"

PR
\..-‘ .‘.
. i .
.
:
f°»
. /1. . : 3 4 T
o . X " - “vf\“
‘ ; 5‘ , A A " NN
. '*-l ' | * b » . y
:\“.‘. iy S B ‘j:.: 1% 2 ~ 1S Lard B
. . ’,.-’ -~ "‘ 4 J L . )
saair. i ) AP A
ol " ) B 4 "o . '}
y " g v, . | R a
. o * L ® ‘e l'. ’ .-l\.. l-' ‘;\.'\ / 0". ..-- '>" : - '.'\. .,.."-' ..‘0 * ’ 't Q..
\.' ® ." . oS .-. . -.. ) '\ ‘- \ g w - :.. - T . -““.- .J"' - A :\:
~CooameredithT@bloombeé
. . . " s ’ . : - >
* 'Y = o ” ‘. ' . ) ] ve . . “
. . b 3 .® ¢ -
> Y - . -~ '.'. .. . " .... o .:'. ‘.' .t . " - 'ﬂ) O “ .'.'.' p
o, 3 fe ? s+ " A R 1L R *: 0, %% O
oA . I LN SR AL A A R PR
. ™ - . . . - 4 » - ’ -
, .x ﬁ._.ln. '. . ® . . . '. s ol \. : > . (J .
: ® o ).,'. e P " . o o * . s \ - -~ » . 4
. o ./4 s ) . . ®, * . " s A .. . . - v » .
LY S
I\ -
5

. ’ .
2

Getting Allocators Out Of Our Wa

Language support for scoped allocators

.'."'-'Téi:IiAtBIoomberg.com

© 2024 Bloomberg Finance L.P. All rights reserved.

=

bioquioo|g

-
(@
-
-
(D
(D
R
-
-
0



mailto:ameredith1@bloomberg.net

Presentation Goals

» Seek feedback on the scope of a proposal that would best progress work in this group
Do we need a complete solution to all known issues?
 Should we take an MVP approach like the contract work"?

* Order of presentation
 Motativate the problems to be solved

* Present our current understanding and goals for language support for the scoped
allocator model

* Present known design questions that are left open pending feedback



Why Allocators Matter

Motivation

» Memory Is a special resource consumed by every object in the system

 Memory access patterns (locality of reference) can be a critical factor of
system performance, and control of memory allocation is our best known way

to handle that

* Long lived applications suffer from memory fragmentation and diffusion
without careful control of memory allocation

» Additional utility in the form of telemetry, support for testing, etc.



Why Allocators Are Not Used

Demotivation

* |ibrary support is very intrusive

* |s not an optional part of the design
 Must be integrated from the start
» Hard to retro-fit

 Cannot support all types

 Aggregates, arrays, lambas, ...



Simplifying the Problem

Building on experience

e Building on pmr memory resources

* Building on Bloomberg experience beyond the standard library
* Preferring std library in our examples for familiar vocabulary

* Looking to generalize in the future
* Extensions to support non-memory resource allocators

 EXxtensions to support non-allocator protocols



What is the Scoped Allocator Model

* The scoped allocator model supports enforcing the same allocator is used for
all members of the same data structure, notably for containers such as
vector and map

e |.e., all elements of the container use the same allocator as the container

 Thisis the model used by pmr: :polymorphic allocator



What is Allocator Propagation

* A container Is given an allocator at construction, and that allocator never
changes

* |n particular, it is not replaced by assignment or swap

 Propagate is a confusing term — we do not propagate the allocator through
assignment and swap to objects outside the container, but do push the
allocator to every element inside the container, and that sounds a lot like a

different form of propagation



Allocator for Construction in pmr Model

o |f no allocator is explicitly supplied, use the default memory resource,
even for copies and temporaries

 Unless it is the specific special case of the move constructor



Problems to Solve for Users of pmr
Current state of the art

 Cannot reach all parts of the language
 Aggregates
* Arrays (technically an aggregate)

e L ambdas

* Objects with static storage duration require special attention



Problems to Solve for Library Implementers

Current state of the art

* |mplementation and maintenance of the scoped semantic is expensive
 Many constructor overloads requiring an allocator argument
 Must pay careful attention to non-propagation of the allocator

* Finding the allocator an object uses needs a convention not described by
the standard allocator traits

10



Towards a Solution



Related Work

Papers that are assumed as they solve related problems

e« P2025 Guaranteed NRVO (EWG, paper stalled)

e P2786 Trivial relocation (passed EWG this meeting)

e P2959 Relocation within a container (LEWG, not yet seen)

12



Worked Example

class Object {
std::pmr::string d name;

public:
using allocator type

std::pmr::polymorphic allocator<>;
explicit Object(allocator type a = {}) : d name("<UNKNOWN>", a) {}
Object(const Object& rhs, allocator type a = {}) : d _name(rhs.d name, a) {}

Object(Object&&) = default;
Object (Object&& rhs, allocator type a) : d name(std::move(rhs.d name), a) {}

// Apply rule of 6

~0bject () = default;

Object& operator=(const Object& rhs) = default;
Object& operator=(0bject&& rhs) = default;

