Feedback on the scalability of contract violation handlers in P2900

Document #: P3191R0

Date: 2024-03-19
Project: Programming Language C++
Audience: Evolution, SG 21 (Contracts)
Reply-to: Louis Dionne
<ldionne@apple.com>
Yeoul Na

<yeoul na@apple.com>
Konstantin Varlamov
<varconst@apple.com>

1 Introduction

In the past few years, the LLVM project has pursued various efforts related to improving the security of code
written in C and C++. As part of that, we developed -fbounds-safety [BOUNDS], a C extension to enforce
bounds safety for production C code that executes guaranteed bounds checking for pointer dereferences and
terminates the program in case the pointer is used outside of its bounds. We also developed a hardening
framework in libc++ [HARDENING], the Clang C++ Standard Library, which allows doing something similar
with container iterators as well as validating bounds in e.g. std: :vector: :operator[].

At their heart, these efforts basically boil down to finding ways to runtime-check existing preconditions on
various basic (and less basic) operations involving both language constructs (like dereferencing a raw pointer)
and library constructs (like indexing a std::vector). While the mechanism for inserting these precondition
checks differs from contracts (i.e. they are either compiler-generated or encoded as _LIBCPP_ASSERT(. . .) inside
libc++), what happens when a precondition check fails does not differ.

As such, we have experience with implementing and deploying what is basically a contract violation handler
mechanism in existing code bases on a very large scale, in millions of lines of production code. Our efforts were
deployed in diverse code bases, some of which have relaxed requirements but also many of which are extremely
cognizant about code size and performance, as many C++ users are. We believe that this is representative of
what C++ users in the industry need.

We are not seeking to standardize these security-related efforts in this paper. However, we recognize that
contracts offer the underlying infrastructure for dealing with such pre/post conditions and this paper provides
the feedback that we believe needs to be addressed in order for them to be viable at a large scale. Furthermore,
we would like to express a lot of excitement towards contracts once they do satisfy these requirements. In
particular, we believe that many safety and security related efforts can be built on top of contracts, but only if
contracts are designed to be extremely scalable. This, in turn, could have a massive impact on C++’s security
posture as demonstrated by our hugely positive experience with hardening so far.

2 Scalability requirements

A contract violation handler mechanism has multiple requirements, which differ based on the user but also the
“build mode”. These requirements include flexibility in defining a custom contract violation handler, but also
a way to handle contract violations with the absolute minimal code size and performance impact. While the
first use case is handled very well by the current proposal [P2900R67], the latter is not. We believe targeted
changes can be made to P2900 to address these shortcomings.

Specifically, here are the strictest code size requirements we had to satisfy in both libc++ hardening and


mailto:ldionne@apple.com
mailto:yeoul_na@apple.com
mailto:varconst@apple.com

-fbounds-safety. These requirements basically correspond to what is needed in order to enable contract
predicate checks in production in a release build, which we believe should be a primary design goal, if not the
primary design goal. Of course, these requirements can be relaxed based on the build mode (e.g. debug) and
the code base, so in some cases it may be acceptable to have more overhead in return for more flexibility or a
better user experience. However, under the strictest requirements:

1. A contract violation should generate no code at all beyond the equivalent of a branch and a
__builtin_trap(). In particular, this means no call to a weakly-defined function such as a contract-
violation handler, no call to a terminating function such as std: :abort, and no exception-handling code
being generated around contract predicates.

2. Tt should not be necessary to create a std: :contract_violation object at runtime (either in static storage
or otherwise). This is extremely important to avoid massive code bloat. Creating such an object in static
storage is akin to generating an RTTI-like structure for each individual contract predicate, which doesn’t
scale. P2900 technically allows for other implementation strategies, but we do not know how of any other
such strategies.

3. To provide a reasonable user experience, the mechanism must still allow for the implementation to retain
some information about the contract violation, but that information must not have to live in the executable.
In our case, we generate and store it in the debug information.

3 A typical contract violation handler with P2900

First, here is what a typical implementation of the contract violation handling mechanism would look like in a
compiler and standard library, based on P2900 along with the recommended practice:

// Implicitly declared by the compiler in all translation units
namespace std { inline namespace __1 {

struct contract_violation;
3}

void handle_contract_violation(std::contract_violation const&);

// Defined in a runtime library (e.g. libc++.dylib)

__attribute__((weak))

void handle_contract_violation(std::contract_violation const&) {
// log stuff, etc.

