the language
Concepts do not see Contracts (~ adding - Does not inject new code paths into existing
a contract assertion cannot silently code
switch behaviour of surrounding code) .+ Maximises compatibility with code bases
Maximises consistency with existing that compile with exceptions turned off or
language have coding guidelines against using

- Minimises cognitive dissonance with exceptions
current understanding that noexcept(x) - Does not disenfranchise important use cases
means "x will not throw” . Allows effective negative testing

. Mini_mises making che ill-formed when . Allows recovery (non-terminating non-
adding Contracts to it continuing violation handling)

Minimises interaction between Contracts
and exception handling (makes them
orthogonal)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 33

Desiderata for this problem:

Concepts do not see Contracts (~ adding
a contract assertion cannot silently
switch behaviour of surrounding code)

Minimises cognitive dissonance with
current understanding that noexcept(x)
means "X will not throw"

Minimises making code ill-formed when

Allows recovery (non-terminating non-
adding Contracts to it ry (g9

continuing violation handling)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

34

Desiderata for this problem:

Concepts do not see Contracts (~ adding
a contract assertion cannot silently
switch behaviour of surrounding code)

Minimises cognitive dissonance with
current understanding that noexcept(x)
means "X will not throw"

Minimises making code ill-formed when

Allows recovery (non-terminating non-
adding Contracts to it ry (g9

continuing violation handling)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

35

3. contract_assert CEMELG] 6¢c. Determining 8. Remove

IS not considered contract_assert a exception spec of support for

when determining statement, not an contract_assert is throwing contract-
exception spec expression ill-formed violation handlers

1. contract_assert 2. contract_assert
Is potentially- is not potentially-

throwing throwing

Concepts do not see
Contracts

X

noexcept(x) means
"x will not throw"

Adding Contracts
cannot make client
code ill-formed

Allows recovery
(non-terminating
non-continuing
violation handling)

| |

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 36

3. contract_assert 6a. Make 6¢. Determining 8. Remove
IS not considered contract_assert a exception spec of support for
when determining statement, not an contract_assert is throwing contract-

1. contract_assert 2. contract_assert
Is potentially- is not potentially-

throwing throwing exception spec expression ill-formed violation handlers

Concepts do not see
Contracts

X

noexcept(x) means
"x will not throw"

Adding Contracts
cannot make client
code ill-formed

does not subvert the
meaning of noexcept(x),

Allows recovery
(non-terminating
non-continuing
violation handling)

but it creates a new category
l | of expressions for which

noexcept(x) Is ill-formed

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 37

3. contract_assert CEMELG] 6¢c. Determining 8. Remove

IS not considered contract_assert a exception spec of support for

when determining statement, not an contract_assert is throwing contract-
exception spec expression ill-formed violation handlers

1. contract_assert 2. contract_assert
Is potentially- is not potentially-
throwing throwing

Concepts do not see Treating contract_assert as
Contracts not potentially-throwing
lands you In the
noexcept(true) branch of
noexcept(x) means aigorithms Such ==
. will not throw" push_back; throwing an
exception in such a place is
likely to lead to UB, reducing
the usefulness of a throwing

Adding Contracts ! !
g contract-violation handler.

cannot make client
code ill-formed

Allows recovery
(non-terminating
non-continuing
violation handling)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 38

Desiderata for this problem:

Maximises backward-compatible evolution of
the language

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 39

Possible language evolution paths

6a. Make
contract_assert a
statement, not an
expression

6¢c. determining
exception spec of

contract_assert is
ill-formed

3. contract_assert
IS not considered
when determining \ 2. contract_assert

exception spec

1. contract_assert

Is potentially-
throwing

Is not potentially-
throwing

8. Remove support
for throwing
contract-violation
handlers

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

40