13



Worked Example

class Object {
std::pmr2::string d name,

public:
// using allocator type = std::pmr::polymorphic allocator<>;

Object() : d name("<UNKNOWN>") {} // no longer explicit
Object(const Object& rhs) = default;

Object(Object&&) = default;
// Object(Object&& rhs, allocator type a);

// Apply rule of 6

~0bject () = default;

Object& operator=(const Object& rhs) = default;
Object& operator=(0bject&& rhs) = default;

14



Worked Example

class Object {

std::pmr2::string d name = "<UNKNOWN>";

public:

Object() = default;

Object(const Object& rhs) = default;

Object (Object&&) default;

// Apply rule of 6

~0bject () = default;

Object& operator=(const Object& rhs) = default;
Object& operator=(0bject&& rhs) = default;

15



Worked Example

class Object {
std::pmr2::string d name = "<UNKNOWN>";

public:

// Rule of zero !!

16



Worked Example

class Object {
std::pmr2::string d name = "<UNKNOWN>";

public:
// Rule of zero !!
s

pmr::multipool resource res,;
Object x{"Hello world”} using res;

17



Supporting Language Constrained Types

* [ype is allocator enabled if it has any allocator-enabled bases or non-static
data members

 New fundamental type provides basic hook to be allocator enabled

 New type acts like pmr: :memory resources

* Allocator propagation cannot depend on user provided functions
* Propagation rules must be implicit and implemented by the compiller

* Natural behavior when the new type behaves like a reference — does not
rebind

18



Supplying an Allocator

* Allocators must be supplied my a mechanism that is not a constructor argument
» Addresses getting allocators into aggregates, arrays, and lambdas
e Suggested syntax: using after variable initializers
* Using-initialization supported only for allocator-enabled types
e Not usable with member Initializers, as class must have consistent allocator
* Uses the default memory resource if not supplied by user, but...

o See later for initializing objects with static storage duration

19



Aggregates do not support pmr

Correct-looking usage does not propagate allocator to strings

struct Aggregate // No support for uses-allocator construction
std: :pmr::string datal;
std: :pmr::string data?Z;
std: :pmr::string data3;

¥

std::pmr::test resource tr;
std: :pmr::polymorphic allocator ta(&tr);
Aggregate ag = {{"Hello" "World" mrn };

std: :pmr::vector<Aggregate> va(ta);

va.emplace back(std::move (ag)); // Correct allocator is retained by moves
va.emplace back (ag); // Error, copied lvalue uses default resource
va.resize (5) ; // Error, new elements use default resource
va.resize (1) ; // OK, remove all objects with bad allocators

20



Aggregate Support becomes Implicit

Simpler syntax, and behaves correctly

struct Aggregate {
stdZ::string datal;
std2::string data?Z;
std2::string data3;

b

std::pmr::test resource tr;

Aggregate ag using tr = { I
std2: :vector<Aggregate> va using tr;

va.emplace back(std::move (ag)); // Correct allocator is retained by moves
va.emplace back(ag) ; //

va.resize (5) ; //
va.resize (1) ; // OK

21



Exposing the Allocator

o All allocator enabled objects have a “hidden friend” allocator of function

 Returns a reference to the memory resource used by the object

* Allows testing for whether two objects have the same allocator

e Callallocator of (*this) to find your own allocator

* Implicit implementation looks for first allocator-enabled member (including
base member objects) and forwards the call

* This implicit implementation will resolve support for native arrays

22



allocator of is Beyond Reach of C++23 Library

int main () {
usling namespace std;
pmr: :monotonic buffer resource tr;

pair<pmr::string, pmr::string> p2 = { plecewlse construct
, tuple{pmr::string("Hello", &tr)
, tuple{pmr::string("world", &tr)
b i

J
J

tuple t4 = { allocator arg, pmr::polymorphic allocator<>{&tr}
, pmr::string("Bonjour")
, pmr::string("tout")
, pmr::string("le")
, pmr::string ("mond")
b
// assert(p2.get allocator () == &tr); // No equivalent
// assert(td4d.get allocator() == &tr); // No equivalent
assert (get<0>(p2) .get allocator () == &tr);
assert (get<l>(p2) .get allocator () == &tr);
assert (get<0>(t4) .get allocator () == &tr);
assert (get<l>(t4) .get allocator() == &tr);
assert (get<2>(t4) .get allocator() == &tr);
assert (get<3>(t4) .get allocator () == &tr);

23



Easy to Extract Allocator, Even From EXxisting Templates

int main () {
uslng namespace stdZ2::string literals;
stdZ2::test resource tr;

std: :pair p2 using tr = { "Hello"s, "world"s };

std: :tuple t4 using tr = { "Bonjour"s, "tout"s, "le"s, "mond"s };
assert (allocator of (p2) == tr);

assert (allocator of(t4d) == tr);

assert (allocator of (get<0>(p2)) == tr);

assert (allocator of (get<l>(p2)) == tr);

assert (allocator of (get<0>(t4d)) == tr);
assert(allocator of (get<l>(t4d)) == tr);

assert (allocator of (get<2>(t4d)) == tr);

assert (allocator of (get<3>(t4d)) == tr);