}

// What the code using this looks like
template <class T, class Allocator>
reference vector<T, Allocator>::operator[] (size_type n) noexcept
pre [[clang::oops("vector[] index out of bounds")]] (n < size())
{
return this->__begin_[n];

}

Assuming that the current contract semantic is enforce, this generates roughly the following code (compiler
explorer: https://godbolt.org/z/Pqo7qxKxf):



template <class T, class Allocator>
reference vector<T, Allocator>::operator[] (size_type n) noexcept {
{
static constinit std::contract_violation __info = {
.comment = "vector[] index out of bounds",
.location = std::source_location::current(),

Ipg
bool __violation;
try {
__violation = !(n < size());
} catch (...) {
::handle_contract_violation(__info,
std: :contract_detection_mode: :evaluation_exception) ;
std::abort();
}
if (__violation) {
::handle_contract_violation(__info,
std::contract_detection_mode: :predicate_false);
std: :abort();
}
+

return this->__begin_[n];

}

This is a lot of code and data being generated for a single assertion. In particular, it is interesting to observe
that allowing users to redefine the contract violation handler has several immediate consequences. Indeed, we
basically need to define the contract violation handler as a weak function, which means that the compiler has to
generate a non-inlineable call to it. Also, since the compiler doesn’t know the definition of the contract violation
handler, it has to provide a reference to a valid std::contract_violation object that outlives the predicate,
which basically means it needs to emit it inside the executable.

Furthermore, this code has to be generated for each contract predicate. There will be a lot of contract predicates.
For example, each operation on a standard container or iterator will contain such checks. Each pointer dereference
could also potentially generate such checks in a world where we ensure bounds safety at runtime. That goes far
beyond just a few user-defined functions, hence the need for this mechanism to be extremely scalable.

4 What we do for hardening and -fbounds-safety and why

Here is roughly how we implement these checks in -fbounds-safety and libc++ hardening. First, under the
strictest code size requirements, we do not allow users to redefine the contract violation handler. The contract
violation handler is something that the vendor defines and is then baked in for all users. If the vendor wants to
allow for the contract violation handler to be repleaceable, it can provide a contract violation handler that is
repleaceable, but it is not required to.

Instead, when a contract predicate is not satisfied, we directly make a call to __builtin_verbose_trap(message).
That builtin [TRAP] expands to the smallest instruction on the target platform that will halt the program, just
like __builtin_trap(). In addition, it creates a special frame in the debug information that is recognized by
debuggers and contains the message provided as an argument. That way, when the program crashes due to a
contract violation, users can basically load the core dump in a debugger to see where the program crashed and
why, but the executable itself never needs to contain information about these possible contract violations. This
is significant for code size and this technique is used for libc++ hardening, for the ~fbounds-safety vendor
extension and we also have experience doing this in the Swift Standard Library (where the technique actually



originated).
In a nutshell, our approach looks like this:

// Defined in libc++

#define _LIBCPP_ASSERT (expression, message) \
(__builtin_expect(static_cast<bool>(expression), 1) \
? (void)0 \

: _LIBCPP_ASSERTION_HANDLER (some-information-about-failure-location-and-the-message))

// Defined by vendors, this ts the default:
#define _LIBCPP_ASSERTION_HANDLER (message) __builtin_verbose_trap(message)

// What the code using this looks like

template <class T, class Allocator>

reference vector<T, Allocator>::operator[] (size_type n) noexcept {
_LIBCPP_ASSERT(n < size(), "vector[] index out of bounds");
return this->__begin_[n];

}

This generates roughly the following code (compiler explorer: https://godbolt.org/z/q36Gc4WS85):

template <class T, class Allocator>
reference vector<T, Allocator>::operator[] (size_type n) noexcept {
if (M(n < size()))
__builtin_verbose_trap("vector[] index out of bounds");
return this->__begin_[n];

}

Not only is this significantly smaller, but it is also more easily optimized and understood by a compiler. For
example, optimizations that hoist contract predicate evaluations outside of loops (after inlining a function like
operator[]) or that remove redundant checks will be necessary for contracts to really scale. We must design
contracts for these optimizations to be achievable without requiring a heroic effort.

5 So, what’s wrong with P29007?

Not much. P2900 leaves so much as implementation-defined behavior that many implementation strategies are
viable. In a way, this is great because implementers can decide to do what’s right on their platform in niche use
cases. On the other hand, it is also important to handle the main use cases out of the box, otherwise even basic
usage will require using non-portable extensions (e.g. a non-standard contract semantic).

5.1 Support scalable contract semantics out of the box

We believe that the above way of handling contract violations is basically the most important use case and we
think it should be handled out-of-the-box in the Standard, not merely relegated to an implementation-defined
contract semantic. This could be done by defining a new contract semantic that checks the predicate, does
not invoke the contract violation handler and then terminates in an implementation-defined way if a contract
violation occurs.