24



Factory Functions

Passing allocators for the return value

» A factory function is any function that returns an allocator-enabled object by
value

* Factory functions support a using argument to supply an allocator
* Return expressions implicitly use the allocator supplied to the function

* Local variables that are guaranteed to RVO implicitly use the supplied
allocator

* Hence desire for the proposal for some NRVO guarantees

25



Factory Functions Use Supplied Allocator For return Value

stdZ2::string make (char const * s) { return s; }

stdZ::string joln(char const * sl, char const *s2Z) {
using std2::string;
return string{sl} + string{" "} + string{sZ};

J

std2::string joinZ2 (stdZ2::string sl, stdZ2::string s2) {

return s1 + " " + s82;
}
int main () {
std::pmr::test resrouce ta;
auto hw = make ("Hello world!") using ta;
hw = join ("Hello", "world!") using ta;
stdZ2::string hello using ta = "Hello";

std2::string world using ta "world";

hw = join2 (hello, world) using allocator of (hw); // temporaries use pa

26



A Generic Factory Function

Missing standardese is at least another 10 slides to show...

// make from tuple 1is 1/2 page of C++23 specification
// uses allocator construction is 2 1/2 pages of C++23 specification

template<class T, class Alloc, class... Args>
constexpr
T make obj using allocator (const Alloc& alloc, Argsé&é&... args)

return make from tuple<T>(uses allocator construction args<T> (
alloc, std::forward<Args>(args)...)):;

27



Simplified Generic Factory Function

[ | |
a2+ 1 AN

[ ]
(@l . VW W Bin

1/2 A~ ~AFf 11922

(@)

|
1

Ffrrm +1irn1l A

L L \JI1ILL

[/ mala

L.)r/\_,\_/_I_J__I_\_/L/L C L \Jll

L

T T —O=T
]
oot riiotE 1 AN

A

J

L.,ut./_l_\.z

LLLCA TN

/

| | |
oo~ Fa-at 9 An

~AF 11D

U L

A—F

(@

]
1

A1l 1A+ v
@ I . . W W) O N G W

11 NG
| D I

UJ_\/\/\/_LJ__L\/(J. C L\ J1l1l

N T

r/u\j\.,k.)

4

/

il END)

~—J1ll oo U L U U L \UJU1l1l

/

/

0
@)
r
©
S
S
N
@)
r
<
A\ ()
0 )
@) —
r —
< (»
° fu}
. D —~
[} mu.
D) —H e
D) —H e
© SHEPEN
— N
O $PH O
n Y
~ @ @
() O —
0 D A
—H ~ 0
— “q4 O
< O Y
P
) 0 V
4p) O O
M O Y
—H — @
() o =
© Y
~ | O
= O
n..
0 e
0 0N O
© S5 P
— |
O M~
V 4 Q
O O O G
X | Y
T O O D
— P AP
O, n @ O
= O 2 Y
O O
0O H

28



Move Semantics

* Allocators do not propagate on move-assignment, as we do not rebind/replace an
existing allocators

* Allocators do propagate on move-construction or else moves would become
allocating copies

* For construction, an object does not yet have an allocator installed, so choose the
same one as the object that is moving

 Move-constuctuct using allocator uses the supplied allocator by delegating to
o if the using allocator matches allocator of (rvalue), the move constructor

* Otherwise the copy constructor, so class invariants are managed in one place

29



Accessing Memory Resources outside their Lifetime

 Basic pmr usage is addressed by C++ object lifetime
* (local) memory resource must be declared before (local) object that uses it
o Static initialization cannot use the default memory resource specified by main
e Support for a static duration global resource

* (GGlobal resource given by a replaceable function

30



Allocating Memory

Leaving the least interesting case until last

* Allocate and release memory directly with a memory resource

» Retrieve memory resources from objects using allocator of

* Provide an allocator type within the standard library

* Analogous to std: :pmr: :polymorphic allocator<>
o Call a.new object<TYPE> (args..) to allocate and construct
o Calla.delete object (ptr) to destroy and deallocate

* Provides the initial allocator

 The new fundamental type is never exposed to the user

31



Open Design Questions




Unresolved Design Concerns

Each of the topics below needs to be explored in detall

» EXxplicit factory functions (providing an allocator/object for function use only)

* Providing allocator/objects to initialize function arguments

* Providing allocator/objects to whole expressions, or subexpressions

* Providing explicit (and different) allocator/objects to different member initializers
* Accessing using argument to constructor/factory function

e Customising the move constructor (pair<string, unique ptr> problem)

» Customisation API to optimize storage, e.g., for any/optional

33



Next Steps...



Future Work

Currently planned next steps

* Progress the “related papers” on trivial relocation

* Pick up the paper on guaranteed NRVO
* Rewrite paper P2685 using P3004 Principled Design
 Reconsider how much can be simplified with reflection, P2996

e Establish how much of the design space must be solved for a minimal feature open
to future extensions (the Contracts MVP approach)

 Expect the focus to be on Viable, rather than Minimal

e Semi-related: P1160 Test Resource becomes much more useful

35