To frame this suggestion, it is useful to observe that a contract violation handler is basically a fancy logging
function. It can do more than that of course, but that’s basically the direction that P2900 is pushing us towards,
and that’s fine. For example, observe will run the handler without terminating the program, aka it logs the
failure and keeps going. With that in mind, the P2900 basically provides the following contract semantics:



performs “logging” terminates

ignore no no
observe yes no
enforce yes yes

We believe we simply need to add the missing row in that table, which seems like a really simple and natural
change:

performs “logging” terminates
ignore no no
observe yes no
?eTTT? no yes
enforce yes yes

5.2 Exceptions in contract assertion predicates

This is another aspect falling out of the scalability requirements. In practice, we expect that exceptions in
contract assertion predicates will be rare. However, the current proposal requires the compiler to basically
generate a try-catch block around contract assertion predicates, which hurts code generation. Possible ways
forward:

— Require contract assertion predicates to be noexcept.

— Evaluate contract assertion predicates in a noexcept context, thus terminating in case an exception is
thrown. (Note that noexcept doesn’t require a try-catch to be generated, we can put a flag in the frame
and the unwinder terminates).

We understand that this has been discussed in SG 21 before. We believe this needs to be re-evaluated in light
of the scalability requirements we put forward.

5.3 Don’t force implementations to use std: :abort()

A previous version of P2900 mentioned that the program would be terminated in an implementation-defined man-
ner after running the contract violation handler. The latest version of the paper mandates that std: :abort ()
is used, and we think this is overly prescriptive. Indeed, std: :abort () raises SIGABRT on POSIX platforms, but
in some cases you want to actually terminate the program without going through this mechanism. For example,
if you suspect the program state might have been compromised by a malicious actor, using a mechanism that
can easily be overridden is not desirable.

Beyond that, calling std: :abort () (which is a library facility typically provided by C Standard Libraries) from
a language construct is a bit tricky. Indeed, the compiler can’t call std: :abort() because that would require
having the declaration for it. Implementations would likely end up using __builtin_abort (), which basically
generates a call to an _abort symbol to be fulfilled when linking in the C Library. This doesn’t always work on
freestanding environments, which sometimes define functions like abort () as inline functions in their headers.

Overall, we believe we should simply let the implementation decide how to terminate the program. Doing
otherwise is too prescriptive and creates too many difficulties for the benefits it offers.

5.4 Replaceability of the contract violation handler

If a user-provided contract violation handler is provided, it has to be provided at link-time since it needs to
be used by all contract predicates in the whole program. However, link-time customization is tricky. We
often run into issues where shared libraries override operator new intending to do so only for their code base,
when in reality they end up overriding operator new for the whole program. When another shared library
(or the application itself) tries to override operator new as well, we run into very interesting bugs. Link-time



customization is basically an invitation for non-benign ODR violation bugs, and we would like to investigate an
alternative for replacing the contract violation handler.

Unfortunately, C+4 doesn’t provide many tools to solve this kind of problem so this item is not directly
actionable.

6 Conclusion

We are really excited with the advancement of contracts. We believe contracts provide the infrastructure to
build many impactful features that have serious scalability requirements and we want to ensure that the contract
violation handling mechanism is designed from the start with such requirements in mind.

7 References

[BOUNDS] Yeoul Na. -fbounds-safety RFC. https://discourse.llvin.org/t/rfc-enforcing-bounds-safety-in-c-
fbounds-safety

[HARDENING] Konstantin Varlamov. Libc++ hardening RFC. https://discourse.llvm.org/t/rfc-hardening-in-
libe

[TRAP] Konstantin Varlamov. __builtin_verbose_trap RFC. https://discourse.llvm.org/t/rfc-adding-builtin-
verbose-trap-string-literal


https://discourse.llvm.org/t/rfc-enforcing-bounds-safety-in-c-fbounds-safety
https://discourse.llvm.org/t/rfc-enforcing-bounds-safety-in-c-fbounds-safety
https://discourse.llvm.org/t/rfc-hardening-in-libc
https://discourse.llvm.org/t/rfc-hardening-in-libc
https://discourse.llvm.org/t/rfc-adding-builtin-verbose-trap-string-literal
https://discourse.llvm.org/t/rfc-adding-builtin-verbose-trap-string-literal

	Introduction
	Scalability requirements
	A typical contract violation handler with P2900
	What we do for hardening and -fbounds-safety and why
	So, what’s wrong with P2900?
	Support scalable contract semantics out of the box
	Exceptions in contract assertion predicates
	Don’t force implementations to use std::abort()
	Replaceability of the contract violation handler

	Conclusion
	References

